Lec7 Image Restoration

人工智能引论实践课 计算机视觉小班 主讲人:刘家瑛

- 1. Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super-resolution image reconstruction: a technical overview. IEEE SPM 2003.
- 2. Xin Li, Michael T. Orchard. New edge-directed interpolation. IEEE TIP 2001.
- 3. Xiangjun Zhang, Xiaolin Wu. Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation. IEEE TIP 2008.
- 4. Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution. ECCV 2014.
- 5. Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. CVPR 2016.

672

• 图像降质

- 视觉信息感知和通信的有效性
- -娱乐多媒体的视觉体验
- 应用领域的特定图像质量要求
 - 军事遥感/医疗成像等

• Visual Degradation

Background

- 图像降质的原因
 - 采集过程
 - 硬件终端性能受限,如手机摄像头
 - 低光照拍摄产生噪声
 - 物体运动引起模糊等
 - 传输信道
 - 信号的丢失
 - 大气环境的干扰引入噪声
 - 算法设计处理导致
 - 图像和视频的压缩编码(量化噪声)

- 通过提升硬件工艺改善图像质量
 - 以图像传感器工艺为例

- 成本较高
- 接近工艺极限 (0.35µm CMOS, 像素面积仅40µm²)
- 存在多种降质过程的冲突矛盾
 - 分辨率、噪声、模糊
- 无法解决软件算法处理带来的降质效应
 - 如图像下采样、量化噪声等

Background

- 图像复原
 - Image Restoration, IR
- 软件 / 算法
 - 信号处理
 - 计算机视觉
 - 机器学习
- 目标
 - 改善图像质量
 - 复原出原始图像内容和特征

Research Scopes

Underwater Enhancement

Dehazing

Text Removal

Super Resolution

Rain Streak Removal

Denoising

Low Light Enhancement

Problem Formulation

$$Y = MX + N$$

• 逆问题具有病态性 (III-pose)

• 基本思路
$$X^* = \arg \min_X \|MX - Y\|$$

-引入正则项(图像先验建模)

$$X^* = \arg\min_X \|MX - Y\| + \gamma G(X)$$

如何设计模型和算法,使得处理的效果在接近原始图像的同时, 符合图像本有特征和人眼视觉感知特性!

Reconstruction Prior

• 对自然图像本质属性的理解和建模

Reconstruction Prior

- 图像先验模型
 - 局部模型
 - 局部光滑模型, 自回归模型, 核回归模型
 - 稀疏性模型等
 - 非局部模型
 - Non-Local
 - 图像中包含大量重复冗余模式和结构信息
 - 全局模型
 - 马尔科夫随机场模型构建上下文约束信息
 - 联合模型
 - 结构化稀疏模型,低秩模型等

图像超分辨率 Super Resolution

Background

低分辨率图像

视觉效果逼**擦起**的节丰富的 高分辨率图像

图像超分辨率重建

- Super-Resolution, SR
- 目标:
 - 提高图像大小 (单位面积内可显示像素个数)
 - -保持和改善图像视觉特征
 - 消除和降低图像瑕疵
- 相关理论和技术
 - 图像处理技术
 - 信息生成和融合
 - 机器学习和模式识别

Background

• 医学/卫星成像

- 消费电子领域
 - 数码照片高清打印
 - -图像感兴趣区域放大

- 视频应用领域
 - 视频监控

- 标清信号 (SDTV)
 → 高清信号 (HDTV)
- 新一代视频编码器
 下采样↓→ 编码 → SR↑

Problem Formulation

• 图像观测模型

- 超分辨率重建是观测模型的逆过程
 - 已知 Y_k 重建X
 - X 经过 S*H*F_k 过程作用后得到 Y_k

Edge Reconstruction

- 边缘特征
 - 包含主要图像信息
 - 人类视觉系统更敏感

插值点

• 传统插值方法

(a) 最近邻

(b) 线性插值

已知点

(c) 三次插值

(a)最近邻 (锯齿)

(c) 三次插值(模糊振铃)

