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ABSTRACT

In this paper, we propose a novel autoregressive (AR) model
based on the adaptive window and the patch-geodesic dis-
tance for the image interpolation. The model combines the
information of inner/inter-patch correlation. To model the
inner-patch correlation, we introduce a patch-geodesic dis-
tance similarity metric. The proposed metric shows the de-
sirable capacity to depict the piecewise-stationarity of nat-
ural images. For the inter-patch correlation, we introduce
the inter-patch structure variation and propose an adaptive
window-extension AR model. The model extends the inter-
polation window according to the local structural variation,
increasing the adaptation without violating the consistency.
Comprehensive experiments demonstrate that the proposed
method is better than or competitive with state-of-the-art in-
terpolation methods in both objective and subjective quality
evaluations.

Index Terms— Structural variation, interpolation, autore-
gressive model, pixel similarity

1. INTRODUCTION
Interpolation is a general and economical technique for the
image enlargement. It generates the high resolution (HR) im-
ages by utilizing the information of the low resolution (LR)
images with some prior knowledge. The conventional inter-
polation method interpolates an image by convolving the pix-
els with a fixed kernel, such as Bilinear and Bicubic. These
methods do not consider the local structural information in
the images. Thus the interpolation results do not adapt to the
local structure. Therefore, artifacts, such as blurring and ring-
ing, occur in the edge or texture regions.

Then, the explicit adaptive interpolation method, which
utilizes the structural information in an explicit way, turns up.
This kind of method identifies the edge or isophote directions
and interpolate along the direction [1][2]. The isophote is a
line consisting of the connected pixels of the same intensity.
The continuous isophote meets the visual rules in the natu-
ral image. In Wang’s method [1], the isophote direction is
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estimated with an angle. Then it interpolates along a paral-
lelogram. One edge of the parallelogram is parallel to the
estimated isophote. In [2], a segment adaptive gradient angle
interpolation (SAGA) builds an isophote lattice and interpo-
lates along the local isophote rather than the image lattice. By
interpolating along the isophote lattice, these methods achieve
desirable performance. And fractional locations can be repre-
sented in the isophote lattice, so the general scale enlargement
is supported.

Another type of methods, the implicit adaptive methods,
incorporates the local structural information into the objec-
tive function and interpolates by optimizing the function. A
representative branch is the autoregressive (AR) based inter-
polation, such as new edge-directed interpolation (NEDI) and
soft-adaptive interpolation (SAI). Based on the geometric du-
ality, NEDI [3] employs the LR image to estimate the high
resolution (HR) covariances by a least square problem and
estimates the HR pixels with their neighbouring LR pixels.
In [4], SAI extends the framework of NEDI with a cross-
direction AR model and estimates the interpolation result by
a joint estimation. These implicit methods are valid when
the statistical stationarity assumption is tenable in the local
area. However, due to the diversified content in natural im-
ages, the stationarity assumption may be violated even in a
small area. Some works [5-7] that extend the AR-based in-
terpolation with the tolerance to the stationarity assumption
violation are proposed. In [5], the iterative curve based in-
terpolation (ICBI) forces the AR parameters in the opposite
directions equal and uses the second order information to re-
fine the interpolation result to avoid over-constraint. In [6], in
order to model the piecewise stationarity, an AR-based inter-
polation with the geodesic distance weighting is put forward.
The weighting scheme tries to simultaneously measure both
the spatial distance and the colour difference. In [7], an adap-
tive general scale interpolation employs a weighting scheme
that supports the general scale situations on account of the
pixel similarity to increase the accuracy of the estimation. By
introducing the inner-patch correlation into the AR model,
these methods achieve desirable results. However, another
kind of correlation, the inter-patch correlation, is ignored.

In this paper, we follow the AR-based method and pro-
pose a novel interpolation method incorporating the infor-
mation of the inner/inter-patch correlations. In our method,

1211978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



Fig. 1. Illustration for the patches shifting.

the interpolation window is extended in the isophote direc-
tion. And a two-layer similarity metric based on the patch-
geodesic distance and the patch distance is performed to
model the inner-patch correlation and the inter-patch struc-
tural variation. Comprehensive experiments demonstrate that
our method achieves desirable performance compared with
other interpolation methods in both the objective and subjec-
tive quality evaluations.

