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Image Super-Resolution Based on
Structure-Modulated Sparse Representation
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Abstract— Sparse representation has recently attracted
enormous interests in the field of image restoration. The
conventional sparsity-based methods enforce sparse coding on
small image patches with certain constraints. However, they
neglected the characteristics of image structures both within the
same scale and across the different scales for the image sparse
representation. This drawback limits the modeling capability
of sparsity-based super-resolution methods, especially for the
recovery of the observed low-resolution images. In this paper,
we propose a joint super-resolution framework of structure-
modulated sparse representations to improve the performance of
sparsity-based image super-resolution. The proposed algorithm
formulates the constrained optimization problem for high-
resolution image recovery. The multistep magnification scheme
with the ridge regression is first used to exploit the multiscale
redundancy for the initial estimation of the high-resolution
image. Then, the gradient histogram preservation is incorporated
as a regularization term in sparse modeling of the image super-
resolution problem. Finally, the numerical solution is provided
to solve the super-resolution problem of model parameter
estimation and sparse representation. Extensive experiments on
image super-resolution are carried out to validate the generality,
effectiveness, and robustness of the proposed algorithm.
Experimental results demonstrate that our proposed algorithm,
which can recover more fine structures and details from an
input low-resolution image, outperforms the state-of-the-art
methods both subjectively and objectively in most cases.

Index Terms— Super-resolution, ridge regression, sparse
representation, dictionary learning, gradient histogram.

I. INTRODUCTION

IN REAL-WORLD scenarios, the low-resolution (LR)
images are generally captured in many imaging appli-

cations, such as surveillance video, consumer photographs,
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remote sensing, magnetic resonance (MR) imaging and video
standard conversion [1]. The resolution of images is limited by
the image acquisition devices, the optics, the hardware storage
and other constraints in digital imaging systems. However,
high-resolution (HR) images or videos are usually desired
for subsequent image processing and analysis in most real
applications. As an effective way to solve this problem, super-
resolution (SR) techniques aim to reconstruct HR images from
the observed LR images. The super-resolution reconstruction
increases high-frequency components and removes the unde-
sirable effects, e.g., the resolution degradation, blur and noise.

The problem of image super-resolution was first studied
by Tsai and Huang in 1980s [2]. Subsequently, many
SR techniques have been proposed over the last three decades.
Early SR studies mainly focus on exploring the shift and
aliasing properties of the Fourier transform. Although these
approaches are computationally efficient, they have limited
abilities to model the complicated image degradation and
various image priors. Due to these drawbacks of frequency
domain approaches, the spatial domain approaches are very
popular recently for their flexibility to model all kinds of
image degradations. After a brief review of the development
of super-resolution technologies, according to the number
of input LR images, the super-resolution approaches [3]
can be broadly classified into two major categories:
multi-frame super-resolution [4]–[8] and single-image super-
resolution [9]–[14]. More specifically, there are two basic
groups for multi-frame super-resolution methods. One
group is static super-resolution [1], which can be further
classified into the frequency domain methods [2], [15], the
non-uniform interpolation methods [16]–[18], the statistical
methods [4], [5], [19]–[22], and Projection onto Convex
Sets (POCS) [23]. The POCS is convenient for incorporating
any kind of constraints or priors. However, the POCS, whose
solution depends on the initial values, has the drawbacks of
heavy computation and slow convergence. The other group
is dynamic super-resolution [6], [24]–[26], which utilizes the
previous reconstructed HR frames to estimate the current
HR frame.

Correspondingly, single-image super-resolution methods
can also be further divided into interpolation-based
methods [27], [28], reconstruction-based methods [13]
and example learning-based methods [9], [10], [29]. The
interpolation-based methods usually utilize a base function
to construct the unknown data points on the regular grids of
HR images. Although they have the advantage of relatively
low complexity, the interpolation-based methods tend to
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produce considerable edge halos, blurring and aliasing
artifacts. Therefore, this class of SR methods is often
insufficient for practical applications.

The reconstruction-based methods [30], [31] usually
incorporate the reconstruction constraints or the prior
knowledge to model a regularized cost function with a
data-fidelity term. The typical image priors include the
gradient priors [13], [32]–[35], the nonlocal self-similarity
priors [36]–[39] and the sparsity priors [39]–[43]. These
different priors characterize different and complementary
aspects of natural image features. Therefore, the combination
of multiple image priors for SR modeling may be beneficial
to the improvement of the SR performance. This family of
methods has the ability to recover sharp edges and suppress
aliasing artifacts. However, the reconstruction-based methods,
whose performance depends heavily on the priors imposed
on the HR images, are unable to restore the fine structures
when the upscaling factor is larger.

