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ABSTRACT

In this paper, we propose a fine-grained isophote model with consis-
tency constraint to characterize the piecewise-stationarity of image
signals. According to this model, we present a novel interpolation al-
gorithm. In this model, the displacement coefficient is used to model
the isophote. Then fine-grained pixel intensity information is intro-
duced to correct the displacement calculation and make the isophote
estimation more robust. In order to handle the piecewise-stationarity,
we force the isophote direction consistent in the local window when
an interpolated line is piecewise-stationary. The proposed algorithm
can accommodate the general scale enlargement. Experimental re-
sults demonstrate that the proposed approach achieves better perfor-
mances in both objective and subjective quality assessment.

Index Terms— General scale, Isophote-based, Interpolation

1. INTRODUCTION

Interpolation is a general and economic technique for the image en-
largement. It generates high resolution image by utilizing low reso-
lution image information with some prior knowledge. Conventional
interpolation methods, such as Bilinear and Bicubic, interpolate an
image by convolving pixels with a fixed kernel. These methods do
not adapt to local structure of images therefore artifacts, such as blur-
ring and ringing, occur in the frontier of different regions.

In order to overcome the above deficiency, edge-directed in-
terpolation methods are proposed. These methods pay attention to
edge modelling and adapt to local structure, such as New edge-
directed interpolation (NEDI) [1] and Soft-decision adaptive inter-
polation (SAI) [2]. NEDI uses the low-resolution (LR) image to esti-
mate the high resolution (HR) covariances by a least square problem
and estimates HR pixels by their neighbor LR pixels using corre-
sponding covariances. SAI extents the framework of NEDI with a
cross-direction autoregressive (AR) model and achieves better per-
formance upon NEDI. In [3] [4], interpolation reconstructs image
edges and isophotes iteratively with smooth constraint.

These methods have a limitation that they can only deal with
enlargement whose scaling factor is 2i, (i = 1, 2, ...). But gen-
eral scale enlargement and interpolation are required in many sce-
narios in reality. Wu et al. [5] proposed an adaptive resolution up-
conversion method based on a two directional AR models imple-
mented in H.264/SVC. Li et al. [6] constructed AR models with pix-
els neighbors instead of their available LR neighbors. The similar-
ity between pixels within a local window is employed to depict the
piecewise-stationarity of image signals.
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The methods mentioned above embody the neighborhood and
edge information in an optimized function. Another type of meth-
ods identify the edge or isophote direction and interpolate along the
direction, such as Wang’s method [7] and segment adaptive gradi-
ent angle interpolation (SAGA) [8]. In [7], the isophote direction
is estimated. Then it interpolates along a parallelogram which one
edge of is parallel with the estimated isophote. SAGA models the
isophote with a parameter called displacement coefficient and in-
terpolates along isophote lattice rather than image lattice. By in-
terpolating along the isophote lattice, these methods achieve desir-
able performance. And fractional locations can be represented in the
isophote lattice so the general scale enlargement is supported.

However, two issues are not considered in these methods. First,
when an interpolated line (a row or a column) is piecewise-stationary
rather than global-stationary, the isophote estimation is inaccurate,
inconsistent and varying dramatically, which causes undesirable in-
terpolation results. Secondly, the edge or isophote direction is esti-
mated by gradient. And the gradient calculation is sensitive to noises
which remain widespread in natural images. Thus the isophote esti-
mated by gradient is easy to deviate from the reality.

To overcome the obstacles mentioned above, we propose an
interpolation algorithm based on fine-grained isophote model with
consistency constraint. The algorithm employs the framework of
isophote-based interpolation. First, the displacement coefficient is
used to model the isophote. Fine-grained pixel intensity information
is introduced to correct gradient-based displacement and make the
isophote estimation more robust. Then, a gradient interpolation
method along the isophote lattice with consistency constraint is
proposed to force the direction of isophote consistent in the local
window when the interpolated line is piecewise-stationary. Finally,
An adaptive weighting fusion is employed to effectively fuse HR
candidates from a HR pool. The proposed algorithm can accom-
modate the general scale enlargement. Experimental results show
that our method achieves better performance, especially for regions
including piecewise-stationary lines, than other methods.

