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Abstract—Sparse prior provides an effective tool for the image re-
construction. However, the sparse coding for independent patches leads
to the unstable sparse decomposition. In this paper, we propose a
group structured sparse representation model by considering the nonlocal
similarity. The nonlocal similar patches are collected and classified into
groups. Patches in the same group are reconstructed based the same
basis of dictionaries. The dictionary is organized as the combination
of many orthogonal sub-dictionaries. To provide the redundancy, the
dictionary used for the sparse coding is generated online with several
sub-dictionaries, thus it is over-complete. We apply the proposed model
into a gradual SR framework. The framework enlarges LR to HR by
a patch enhancement and an alternative sparse reconstruction on the
patch and group. Objective quality evaluation shows that our proposed
SR method achieves highest PSNR results comparing with the state-of-
the-art methods. And subjective results demonstrate the proposed method
reduces artifacts and preserves more details.

Index Terms—Sparse representation, super-resolution, nonlocal simi-
larity, group sparse, structured sparse

I. INTRODUCTION

Image super-resolution (SR) tries to estimate a high-resolution

(HR) image by one or more low-resolution (LR) images. Because of

the information loss in the degradation, the recovery from LR to HR

is under-determined. In order to constrain the recovery, different kinds

of priors are put forward. Based on the form of priors, SR methods

are classified into two categories: example-based and reconstruction-

based.

Example-based methods [1] utilize patch pairs to build the con-

nection between the LR and HR space. According to the nearest

neighbors in the LR space, the HR patch is estimated by the

combination of corresponding HR neighbors. These methods provide

abundant high frequency details, whereas the geometry properties are

hard to recover, leading to implausible visual effects.

Reconstruction-based methods impose the regularization as the

prior to lead the recovery. The typical regularizations include gradient

priors [2], nonlocal self-similarity priors [3] and sparsity priors [4],

[5]. They characterize various aspects of natural image properties

and recover high frequency information while preserving the intrinsic

geometry properties.

The sparsity prior is one of the most important priors for the image

reconstruction. It suggests that natural signals can be compactly

expressed as a linear combination of per-specified atoms and the

majority of the linear coefficients are zero. All the atoms form a

basis signal set, which is called dictionary.

In the sparse-based methods, there are two fundamental problems

to be considered: the design of the dictionary and the method

to perform sparse coding. The structure of the dictionary plays

a key role in its expressivity. The designed dictionaries, such as
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DCT and wavelet, are equals to orthogonal transformations. Their

coding and reconstruction process are simple and fast while they

lack the adaptivity for the local structures and geometries. Learned

dictionaries [4], [6], whose elements are selected based on the

reconstructed performance on the training set, increasing the local

adaptiveness and modeling capacity. The structure regularity between

the items inside the dictionary are ignored and universal dictionaries

are not adaptive to local image properties. Then, structured dictionary

learning algorithms based on patch clusters [7], [8], [9] are proposed.

The training patches are clustered first, then sub-dictionaries are

learned based on patch clusters. Sparse decomposition on one patch is

carried out with the corresponding sub-dictionary, thus highly adapted

to local structures. However, in these methods, sub-dictionaries are

orthogonal and the redundancy, which is proved to be an effective

tool to model and reconstruct the image, is limited.

As for sparse coding methods, there many efficient L1-

minimization techniques, such as iterative thresholding [10] and

Bregman split algorithms [11]. In the coding, they regard patches

as independent and uncorrelated ones. Therefore, the sparse pattern

selection turns unstable and visual artifacts are easy to generate. This

leads us to pay attention to the potential of sparse coding methods

based on patch groups [12], [13].