The example learning-based methods exploit the
information from training images or example images to
learn the mapping between the LR and HR image patches
for super-resolution reconstruction. Recently, numerous
SR methods have appeared to estimate the relationship
between the LR and HR image patches with promising results.
Some typical methods [9], [11], [12] usually need a large
and representative database of the LR and HR image pairs to
encompass various images as much as possible that leads to
a heavy computational load in the mapping learning process.
Glasner et al. [10] implies that if the structural patterns of the
input LR image do not appear in a general image database,
the mapping learned from the database may not be able to
restore the faithful high-frequency details in the HR image.
Yang et al. [11] employed sparse dictionary learning on the
LR and HR image patches from a general image database, and
then utilized sparse representations of the LR input to generate
the output HR image. Dong et al. [44] proposed a deep
learning method that learns an end-to-end mapping between
the LR and HR images for single image super-resolution.
Michaeli and Irani [45] exploited the inherent recurrence
property of small natural image patches to estimate the optimal
blur kernel for blind super-resolution. Timofte et al. [46]
introduced the anchored neighborhood regression (ANR)
that learns sparse dictionaries and regressors anchored to the
dictionary atoms for fast super-resolution. Subsequently,
they [47] proposed an improved variant of ANR that achieves
substantially less complexity and better performance.
Similarly, Perez-Pellitero et al. [48] presented an improved
training strategy for SR linear regressors and an inverse-search
approach for the speedup of the regression-based SR method.
In this paper, we mainly focus on the study of the example
learning-based SR methods with multiple image priors for
further improvements of single image super-resolution. The
optimized example learning-based SR method will build a
suitable training set and make full use of image priors to
reduce edge halos, blurring and aliasing artifacts effectively.

It is observed that the local patterns in natural images tend
to redundantly repeat both within the same scale and across
different scales [10]. Inspired by multi-scale self-similarities,

sparse representation and structural distribution similarities of
natural images, we propose a novel joint framework of the
structure-modulated sparse representation (SMSR) for single
image super-resolution. The multi-scale similarity redundancy
is investigated and exploited for the initial estimation of the
target HR image. The image gradient histogram of a LR input
is incorporated as a gradient regularization term of the image
sparse representation model. The proposed SMSR algorithm
employs the gradient prior and nonlocally centralized sparsity
to design the constrained optimization problem for dictionary
training and HR image reconstruction. The main contributions
of our work can be summarized as follows:

• The multi-step magnification scheme with the ridge
regression is proposed to initialize the target HR image
for the solution of image SR problem;

• The novel sparsity-based super-resolution model is
proposed with the combination of multiple image priors
on the structural self-similarity, the gradient histogram
and the nonlocal sparsity;

• The gradient histogram preservation (GHP) is theoret-
ically deduced for image SR reconstruction and also
incorporated as the regularization term for the sparse
modeling of HR image recovery.

The remainder of this paper is organized as follows. Related
work is reviewed in Section II. Section III provides the
detailed descriptions of the proposed SMSR algorithm. The
experimental results and analysis are given in Section IV.
The conclusions and future work are drawn in Section V.

II. RELATED WORK

The task of single image super-resolution is to recover a
HR image from an input LR image. For an observed image y,
the problem of image super-resolution is generally modeled as

y = Hx + υ, (1)

where the degradation matrix H is a composite operator of
blurring and down-sampling, x is the original image, and
υ is the noise term. In the past decades, many works have
been reported on single image super-resolution. Due to the
ill-posed nature of the SR inverse problem, the regularization
is introduced to eliminate the uncertainty of recovery.
Several regularization-based techniques have been extensively
studied in the recent literatures [7], [49]–[52]. The typical
regularization models include the total variation (TV) [7], [49],
the nonlocal similarity [52] and the sparsity-based regular-
ization [50], [51]. The TV regularization was introduced
in image processing and successfully applied to inverse
problems. Since its piecewise constant assumption, the
TV regularization [7], [49] tends to over-smooth the images.

To recover solutions which have discontinuities or are
spatially inhomogeneous, the sparsity-based regularization
has appeared and attracted great attention for image super-
resolution problems in recent years [11], [12], [39], [41].
Specifically, for an input LR image y ∈ R

M, let x ∈ R
N

and x̂ ∈ R
N denote the HR and reconstructed HR images,

respectively. Correspondingly, yi ∈ R
m , xi ∈ R

n and x̂i ∈ R
n,

i = 1, · · · , l represent the LR, HR, and reconstructed



ZHANG et al.: IMAGE SUPER-RESOLUTION BASED ON STRUCTURE-MODULATED SPARSE REPRESENTATION 2799

TABLE I

PSNR(dB)/SSIM RESULTS ON THE RECONSTRUCTED HR IMAGES OBTAINED BY THE NCSR METHOD WITH DIFFERENT

INTERPOLATIONS APPLIED TO THE ‘Butterfly’ IMAGE FOR DIFFERENT SCALING RATIOS

Fig. 1. Visual comparisons of the super-resolution results of the NCSR method with the different interpolations for the ‘Butterfly’ image (the scaling
factor 3). From left to right: (a) Ground truth, (b) the oracle interpolation, (c) SMSR1, (d) the bicubic interpolation, (e) the bilinear interpolation, and (f) the
nearest-neighbor interpolation.