The rest of the paper is organized as follows: Section 2 reviews
the isophote-oriented interpolation algorithms. The proposed inter-
polation algorithm based on fine-grained isophote model with con-
sistency constraint is presented in Section 3. Experimental results
are presented in Section 4. Finally, Section 5 concludes the paper.

2. ISOPHOTE-ORIENTED INTERPOLATION

Conventional interpolations generate HR pixels along the image lat-
tice, resulting in unnatural representation of edges. In order to de-
pict the non-stationarity between two regions and keep interpolated
edges natural, we introduce isophote. Isophote is a constant inten-
sity line. Stationarity are maintained along the isophote and deviated
in its vertical direction. Isophote-oriented interpolation calculates
isophotes of images and interpolates along isophotes rather than im-
age lattice to predict HR pixels based on similar stationary regions.
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Before generating HR pixel values, an isophote coordinate is
established at first. According to the definition of the isophote, we
represent an isophote across two adjacent row i and (i+ 1) as:

I(i, j) = I(i+ 1, j + α), (1)

where I(i, j) is the intensity of LR pixel located in coordinate (i, j)
andα is called displacement coefficient indicating the location where
the isophote passing through location (i, j) crosses with row (i+ 1)
as shown in Fig.2. When the isophote is approximated to a straight
line, we can deduce Eqn.(1) with the first-order Taylor expansion:

I(i+ 1, j + α) = I(i, j) + Ix(i, j) + Iy(i, j) · α, (2)
Given Eqn.(1), Eqn.(2) reduces to:

Ix(i, j) + Iy(i, j) · α = 0, (3)

where Ix(i, j) and Iy(i, j) are the first-order derivatives of the in-
tensity at location (i, j). α is deduced from Eqn.(4):

α = −Ix(i, j) / Iy(i, j), (4)

and the straight line between (i, j) and (i + 1, j + α) determines
the isophote cross (i, j). With row i and (i+ 1), all these isophotes
between LR pixels in row i like (i, j) and connected locations in row
(i+ 1) like (i+ 1, j +α) make up the isophote lattice between row
i and (i+ 1).

Fig. 2: (i, j) and (i+ 1, j + α) connect into a isophote. The HR
pixel in the isophote is determined by I(i, j) and I(i+ 1, j + α).

Interpolation can be performed in the isophote lattice when the
isophote exactly goes through the HR pixel to be interpolated and
two nearby LR pixels as shown in Fig.2. However, in most cases the
isophote does not intersect with the image lattice. For interpolation,
Data in the image lattice must be projected to the isophote lattice
and mapped back to the image lattice when the interpolation along
the isophote is completed. In [7], a directional bilinear interpolation
is employed in a parallelogram window consisting of a line parallel
with local isophote. In SAGA [8], one dimensional interpolation is
applied to grid LR data to the isophote lattice at first and then linear
interpolation is employed along the isophote to calculate data value
at the “match” location in HR row. Finally one dimensional method
is applied again to gridded the data back to the high resolution lattice.

However, two issues are not considered in previous methods.
First, piecewise-stationary lines cause inconsistent α, which causes
undesirable results. Second, α is determined by Ix and Iy which
are easy to be effected by noises, leading to the isophote estimated
deviating from the reality.

3. INTERPOLATION BASED ON FINE-GRAINED
ISOPHOTE MODEL WITH CONSISTENCY CONSTRAINT

In order to make the isophote estimation more robust to noises
and interpolate in the condition of piecewise-stationary lines, we
propose an interpolation algorithm based on fine-grained isophote
model with consistency constraint. The proposed algorithm applies
a two-layer displacement calculation to make the displacement es-
timation accurate in fine-grained and a gradient interpolation with
consistency constraint to make the displacement estimation con-
sistent in both global-stationary condition or piecewise-stationary
condition. Fig.1 shows the entire work flow of the proposed method
including five parts:

• Preprocessing: In order to make use of the isophote infor-
mation in directions, the input LR images are converted to LR

candidates by simple conversions, such as upside down, trans-
pose. The corresponding reverse convertions are performed
to HR image candidates before fusion.