放大图像的同时保持和改善图像边缘特征

Detail Reconstruction

- 利用单帧LR图像信息的局限性
 - 细节特征重建效果不理想, 尤其对于纹理区域
 - watercolor-like artifacts

Detail Reconstruction

- 利用单帧LR图像信息的局限性
 - 细节特征重建效果不理想, 尤其对于纹理区域
 - watercolor-like artifacts

(a)低分辨率图像 (b)三次插值图像 (c)原始高分辨率图像

需要利用外部信息增强重建纹理区域的视觉质量

•AIPKU· Video Super-Resolution

- 直接应用图像超分辨率重建技术
 - 滑动窗口

Ξ

• 问题: 高分辨率重建帧间缺少约束, 如运动平滑性

计算复杂度高,影响实际应用

结合视频时空域特性进行多帧重建

- 图像超分辨率研究
 - 提升和改善边缘特征
 - 增强纹理细节恢复能力
 - 提高彩色图像SR性能
- 视频超分辨率研究
 - 提高重建帧间一致性
 - 降低复杂度

Research Scope

- 根据预测信息来源分为:
 - 基于插值的方法
 - 基于多帧融合的方法
 - 基于学习的方法

Edge Guided Interpolation

- 边缘方向上自适应处理
 - 显式检测图像边缘方向
 - 边缘图
 - 边缘检测精度
 - 隐式地估计边缘方向
 - 局部邻域统计量的估计
 - 提高统计量估计的自适应性和鲁棒性

高分辨率 边缘图

Multi-Frame SR

• 利用多个低分辨率图像作为输入

Multi-Frame SR

• 利用多个低分辨率图像作为输入

Multi-Frame SR

• 利用多个低分辨率图像作为输入

难点

- 低分辨率图像间的运动估计和配准
- 模糊过程的建模

局限性

- 输入图像的数目和运动情况的影响
- 有效放大倍数
 - 理论值为5.7 / 实际情况下约为1.6 [Lin01, Lin04]

- 从外部图像数据库中获取信息
 - Learning-based (recognition-based) [Freeman99, Baker02]

- 难点与热点
 - 增强图像对间的映射相关性 [Sun03,Li09,Sun10]
 - 搜索最优的图像例逼近输入低分辨率图像
 - 基于LLE [Chang04]
 - 基于稀疏表示理论 [Yang08, Yang10, Wang10]

- 基于插值的方法
 - 针对边缘特征, 解决传统插值方法产生的图像瑕疵
 - 简单实用, 复杂度相对较低
 - 需要进一步提高边缘估计的准确性和鲁棒性
- 基于多帧融合的方法
 - 利用多帧序列融合重建
 - 建模能力强
 - 计算复杂度高, 运动估计和模糊的处理
- 基于学习的方法
 - 根据图像实例映射关系完成分辨率增强
 - 速度快, 重建效果好
 - 提高训练图像集的通用性, 增强重建纹理细节表现

Edge Adaption Interpolation

- 图像边缘特征
 - 沿边缘方向保持平滑
 - 垂直方向保持锐化

Edge Adaption Interpolation

- 图像边缘特征
- 自回归模型
 - 用邻域像素点进行预测 $X_{(i,j)} = \sum_{(m,n)\in T} \alpha_{(m,n)} X_{(i+m,j+n)} + \varepsilon_{(i,j)}$
 - 模型参数 α
 - 刻画了图像的局部邻域关系,反映图像局部特征

·基于自回归模型的插值算法[Li01]

• 图像先验假设:尺度不变+局部稳态

$$\min_{\alpha} E(y_{H0} - \hat{y}_{H0})^2 = \min_{\alpha} E(y_{H0} - \mathbf{Y}^T \boldsymbol{\alpha})^2$$
$$\mathbf{Y} = \begin{bmatrix} y_{L1} & y_{L2} & y_{L3} & y_{L4} \end{bmatrix}^T$$

$$\min_{\boldsymbol{\alpha}} E(y_{\text{L1}} - \hat{y}_{L1})^2 = \min_{\boldsymbol{\alpha}} E(y_{\text{L1}} - \mathbf{Y}_L \boldsymbol{\alpha}^T)^2$$
$$\mathbf{Y}_L = \begin{bmatrix} y'_{L1} & y'_{L2} & y'_{L3} & y'_{L4} \end{bmatrix}^T$$