Recently, nonlocal based image methods [5], [7] showed the

outstanding ability for the image reconstruction. A large number of

self-similarity recurrences deliver useful information for modeling

image structures. Motivated by the nonlocal self-similarity, in order

to provide an online over-complete dictionary that is adapted to

local structures, we propose a group structured sparse representation

(GSSR) model. The nonlocal similar patches are collected as a group

and the sparse coding is carried out over the patch group. The sparse

patterns selected for the patches in one group keep the same, making

the sparse coding more stable. For the efficiency, the dictionary is

organized as the combination of many orthogonal sub-dictionaries.

To provide the redundancy, the dictionary used for the coding is

generated by combining several sub-dictionaries and it turns over-

complete. Furthermore, We apply GSSR to a gradual SR framework.

High frequency details are introduced by a patch enhancement with

nonlocal patches and external patches. And an alternative sparse

coding over a single patch and a patch group is performed, to provide

both the adaptivity and consistency.

The rest of the paper is organized as follows: Section II presents

GSSR model. Section III suggests a gradual enlargement framework

embedded with a patch enhancement scheme and an alternative sparse

reconstruction on the patch and patch group. Experimental results and

analysis are presented in Section IV. Finally, concluding remarks are

given in Section V.

II. GROUP STRUCTURED SPARSE REPRESENTATION

A. Patch-based sparse representation

In SR scenarios, the patch-based sparse representation model is

built on the independent patch. The LR image x is first cropped into

overlapped patches {xk|k = 1, 2, ..., n}, where n is the number of

978-1-4673-7314-2/15/$31.00 ©2015 IEEE  IEEE VCIP 2015



patches and k is the variable related to the locations of patches. We

use the extraction operator Rk(·) to build the connection between x
and xk. It is defined as: c

xk = Rk(x) (1)

Then, the high-resolution image patch xk is represented with a sparse

coefficient vector αk by solving the following minimization problem:

α̂x = argmin
αk

{||yk −HDΦ · αk||22 + λ||αk||1
}
, (2)

where yk is the degraded observation, H and D are the blur kernel

and down-sampling operator in the degradation, respectively. Φ is

the dictionary that provides prior information for the reconstruction.

The Lagrange multiplier λ is a parameter that balances the tradeoff

between the fidelity term and sparsity priors. Then, the reconstructed

HR image patch x̂k is obtained by:

x̂k = Φ · α̂k. (3)

And the estimated HR image x is reconstructed by:

x̂ = Φ · α̂ =

(
n∑

i=1

RT
i Ri

)−1 n∑
i=1

RT
i Φα̂k, (4)

B. group-based sparse representation

In the traditional single patch-based method, due to the suboptimal-

ity of the sparse pattern selection, the sparse coding αk on a single

patch xk is unstable. In order to obtain a precise sparse pattern Pk and

get an accurate αk, we add the nonlocal similarity redundancy into the

sparse representation model to derive a group sparse representation

model, improving the accuracy of the sparse coding.

Fig. 1. The group-based sparse coding makes the representation coefficient
estimation more consistent and stable.

First, for a single patch xk, its nonlocal similar patches

{x1
k, x

2
k, ..., x

m
k } are collected, where m is the number of similar

patches including xk and x1
k is exactly xk. The similarity is measured

by the mean square error between patches ||xk −xi||22, where i is in

the nonlocal scope of k. {x1
k, x

2
k, ..., x

m
k } are arranged as a group xg

k.

Then, we perform the sparse coding on xg
k instead of xk. The sparse

pattern Pk used for the coding stays the same. Thus, the unstable

sparse pattern selection is avoided.