• 1-D interpolation: HR pixels located in the line consisting
of LR pixels is generated by one dimension interpolation.

• Two-layer displacement calculation: The gradient-based
displacement is applied and the local window search dis-
placement is put forward to introduce the fine-grained pixel
intensity information to correct gradient-based displacement.

• Gradient interpolation with consistency constraint: A seg-
ment gradient interpolation is employed when an interpolated
line is stationary while a consistent gradient interpolation is
applied to overcome the inconsistent displacement when an
interpolated line is piecewise-stationary.

• Adaptive weighting fusion: Adaptive weighting fusion gen-
erates HR patches in a fixed non-overlapped window. We
utilize the weighting function in the form of formula in [9] to
lower the weight of patches which contains artifacts or noises.

To further explain, we will employ the two-layer displacement
calculation, gradient interpolation with consistency constraint and
adaptive weighting fusion elaborated in the following subsections.

3.1. Two-Layer Displacement Calculation
Gradient is a basic way to calculate the displacement and in most
cases the gradient-based displacement reflects isophotes in reality.
But in some cases, like in Fig.3, the gradient-based displacement is
affected by noises or large deviations in the previous row Ri−1 and
deviates from real isophotes. The local window search displacement
is proposed to compensate and correct the detail of the isophote ac-
cording to fine-grained pixel intensity information. The local win-
dow search displacement is independent with any operator and only
related with the specified LR pixel L(i, j) and the (i + 1)-th row
Ri+1. Therefore the impact caused by the (i − 1)-th row Ri−1 can
be alleviated and the fine detail of the isophote can be preserved.
Therefore a two-layer displacement calculation is proposed, includ-
ing the gradient-based displacement (α1) calculated as in [8] and the
local window search displacement (α2).

The approach of calculating α2(i, j) is to find a location inRi+1

where the pixel value is or estimated to be the same as the specified
pixel L(i, j). Two cases are considered to fulfil the goal.

• Case 1 (see in Fig.4(a)): Define k indicating a location in
Ri+1. Search two adjacent LR pixels L(i + 1, k) and L(i +
1, k + 1) in Ri+1 from center to both sides such that:

M1 = max(L(i+ 1, k), L(i+ 1, k + 1)) > L(i, j),

M2 = min(L(i+ 1, k), L(i+ 1, k + 1)) < L(i, j), (5)

Where k satisfies j − Ws < k < j + Ws − 1 and Ws is
the size of the search window. If two pixels are found, α2 is
calculated as:

α2 =


k − j + 1− (L(i, j)−M2) / (M1 −M2),

if L(i+ 1, k) > L(i+ 1, k + 1);

k − j − (L(i, j)−M2) / (M1 −M2),

if L(i+ 1, k) < L(i+ 1, k + 1).

(6)

• Case 2 (see in Fig.4(b)): If there does not exist adjacent pixels
in the local search window meeting the required condition,
the pixel L(i + 1, k) whose value is most close to L(i, j) is
regarded as locating in the same isophote with L(i, j). And
α2 can be calculated as:

α2 = k − j. (7)
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Fig. 1: Flow diagram of the proposed method based on fine-grained isophote model with consistency constraint.

When α1 and α2 are calculated, we simply combine them by a
linear summation:

ᾱ = (1− γ)α1 + γα2, (8)
γ balances the weight to control the importance of two items.

Fig. 3: The large deviation in Ri−1 distorts the direction of the
isophote in the gradient-based displacement method while the local

window search displacement can avoid such distortion.

(a) Scenario 1. The searching order of required adjacent pixels is: (104,107),
(103,104), (107,110), (103,103), (110,109), (98,103). The search ends when
98 < 100 and 103 > 100. α2 = −2− 0.6 = −2.6.

(b) Scenario 2. After failing to find required adjacent pixels, 98 is the closest
value to 100. α2 = −1.

Fig. 4: Examples of local window search displacement.