The rest of the paper is organized as follows: Section
2 presents our method based on the adaptive window AR
model. Section 3 suggests a two-layer similarity metric
founded on the patch-geodesic distance and the patch dis-
tance. Experimental results and analysis are presented in
Section 4. Finally, Section 5 concludes this paper.

2. INTERPOLATION BASED ON ADAPTIVE
WINDOW AR MODEL

In natural images, “patch shifting” is represented as a wides-
pread phenomenon. As shown in Fig. 1, the successive adja-
cent image patches in the local area are similar in the spatial
intensity distribution. Along the isophote, a line consisting
of successive pixels of the same intensity, the similar spatial
intensity distributions of the adjacent image patches keep sta-
ble. This phenomenon contains two kinds of constraints: the
inner-patch correlation and the inter-patch structural vari-
ation. The inner-patch correlation indicates the correlation
between pixels within a local window. Such correlation has
been fully exploited by most of the AR-based methods, which
present rather impressive results. However, they neglect the
fact that there is another kind of correlation between patches:
the inter-patch structural variation. The inter-patch struc-
tural variation indicates the variation trends of the similar
successive adjacent patches along the isophote. Both the con-
sistency and the differences between the spatial intensity dis-
tributions of the adjacent patches reflect a kind of local struc-
tural pattern. In this section, we model the image patch shift-
ing, capturing both the inner-patch similarity and the inter-
patch structural variation and interpolate on account of the
two types of information.

We first review traditional AR interpolations. Let X and
Y be the LR and HR images, x and y be LR and HR pixels, re-
spectively. Given x andX , our goal is to estimate y and Y . ⊗
and ⊕ denote the neighbours in diagonal and cross directions
respectively. As in Fig. 2, xi⊗t and yi⊗t represent the t-th
neighbours of xi and yi in the diagonal direction. xi⊕t and

Fig. 2. Notations for the AR model in the diagonal (red ar-
rows) and cross (black arrows) directions.

yi⊕t represent the t-th neighbours of xi and yi in the cross
direction. Two sets of parameters a = [a1, a2, a3, a4] and
b = [b1, b2, b3, b4] depict the model parameters in two direc-
tions. σ⊕

i and σ⊗
i refer to random perturbations independent

of spatial locations and image signal levels. The AR squa-
tions for a given pixel in diagonal and cross directions can be
represented as:

xi =

4∑
t=1

atxi⊗t + σ⊗i , yi =

4∑
t=1

atyi⊗t + σ⊗i , (1)

xi =

4∑
t=1

btxi⊕t + σ⊕i , yi =

4∑
t=1

btyi⊕t + σ⊕i . (2)

Based on the assumption that images maintain the station-
arity in a local window W , we minimize the matching error
of the pixels in W by solving the linear least squares problem
in Equ. (3):

min
{yi}

∑
i∈W

(
yi −

4∑
t=1

atyi⊗t

)2

+
∑
i∈W

(
xi −

4∑
t=1

atxi⊗t

)2

+
∑
i∈W

(
yi −

4∑
t=1

btyi⊕t

)2
 .

(3)

Two issues are ignored in the traditional AR models. First,
the fixed size of the interpolation window cannot adapt to
the local structure at different scales and the stationarity as-
sumption may be violated. Second, the structural information
across patches is neglected.

Based on these considerations, we propose a new AR
model based on the adaptive window-extension. The model
estimates the isophote by the local neighbouring similar
patches and then extends the interpolation window in the
isophote direction. Then, an irregular window that contains
the similar adjacent patches is built. Modulated with the sim-
ilarity metric mentioned in Section III, the objective function
is obtained. Finally, we estimate the HR pixels’ value by a
closed-form solution. The whole process is shown in Fig. 3.