In the group-based model, the extraction operator is defined as

Rg
k = [Rk1 , Rk2 , Rk3 , ..., Rkm ]. And the sparse representation

coefficients are defined as αg
k = [αk1 , αk2 , ..., αkm ]. Thus, Equ. (4)

turns to:

α̂g
x = argmin

α
g
k

{||yg
k −HDΦ · αg

k||22 + λ||αg
k||1

}
,

= argmin
αl
k

{
m∑
l=1

||yl
k −HDΦ · αl

k||22 +
m∑
l=1

λ||αl
k||1

}
,

(5)

where {αl
k|l = 1, 2, ...,m} is under the constraint of the same

sparse pattern. It means the nonzero items in αl
k locate in the same

dimension. Equ. (5) incorporates the nonlocal similarity into the

sparse representation model. It imposes similar patches to have the

same sparse decomposition. The problem in Equ. (5) is like the form

of simultaneous sparse coding [12], [13] Thus, we convert it to a

simultaneous orthogonal matching pursuit problem by change the

norm type in the fidelity term and sparsity constraint as follows:

α̂g
x = argmin

α
g
k

{||yg
k −HDΦ · αg

k||2F + λ||αg
k||0

}
,

= argmin
αl
k

{
m∑
l=1

||yl
k −HDΦ · αl

k||2F +

m∑
l=1

λ||αl
k||0

}
,

(6)

where F is the Frobenius norm.

Then, We solve the sparse coding by simultaneous orthogonal

matching pursuit with SPAMS [14]. After the sparse decomposi-

tion, the entire image x is represented in the sparse domain with

{αg
k|k = 1, 2, ..., n}. Then, x is rebuilt by the first reconstructed

patch in each group xg
k:

x̂ =

(
n∑

i=1

RT
i1Ri1

)−1 n∑
i=1

RT
i1Φα̂1 , (7)

C. Group Structured Dictionary Learning

One key factor for the sparse representation modeling is the

construction of the dictionary D. In general, there are two kinds

of dictionaries: orthogonal and over-complete. Traditional human

designed dictionaries, such as DCT and wavelet, are orthogonal.

They are very simple and their corresponding dictionary learning and

sparse coding have low computational complexities. However, due to

limiting the redundancy, they cannot characterize the complex natural

image signal. Learned dictionaries form a basis signal set to represent

the image signal according to the reconstruction performance on a

natural image training set. And their structures can be set as over-

complete, thus they can provide the redundancy to depict complex

image signals.

We designed an online over-complete dictionary generation al-

gorithm. It forms over-complete dictionaries by combing several

orthogonal sub-dictionaries, to make use of the efficiency of the

orthogonal dictionary and the effectiveness of the over-complete

dictionary. A series of orthogonal sub-dictionaries are trained based

on patch clusters. In the stage of the sparse coding, the nearest several

sub-dictionaries are chosen to form an over-complete dictionary.

Then, the sparse coding is performed on the online dictionary by

SOMP. The whole process is shown in Fig. 2.

Fig. 2. The process of the group structured dictionary learning and online
dictionary generation in GSSR.

All patches used for the dictionary training are cropped from the

multi-scale LR images. Over-smooth patches are discarded by the

condition of var(pi) < c, where var(.) is the variance of the given

patch and c is the given threshold. Then, we acquire a training set

T = {p1, p2, ..., pN} where n is the number of patches in T . In

order to get meaningful features, we transform these patches into

their high-frequency versions Th =
{
ph1 , p

h
2 , ..., p

h
N

}
by the DoG

operator. The K-means algorithm is carried out to partition Th into

K partitions {Th
1 , T

h
2 , ..., T

h
K}.



Fig. 3. The flow chart of the proposed super-resolution algorithm, including a gradual enlargement framework with the patch enhancement and the alternative
sparse coding.

The traditional dictionary learning problem is formulated like

the form of sparse coding problem in Equ. (2). However, for the

efficiency, we do not directly optimize it. Instead, we obtain the dic-

tionary utilizing the effective PCA transformation over each cluster.

For each cluster, let Ωk be the covariance matrix of the k-th partition

Th
k . By applying PCA to Ωk, we get an orthogonal transform Fk. And

the representation coefficients are Zk = FT
k Th

k . For better modeling

and avoiding overfitting, only parts of eigenvectors are used to form

Fk. Thus, in the limit that the number of eigenvectors is less than

r, we define Fk,r and αr as the transform matrix and representation

efficients, respectively. We choose a proper r as the optimal number

of the involved eigenvectors in each cluster as follows:

r̂ = argmin
r

{
||Th

k − Fk,rαr||2F + λ||αr||1
}
, (8)

where || · ||F is the Frobenius norm.