3.2. Gradient Interpolation With Consistency Constraint
The displacement ᾱ is used to establish the isophote lattice in the
gradient interpolation with consistency constraint.

When an interpolated line is piecewise-stationary, the displace-
ments calculated is inconsistent and varies dramatically. Large vary-
ing displacements causes undesirable performance of the segment
gradient interpolation. However, in most cases the real displace-
ments are stationary and consistent in the local even in the condition
that an interpolated line is piecewise-stationary rather than global-
stationary. So for piecewise-stationary lines, displacements need to
be handled cautiously to keep consistent in interpolation.

By considering whether an interpolated line is global-stationary
or piecewise-stationary, the gradient interpolation with consistency
constraint chooses an appropriate interpolation method adaptively.
The segment gradient interpolation in [8] is adopted when the line is
global-stationary and the consistent gradient interpolation is applied
when the line is piecewise-stationary . The consistent gradient inter-
polation mitigates the problem without sacrificing the fine detail of

the isophote by keeping the displacements of all pixels consistent in
a local window for each interpolated pixel.

The interpolation is performed in windows and one HR value
is generated once. When interpolating H(i, j), we firstly deter-
mine its corresponding LR window (consisting of L(m,n), L(m+
1, n), L(m,n + 1) and L(m + 1, n + 1)). ᾱ(m,n) , the displace-
ment coefficient of L(m,n) (LR pixel in the upper left corner of LR
window), is chosen as the displacement value of the corresponding
pixel L(m,n) and five nearby LR pixels in the same row (L(m,n−
2), L(m,n − 1), L(m,n + 1), L(m,n + 2), L(m,n + 3)). ᾱ in
the interpolation window are set to be consistent and all six LR pix-
els’ isophote connected locations in the next row is decided by the
same ᾱ(m,n) instead of their own displacement values. Using the
same displacement value only related to the interpolated pixel in the
LR window guarantees both consistency and fidelity of the evaluated
isophote, as shown in Fig.5. Then the grid projection method in [8]
is employed.

Fig. 5: The consistent gradient interpolation determines isophote
lattices according to interpolated pixels’ α in concordance to keep

the isophote estimation both consistency and fidelity.
3.3. Adaptive Weighting Fusion
After the gradient interpolation with consistency constraint, we get
HR candidates in the candidate pool. Then two intuitions are consid-
ered to guide the fusion of HR candidates. First, the performances of
different interpolations (such as one dimensional interpolation or the
gradient interpolation) are different and the weights given to pixels
from different interpolations should be handled respectively. Sec-
ond, the region-based fusion provides more information than the
pixel-based fusion and fusion performing in region are better than
in pixel. Based on these, we design an adaptive weighting fusion
method. First, other than preserving LR pixels exactly locating on
the HR lattice, we split HR pixels in HR candidates to clusters by
considering their performances. For example, we group the pixels
from exactly 1-D interpolation or group the pixels from combina-
tion of 1-D interpolation and the gradient interpolation. Second, Fu-
sion is deployed in patch. In order to remove the outlier or noises,
we employ a weighting function exp(−x2 / c) in [9]. Define Pi

(i ∈ 1, 2, 3, 4) as the local patch of intermediate results in the same
region and P̄ as the average estimate for the high resolution patch:

P̄ =
1

4

4∑
i=1

Pi. (9)
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Define wi as the weight of Pi, the high resolution patch is calculated
according to:

P (m,n) =

∑4
i=1 wi(m,n)Pi(m,n)∑4

i=1 wi(m,n)
, (10)

where the weighting function wi is defined as:

wi = exp(−∆i

c
), (11)

∆i =
∑
m,n

||4
3
P̄ (m,n)− Pi(m,n)||2, (12)

where c is called cliff coefficient, distinguishing whether a value is
a noise or outlier. Finally clusters are combined back to a whole
image. The procedure is shown in Fig.6.