 $\mathbf{C}\boldsymbol{\alpha} = \mathbf{R}$ $\boldsymbol{\alpha} = (\mathbf{C}^T \mathbf{C})^{-1} \mathbf{C}^T \mathbf{R}$

* IEEE Trans. on Image Processing, Xin Li, 2001

- ·基于分段自回归模型的插值算法 [Wu08]
 - 分段自回归模型 (piecewise auto-regressive, PAR)
 - 参数 α 在全局区域变化较大,局部区域保持一致
 - 统计稳态区域 (Statistical Stationary Region, SSR)

Edge Adaption Interpolation

- 问题分析
 - 提高统计量估计的准确性和鲁棒性
 - 固定大小窗口内统计稳态假设可能不满足
 - -根据图像局部SSR特征自适应定义窗口尺度形态
 - 如何刻画局部SSR的不规则几何形态?
- 显式图像分割
 - 模糊, 噪声
 - 算法设计与实现
- 我们的方法
 - 通过像素间概率分布来隐式刻画

- 两点间相似度概率计算模型 $p(i,j) = p_n(i,j) \cdot p_s(i,j) \cdot p_d(i,j)$
 - 邻域结构相似性 (Neighbor)

$$p_n(i, j) = \exp\left(-\|N_i - N_j\|_2^2 / \sigma_1\right)$$

- 颜色连续性度量 (Smoothness)

$$p_s(i,j) = \exp\left(-\left|I_i - I_j\right|^2 / \sigma_2\right)$$

- 距离度量 (Distance)

$$p_d(i,j) = \exp\left(-\left\|P_i - P_j\right\|_2^2 / \sigma_3\right)$$

122 i(201 ∕ ⊲	$p_{i,j} = 0.987$	121	201
125	203		122	201
	·			
43	27	$p_{i,k} = 0.244$	27	$\frac{25}{k}$

Edge Adaption Interpolation

• 相似度概率分布

0.4		0.4		0.5		0.8		0.8		0.6
	0.4		0.4		0.5		0.9		0.4	
0.4		0.4		0.5		0.8		0.7		0.4
	0.4		0.4		0.7		0.8		0.4	
0.4		0.4		0.7		0.9		0.6		0.4
	0.4		0.4		1		0.5		0.4	
0.4		0.5		0.8		0.7		0.5		0.4
	0.4		0.6		0.8		0.4		0.4	
0.4		0.6		0.8		0.7		0.4		0.4
	0.4		0.8		0.7		0.4		0.4	
0.5		0.8		0.8		0.6		0.4		0.4

$$p(i,j) = e^{-\|N_i - N_j\|_2^2 / \sigma_1^2 + -\|I_i - I_j\|_2^2 / \sigma_2^2 + -\|P_i - P_j\|_2^2 / \sigma_3^2}$$

Edge Adaption Interpolation

- 算法改进
 - 隐式分段自回归模型

(Implicit piecewise autoregressive model, IPAR)

- 相似度概率 > 模型一致性
- 多方向的自回归建模
 ◎ 对角线方向
 - 模型参数 a
 - ⊕ 水平-垂直方向
 - 模型参数 b

0.4		0.4		0.5		0.8		0.8		0.6
	0.4		0.4		0.5		0.9		0.4	
0.4		0.4		0.5		0.8		0.7		0.4
	0.4		0.4		0.7		0.8		0.4	
0.4		0.4		0.7		0.9		0.6		0.4
	0.4		0.4		1		0.5		0.4	
0.4		0.5		0.8		0.7		0.5		0.4
	0.4		0.6		0.8		0.4		0.4	
0.4		0.6		0.8		0.7		0.4		0.4
	0.4		0.8		0.7		0.4		0.4	
0.5		0.8		0.8		0.6		0.4		0.4

Edge Adaption Interpolation

• 基于IPAR的图像插值算法

$$\min_{\{y_i\}} \left\{ \sum_{i \in W} \left[p_i^H \left(y_i - \sum_{t=1}^4 a_t y_{i \otimes t} \right) \right]^2 + \sum_{i \in W} \left[p_i^L \left(x_i - \sum_{t=1}^4 a_t x_{i \otimes t} \right) \right]^2 \right\},$$

s.t.