III. GRADUAL SUPER-RESOLUTION FRAMEWORK

The framework of our method is shown in Fig. 3. For a given

input LR image, we aim to get a good HR estimator, recovering

the high frequency details while preserving the intrinsic geometry

properties. Therefore, our method consists of two stages, the gradual

magnification with patch enhancement and alternative sparse coding

based on the patch and patch group.

A. Gradual Enlargement With Patch Enhancement

The image degradation leads to the high frequency detail loss.

To restore it, we need to build the connection between LR and HR

space. Utilizing the external similarity and self-similarity, we adopt an

example-based high-frequency enhancement method. Because in the

condition that scaling factor is small, the given LR is more similar to

its HR version, we enlarge the LR to HR gradually. Each enlargement

is carried out with a small scaling factor. For patch xk, we search

similar patches
{
xn
ki
|i = 1, 2, ..., t1

}
,
{
xe
ki
|i = 1, 2, ..., t2

}
from the

multi-scale LR images and external images, respectively. Then, xk

is reconstructed by a weighted combination of
{
xn
ki

}
and high-

frequency version of external similar patches
{
ye
ki

}
:

x̂k =

t1∑
i=1

wn
i x

n
ki

+

t2∑
i=1

we
i y

e
ki

(9)

wn
i =

1

W1
exp(−||xk − xn

ki
||22/h1), (10)

we
i =

1

W2
exp(−||xk − xe

ki
||22/h2), (11)

where W1 and W2 are normalization factors, h1 and h2 are pre-

determined scalars.

B. Alternative Sparse Coding

After introducing high frequency details in the patch enhancement,

some artifacts may be presented. Thus, we then perform the sparse

reconstruction to depress artifacts while preserving intrinsic geomet-

ric structures. Because the reconstruction is based on the gradual

enlargement, a small deviation in the intermediate result may lead to

a considerable error in the final result. Therefore, we hope the sparse

coding stage can provide more diversified information, in order that

we can balance the tradeoff between the adaptivity and consistency to

pursue a better performance. Based on this consideration, we use an

alternative sparse coding. Two kinds of sparse coding schemes are

involved: ASDS [5] and our GSSP. The orthogonal sparse coding

and recovery in ASDS provide adaptivity and conciseness while

the group sparse coding and recovery in GSSP provide consistency

and richness. Combing them, better performance is obtained and

the algorithm achieves a good tradeoff between the adaptivity and

consistency, conciseness and richness, respectively. From the point

of solution process, single sparse coding method is easy to drop

into a local minimum, while in the alternative sparse coding, two

independent powers guide the solving process and the probability of

dropping into local minimum turn smaller.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of our method, we conduct extensive

experiments on the image super-resolution. We set the basic param-

eter setting as follows: 12 external similar patches and 12 nonlocal

similar patches are involved to reconstruct every LR patch in the patch

enhancement, the patch size is 6 × 6, the overlap width is equal to 2.

The initial cluster number of the group structured dictionary K = 64.

TABLE I
PSNR(DB) RESULTS IN 3× ENLARGEMENT.

Bicubic ScSR ASDS NCSR Proposed
Bike 20.80 23.36 23.56 24.72 25.08

Butterfly 20.78 25.14 25.51 28.09 28.86
Girl 29.95 32.91 32.38 33.66 33.61
Hat 27.20 29.86 29.60 31.28 31.53

Parrots 25.58 28.85 28.59 30.49 30.76
Parthenon 24.12 26.35 26.17 27.17 27.35

Plants 27.83 31.96 31.84 34.04 34.30
Raccoon 26.38 28.50 28.11 29.27 29.32
Average 25.33 28.37 28.22 29.84 30.10

Gain * 3.03 2.89 4.51 4.77

We conduct the qualitative and quantitative evaluations on our

method in comparison with Bicubic interpolation method, ScSR [4],

ASDS [5] and NCSR [7]. For ScSR, it is designed only for the

enlargement without the deblurring. Thus, for a fair comparison, an



TABLE II
SSIM RESULTS IN 3× ENLARGEMENT.