For the adaptive-window extension, we employ a simple
strategy. We define four kinds of windows: basic window, ex-
tension window, basic compared window and compared win-
dow. The pixel set in a given window is defined as the corre-
sponding patch. The size of the basic window is set as 6 × 6

1212



in the LR scale. The size of the basic compared window and
the compared window is set as 4 × 4 in the LR scale. The
initial interpolation window is set as the basic window and
then begins to extend. We search the similar patches in eight
directions. Taking left as an example, the six HR pixels in the
left direction are considered to be the center of the compared
patch. If the mean square error (MSE) between one of the six
compared patches and the basic compared patch is less than
a threshold, then the window extends in the “left” direction.
The grown regions are bounded by the dash line box in left
direction. Situations are alike in other directions. In the cross
directions, 6 patches are compared in each direction. And in
the diagonal directions, 4 patches are compared in each direc-
tion. Then, the matching error is represented as:

min
{yi}

 ∑
i∈ρ(Wb)

[
simH

i wi

(
yi −

4∑
t=1

atyi⊗t

)]2
+

∑
i∈ρ(Wb)

[
simL

i wi

(
xi −

4∑
t=1

atxi⊗t

)]2
+

λ
∑

i∈ρ(Wb)

[
simH

i wi

(
yi −

4∑
t=1

btyi⊕t

)]2 ,

(4)

where Wb is the basic window and ρ is the window-extension
operator. λ is the Lagrange multiplier. ω(1, k) measures the
similarity between the current interpolated patch and the k-th
compared patch Wk. simH

i and simL
i are the probabilities

between the center interpolated pixel and the HR pixel and
the LR pixel, respectively. The details of the similarity metric
and the weighting scheme will be elaborated in Section 3.

Let x and y be the vectors consisting of the LR and HR
pixels in W , respectively. Let C and D be the vectors con-
sisting of the covariance (at or bt) between pixels. Let S
be the diagonal matrix composed of the similarity probability
(simH

i wi or simL
i wi). We can deduce the objective function

in Equ. (4) to a vector form:

ŷ = argmin
y
||S(Cy −Dx)||22. (5)

Then a close-formed resolution can be obtained:

ŷ = (CTS2C)−1CTS2Dx.

3. TWO-LAYER SIMILARITY METRIC

In this section, we will present a two-layer similarity met-
ric based on the inter-patch structural variation and the inner-
patch correlation.

3.1. Similarity Based on Inter-Patch Structural Variation

Improving the capacity to depict the inter-patch structural
variation benefits the AR model and the interpolation. In
the proposed method, the interpolation is performed based
on an extended window, which is decided by the inter-patch
structural variation. Besides, we use a patch similarity to
measure the consistency and the difference between the basic
compared patch and the compared patch. We use the MSE to

Fig. 3. The flowchart of the proposed method.

depict the patch similarity and modulate it into the AR model
in Equ. (4). The weight wi is defined as:

wi =


1, pi ∈ PB ,

exp

{
−max {MSE(Pcom(k), PB)}

α

}
,

∀k, s.t. pi ∈ Pcom(k),

(6)

where pi is the i-th pixel (an HR pixel or LR pixel) in the
interpolation window. PB is the basic patch and Pcom(k) is
the k-th compared patch. If a pixel is in the basic compared
patch, its probability is set as 1. Otherwise, its probability
is set as the maximum value measured by the MSE between
the basic patch and all the compared patches where the pixel
exists in.

3.2. Similarity Based on Inner-Patch Correlation

The stationarity in natural images provides the way to esti-
mate the parameters in the AR models. On the basis of the
stationary assumption, AR models in a local window share
the same parameters. Unfortunately, the assumption does not
hold even in a very small region due to the diversification of
the natural images. Then, the piecewise stationarity, a more
general and universal assumption is introduced to model the
image. In order to better characterize the piecewise stationar-
ity in a local region, we introduce a novel similarity metric.
The metric measures whether two pixels are in the same re-
gion and share similar AR model parameters.

A method presented in [6] introduces a geodesic distance
as a metric to measure the probability whether two pixels are
similar. It incorporates both the spatial distance and the pixel
intensity distance, thus very robust to outlier. Due to not con-
sidering the pattern similarity, the geodesic distance of two
pixels in the same component locating close to different fron-
tiers is small. However, in such a scenario, the pixels own
different AR model parameters, which are not represented by
the geodesic distance. On account of the consideration, we
employ a patch-geodesic distance. Incorporating the pattern
similarity, we sum up the differences between patches instead
of pixels, with other formulations like the geodesic distance
calculation in [6].
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4. EXPERIMENTAL RESULTS

All evaluations are performed on the basis of MATLAB 8.20.
Bicubic is performed with the MATLAB built-in functions,
the source codes of other compared methods are kindly pro-
vided by their authors. For thoroughness and fairness of
our comparison study, we test ten widely used test images
selected from the Kodak database and the USC-SIPI image
database in the experiments.