Experimental Results

原始图像

NEDI

SAI

改进算法

Experimental Results

原始图像

NEDI

改进算法

• 实验环境

• 测试图像集: Kodak图像, USC-SIPI图像库

$$PSNR = 20 \times \log\left(\frac{255}{\sqrt{MSE}}\right), \qquad MSE = \frac{1}{N} \sum_{i=1}^{N} (X_i - Y_i)^2$$

Images	Resolution	Bicubic	NEDI ^[Li01]	SAI ^[Wu08]	IPAR
Cameraman	256×256	25.18	25.34	25.70	25.78
Peppers	512×512	32.77	33.30	33.51	33.56
Lena	512×512	33.86	33.80	34.63	34.67
Monarch	768×512	31.72	31.68	32.90	33.16
Tulips	768×512	33.69	34.16	35.66	35.82
Caps	768×512	33.67	34.05	34.48	34.48
Airplane	768×512	30.73	31.21	31.65	31.72
Bike	768×512	25.93	25.97	26.97	27.02

Image Super-Resolution

LR image Y

HR image X

Conventional Methods

- Interpolation: artifacts for large upscaling factor
- Signal processing in spatial / frequency domain: assume known degradation model, multiple LR images

• Sparse Coding based Super-Resolution [Yang10]

Y'

X

Conventional Methods

- Interpolation: artifacts for large upscaling factor
- Signal processing in spatial / frequency domain: assume known degradation model, multiple LR images

AIPKU Sparse Representation

Patch-Based Sparse Representation

≣

从图像Y中提取位置k处的图像块 P_k

 $y_k = P_k \mathbf{Y}$

根据稀疏先验,每个图像块可以由字典D稀疏表示 Position k

$$y_k \approx \mathbf{D}\alpha_k, \quad s.t. \quad \|\alpha_k\|_0 \ll n$$

т

$$\min \|y_k - \mathbf{D}\alpha_k\| + \lambda \|\alpha_k\|_1$$

稀疏编码最优化目标函数

Sparse Representation Model

Patch → Signal Bridge

Patch → Signal Bridge

AIPKU Sparse Coding-Based SR

Coupled Dictionary Learning

- Coupled dictionary pair $\{D_l, D_h\}$ defines a transform from LR to HR feature Space
- Learn $\{D_l, D_h\} \rightarrow$ the sparse code of y_i can well reconstruct x_i

$$\min_{D_l, D_h} \sum_i \|x_i - D_h z_i\|_2^2$$

s.t.
$$z_i = \arg_{\alpha_i} \|y_i - D_l \alpha_i\|_2^2 + \lambda \|\alpha_i\|_1$$

- Coordinate Descent
 - Fixing D_l , update D_h (quadratic programming)
 - Fixing D_h , update D_l (stochastic gradient descent)

Experimental Results

Input

Neighbor Embedding

ScSR

• Experimental Results

Input

Bicubic

Neighbor Embedding

Experimental Results

Input

Back-Projection

Neighbor Embedding

Sparse Coding

Data-Driven Motivation

Data-Driven Solution

• Learning to be intelligent

AIPKU

Super-Resolution CNN [Dong14]

≣

- Patch Extraction \rightarrow LR Representation
- Non-linear Mapping \rightarrow LR to HR Coefficient Mapping
- Reconstruction \rightarrow HR Patch Reconstruction

• Very Deep Super-Resolution [Kim16]

≣

- 20 convolutional layers (41x41 receptive field)
- 64 channels, 3x3 filters in each convolutional layer
- Skip connection to learn residual only
- No dimension reduction such as pooling

• Very Deep Super-Resolution [Kim16]

- Build a single convolutional network to learn and handle multi-scale SR
- Train multi-scale images jointly