Bicubic ScSR ASDS NCSR Proposed
bike 0.5755 0.7400 0.7617 0.8025 0.8152

Butterfly 0.7172 0.8543 0.8702 0.9158 0.9292
girl 0.7327 0.8066 0.8126 0.8276 0.8249
hat 0.7769 0.8449 0.8526 0.8705 0.8737

Parrots 0.8253 0.8943 0.8993 0.9148 0.9201
Parthenon 0.6202 0.7199 0.7264 0.7507 0.7567

plants 0.7867 0.8855 0.8969 0.9191 0.9223
raccoon 0.6276 0.7334 0.7426 0.7708 0.7669
Average 0.7078 0.8099 0.8203 0.8465 0.8511

Gain * 0.1021 0.1125 0.1387 0.1434

Fig. 4. Visual comparison between different algorithm results for the local
images and the difference images. From up to down: Butterfly, Hat. From left
to right: HR image, Bicubic, ScSR, ASDS, NCSR, Proposed method.

iterative back-projection is carried out for the image deblurring before

the SR.

For simulating the image degradation process, we follow the simi-

lar operations in [5], [7]. The LR images is generated from HR images

by a blurring and down-sampling operator. The blurring kernel is set

as a 7 × 7 Gaussian kernel and its standard deviation is 1.6. For

colorful images, the SR operator is only applied to the luminance

component, whereas the chromatic components are enlarged by the

Bicubic interpolation. To evaluate the quality of SR results, the

Peak Signal-to-Noise Ratio (PSNR) and the perceptual quality metric

Structural SIMilarity (SSIM) are chosen as the evaluation criteria.

Table I and Table II list image SR results of our method and four

comparison methods with scaling factors 3 for the objective quality

evaluation. Our method outperforms the other SR methods for the

majority of test images. In 3× enlargement, our method achieves the

best SR performance at 30.10 dB (PSNR) and 0.8511 (SSIM) on

average over 8 test images, obtaining a gain of 0.26 dB in PSNR and

0.0046 in SSIM over the average results (29.84 dB and 0.8465) of

the second best method NCSR [7].

Fig. 4 demonstrate the super-resolution results by 3× on Butterfly,

Hat. As shown in figures, the Bicubic generates blurred results.

The ScSR preserves the majority of edges though there is a little

blurring around them. The ASDS generates more natural edges and

textures, but it is hard to avoid the blurring and artifacts. The NCSR

recovers key structures, however, it still brings in little blurring and

slight but noticeable artifacts around the edges. By comparison, due

to incorporating the nonlocal similarity and consistency into the

sparse representation model and introducing external high frequency

information, our method preserves the edge better and generates more

natural textures. Our method presents the desirable local results and

obtains the darkest difference image, which means the results of our

method contains fewer errors and more similar to the corresponding

HR image.
V. CONCLUSION

In this paper, we propose a group sparse representation model by

considering the nonlocal similarity. The nonlocal similar patches are

clustered as a group . The sparse coding for patches in a group are

performed jointly with the same sparse pattern. The dictionary is

organized as the combination of many orthogonal sub-dictionaries.

When performing the sparse coding, the dictionary is generated online

with several nearest sub-dictionaries to the given patch and turns

to be over-complete. We apply our GSSR model into a gradual

enlargement framework. The framework gradually enlarge the LR

with patch enhancement and alternative sparse coding. The objective

and subjective quality evaluation demonstrate the effectiveness of our

method.
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