Fig. 6: An example of performance-based split / combine method in
adaptive weighting fusion when performing 3 × interpolation

4. EXPERIMENTAL RESULTS

The proposed interpolation is implemented on MATLAB 8.2 plat-
form. It is compared with the conventional Bicubic interpolation
method and three state-of-the-art interpolation methods: NEDI [1],
SAI [2] and BSAGA. We implemented BSAGA, which is an im-
proved algorithm on SAGA [8]. It performs bicubic interpolation
where piecewise-stationary lines appear. BSAGA avoids majority of
stripe-like artifacts caused by large varying displacement coefficient
and performs better than SAGA. We have tested these interpolation
algorithms on a large numbers of images including Kodak database
and other standard testing images.

To generate LR images, a bicubic down-sampling is performed
to original HR images by a factor of 1/s and s is the scaling factor.
Then we use different interpolation methods to generate HR images.
The results are compared with original HR images. Peak Signal-to-
Noise Ratio (PSNR) is chosen as the evaluating criterion and s = 2
in objective evaluation.

Table 1: Average PSNR (dB) of results
in different methods, the scaling factor s = 2

Images Bicubic NEDI SAI BSAGA Proposed
Child 35.49 34.56 35.63 35.41 35.48

Cameraman 25.51 25.44 25.99 25.98 26.02
Monarch 31.93 31.80 33.08 32.52 32.58
Airplane 29.40 28.00 29.62 29.72 29.84

Statue 31.36 31.01 31.78 31.75 31.81
Lighthouse 26.97 26.37 26.70 27.23 27.25

Barbara 24.46 22.36 23.55 24.24 24.23
Average 29.30 28.51 29.48 29.55 29.61

Weight coefficients γ, c are set as 0.06, 3000. Size of a patch
in fusion step is set to be 5 × 5. Larger size of window leads to the
weight of each HR candidate turning similar in different windows
while smaller size may result in lacking of enough region informa-
tion. Results of interpolations are shown in Table 1. It shows that,
the proposed method produces comparable or better PSNR results
than other methods. The average PSNR of the proposed method
gains 0.13dB and 0.06dB over SAI and BSAGA. It is worth noticing
that for Babara and Lighthouse, the proposed method gains 0.68 dB

Fig. 7: Visual comparisons: Portions from various interpolated
images using different methods. From top to bottom: ruler,

lighthouse, bike. From left to right: ground truth, Bicubic, NEDI,
SAI, BSAGA, the proposed method.

(a) 35.63(dB) (b) 33.95(dB) (c) 29.86(dB)

(d) 35.73(dB) (e) 34.03(dB) (f) 29.90(dB)

Fig. 8: Visual comparisons: Portions from various scaling factor s
using different methods. Test image: Monarch. From top to bottom:
BSAGA, the proposed method. From left to right: s = 1.5, 1.7, 2.5.

and 0.55 dB respectively over SAI. For Airplane and Statue, the pro-
posed method gains 0.12 dB and 0.10 dB respectively over BSAGA.

We also compare the visual quality of the different interpo-
lation methods as shown in Fig.7. Bicubic interpolation blurs
the edge. The edge-directed methods like NEDI and SAI pre-
serve the long edge structure well. However, these methods
produce annoying artifacts like fake short edges nearby the fast-
evolving edges. BSAGA produces better results, but stripe-like
artifacts still occur in piecewise-stationary lines. The proposed
method produces smaller interpolation errors than other methods,
especially on the regions pointed by the red arrows. General
scaling results interpolated by the proposed method is shown in
Fig.8 and the PSNR of the proposed method gains over BSAGA.
For more experimental results, please visit our project website:
http://www.icst.pku.edu.cn/course/icb/isophoteInterp.html.

5. CONCLUSION

In this paper, we propose a general scale interpolation algorithm
based on fine-grained isophote model with consistency constraint.
The proposed model characterizes the piecewise-stationarity of im-
age signals. To handle the piecewise-stationarity, we force the di-
rection of the isophote consistent in the local window when an inter-
polated line is piecewise-stationary. The fine-grained pixel intensity
is introduced to correct the displacement calculation and make the
isophote estimation more robust. Experimental results demonstrate
the proposed approach achieves better performance in both objective
and subjective quality assessment.
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