State-of-the-art interpolation methods, new edge directed
interpolation (NEDI) [3], soft-decision adaptive interpola-
tion (SAI) [4], iterative curvature-based interpolation (ICBI)
[5], segment adaptive gradient interpolation (SAGA) [2] and
sparse mixing estimators (SME) [8], are used for comparison.

Table 1. PSNR(dB) results of the five interpolation methods.
Images Bicubic SAI SAGA SME Proposed
Child 35.49 35.63 35.48 35.53 35.67
Lena 34.01 34.76 34.45 34.61 34.77

Pepper 32.06 31.84 32.43 34.61 32.71
Monarch 31.93 33.08 32.58 32.69 33.34
Airplane 29.40 29.62 29.84 30.00 30.09

Caps 31.25 31.64 31.58 31.60 31.71
Statue 31.36 31.78 31.81 31.55 31.96
House 22.20 22.28 22.49 22.34 22.40
Woman 31.17 31.27 31.33 31.15 31.35

Bike 25.41 26.28 25.92 26.08 26.33
Lighthouse 26.97 26.70 27.25 27.23 27.04

Average 30.11 30.44 30.47 30.51 30.67

To compare the objective quality of the different inter-
polation methods, the original HR images are first directly
downsampled by a factor of two to generate the input LR im-
ages. Then the different interpolation methods are applied to
interpolate the input LR images to their original resolutions.
Table 1 tabulates the PSNR results of the five interpolation
methods on several images in our experiments. From Table 1,
we can see that the proposed method produces the comparable
or often better PSNR results than other methods. The average
PSNR gain is 0.16dB higher than the second-best SME algo-
rithm. It is worth noticing that for Monarch and Statue image,
the proposed method gains 0.65 dB and 0.40 dB respectively
higher than the second-best SME algorithm.

We also compare the visual quality of the different in-
terpolation methods In Fig. 4. For Barbara, because the
downsampling may cause the direction of the stripes chang-
ing across different scales, the interpolation results based on
the LR image will cause the prediction errors. In the sub-
regions of Barbara in Fig. 4, most methods make the wrong
prediction and cause the interpolation errors. Due to the ro-
bust modelling capacity of the patch-geodesic similarity, our
method can suppress the artifacts and reduce errors. For Cam-
eraman and Sailboat, the test images exhibit the strong and
sharp edges. Our method presents the desirable local results
and obtains the darkest difference image, which means the re-
sults of our method contains fewer errors and more similar to
the corresponding HR image. It can be obviously observed

Fig. 4. Visual comparison between different algorithm results
for the local images and the difference images. From up to
down: Cameraman, Barbara, Sailboat. From left to right:
Original, Bicubic, SAI, SAGA, SME, Proposed method.

that the images interpolated by the Bicubic interpolator suf-
fer from blurred edges, jaggies and annoying ringing artifacts.
SAGA and SME show improvements over SAI and NEDI in
the regions of edges and textures, reducing the visual defects
these methods bring. Thanks to the combination of the inner-
patch correlation and the inter-patch structural variation, our
method achieves better visual quality compared with all other
methods. Our algorithm produces fewer interpolation errors
than other methods. Such results clearly demonstrate the su-
periority of our method in reconstructing the high frequency
part, such as edges and textures, of the images.

5. CONCLUSION

In this paper, we propose a novel interpolation method based
on the adaptive window-extension AR model. The model
combines the information of the inner-patch correlation and
the inter-patch structural variation. The interpolation window
is extended in the direction of the isophote or to the loca-
tion similar patches exist in. A two-layer metric based on the
patch-geodesic similarity and the patch distance is performed
and the metric is modulated into the AR model. Comprehen-
sive experiments demonstrate that our method achieves desir-
able performance compared with other interpolation methods
no matter in objective or subjective quality evaluations.
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