≣

- Different scale helps each other
- Learns to upscale with inter-scale factor

Deep-Learning Based SR Route

图像去雨 Single Image Derain

Background

Image Degradation Model

$$\mathbf{y}_k = \mathbf{DHF}_k\mathbf{x} + \mathbf{n}$$

Single Image Rain Streak Removal

Deep Joint Rain Detection and Removal From a Single Image CVPR 2017

Previous Works

- Classification in texture feature space
 - Morphological Component Analysis [Kang12]
 - Discriminative Sparse coding [Luo15]
 - Rain Streak Removal Using Layer Priors (LP) [Li16]
- Fail to handle heavy rain cases

| P

Light Rain Cases

Rain image

Heavy Rain Cases

LP

Rain image

59

Our Aim: Heavy Rain Cases

Heavy Rain Problems

- Heavy rain \rightarrow Different types of rain streaks in the same image
- Mist \rightarrow Distant rain accumulation, like haze

Rain Image Generation (1/3)

Traditional Rain Synthesis Model

Additive Model [Lu15, Li16]

$\mathbf{O} = \mathbf{B} + \tilde{\mathbf{S}}$

 \tilde{S} is not consistently distributed \rightarrow designing prior is hard Signal separation \rightarrow loss texture detail in non-rain regions

Rain Image Generation (2/3)

$$\mathbf{O} = \mathbf{B} + \sum_{t=1}^{s} \tilde{\mathbf{S}}_{t} \mathbf{R}$$
$$\mathbf{O} = \alpha \left(\mathbf{B} + \sum_{t=1}^{s} \tilde{\mathbf{S}}_{t} \mathbf{R} \right) + (1 - \alpha) \mathbf{A}$$

Rain Image Generation (3/3)

Region Dependent Rain Removal

- Separating streak location + rain level
- Region detection enable implicit separation processing for rain / non-rain regions

Joint Rain Detection and Removal

Multi-Task Learning

Recurrent Joint Derain and Demist

Recurrent Rain Removal

- One type for each
- Demist
 - Derain → Demist → Derain

Compared Methods

 Proposed-, Proposed, Proposed-R
LP^[Li16], DSC ^[Lu015], SRCNN^[Dong14], CNN Rain Drop^[Eigen13]

Normal case

Datasets

- Rain12 [Li16]
- Rain100L,Rain100H

Heavy case

Baseline	Rain12		Rain100L		Baseline	Rain100H	
Metric	PSNR	SSIM	PSNR	SSIM	Metric	PSNR SSIM	
ID	27.21	0.75	23.13	0.70	ID	14.02 0.5239	
DSC	30.02	0.87	24.16	0.87	DSC	14.26 0.4225	
LP	32.02	0.91	29.11	0.88	LP	15.66 0.5444	
CNN	26.65	0.78	23.70	0.81	Proposed-	20.79 0.5978	
SRCNN	34.41	0.94	34.41	0.94	Proposed	22.15 0.6736	
Proposed	35.86	0.96	36.11	0.97	Proposed-R	23.45 0.7490	

ID^[TIP12]

67

Rain Image

DSC^[ICCV15]

LP^[CVPR16]

Ours

Rain Image

ID^[TIP12]

DSC^[ICCV15]

LP^[CVPR16]

Ours

Rain Image

ID^[TIP12]

DSC^[ICCV15]

LP^[CVPR16]

Ours

Rain Image

ID^[TIP12]

DSC^[ICCV15]

LP^[CVPR16]

Rain Image

ID^[TIP12]

LP^[CVPR16]

DSC^[ICCV15]

Rain Image

ID^[TIP12]

LP^[CVPR16]

DSC^[ICCV15]

Rain Image

ID^[TIP12]

DSC^[ICCV15]

Rain Image

ID^[TIP12]

LP^[CVPR16]

DSC^[ICCV15]

Rain Image

ID^[TIP12]

LP^[CVPR16]

DSC^[ICCV15]

Ours

77

Rain Image

ID^[TIP12]

LP^[CVPR16]

DSC^[ICCV15]