HR image patches, respectively, where l is the total number
of overlapped image patches. Assuming that Ri ∈ R

n×N

denotes the extracting matrix, a HR image patch can be written
as xi = Ri x. According to the observation model (1), the
SR problem is first formulated by sparse coding of y with
respect to � as follows [51]:

αy = arg min
α

{
‖y − H�α‖2

2 + λ‖α‖1

}
, (2)

where the Lagrange multiplier λ is a slack variable that
balances the tradeoff between fitting the data perfectly and
employing a sparse solution, and ‖α‖1 is the sparsity-inducing
term. Then the HR image x is reconstructed by

x̂ = � ◦ αy =
(∑l

i=1
RT

i Ri

)−1 ∑l

i=1

(
RT

i �αy,i

)
. (3)

Note that � ∈ R
N×M (N < M) is an overcomplete dictionary,

and most entries of coding vectors α are zero or close to zero.
The choice of dictionary � is a critical issue in sparse

representation modeling. There are two main categories
for dictionary selection: the analytical dictionaries and
the learning dictionaries. The analytical dictionaries, such
as DCT, wavelets, curvelets and contourlets, are generally
highly structured and efficient. Although such analytical
dictionaries can be achieved by a fast transform, they have
limited adaptive ability for different types of data due to the
fixed data representation. The learning dictionaries trained
from image examples can better characterize the image
features and thus cause much performance improvements
of the sparse representation [53]–[57]. These methods aim
at learning a universal overcomplete dictionary to represent
various image structures. But sparse decomposition over a
highly redundant dictionary is potentially unstable and tends
to cause visual artifacts. Recently, sparse coding with adaptive
dictionary learning in LR and HR spaces has become the focus
of ongoing research on image super-resolution for its high
efficiency for signal modeling. Yang et al. [11] proposed the
coupled dictionaries trained from the LR and HR image patch
pairs for single image super-resolution. Kim and Kwon [12]
adopted kernel ridge regression (KRR) to learn a map from

input LR images to target HR images based on example pairs
of input and output images. Although these methods [11], [12]
assume that the similarities of geometry and sparse repre-
sentation exist between the LR and HR spaces, they do not
explicitly point out the mapping from the LR input to the
related optimal HR counterpart. Dong et al. [41] proposed
an adaptive sparse domain selection (ASDS) model for image
SR recovery, where the piecewise autoregressive (AR) models
and a nonlocal self-similarity constraint are formulated as
the regularization terms for more effective reconstruction.
Considering the sparse coding noise, the local and nonlocal
sparsity constraints, they further proposed a nonlocally
centralized sparse representation (NCSR) model for image
super-resolution with very encouraging performance [39].
Specifically, the NCSR method adopts the bicubic interpola-
tion to amplify the input LR image to estimate the initial value
of the target HR image. To the best of our knowledge, the
NCSR method is one of the best state-of-the-art methods for
image super-resolution. But it does not consider the geometric
distribution similarity between the LR and HR images, and
its performance heavily depends on the initial estimation of
the target HR image. In order to illustrate that problem, we
first adopted different interpolation approaches to initialize the
NCSR method, and then evaluated the results of one example.
Let SMSR1 denote the first stage output of our proposed
SMSR method, which is made up of two stages: the gradual
magnification and the structured sparse representation. Table I
shows the PSNR(dB)/SSIM results of the NCSR method with
different initial values obtained by the nearest-neighbor inter-
polation, the bilinear interpolation, the bicubic interpolation
and the oracle interpolation, respectively. For the oracle, the
original HR image is assumed to be the initial value of the
target HR image in the NCSR method. In practice, the oracle
interpolation is not feasible due to the lack of the original HR
image. The visual comparison of the results obtained by the
NCSR method with different initial values is given in Fig. 1.

As can be seen from the reported results, the NCSR method
with the bicubic interpolation has better performance than
that with the nearest-neighbor interpolation or the bilinear
interpolation in most cases. However, the NCSR method with
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Fig. 2. Overview of the proposed SMSR method. The subgraphs with the solid boxes denote the specific techniques. The subgraph with the dashed box is
the algorithm modules: gradual magnification, and sparse representation.

the bicubic interpolation still causes the smooth edges and
blurred textures in the reconstructed HR images. The reason
is that these learning-based SR methods ignore the geometry
constraints between similar distributions of the LR and HR
images, and also do not take full advantage of similarity
redundancy both within the same scale and across different
scales. Specifically, the NCSR method does not consider other
image priors, such as the gradient histogram preservation,
which may be beneficial to the improvement of image super-
resolution. Therefore, there is still much space to further
improve the performance of single image SR by exploiting
prior knowledge of natural images.

III. PROPOSED SMSR ALGORITHM

A. Overview of the SMSR Model

The flowchart of our proposed SMSR method is shown
in Fig. 2. Given an input LR image, our goal is to produce
a suitable HR image such that its underlying high-frequency
details are recovered while preserving the intrinsic geometrical
structures of original HR image. In brief, our SMSR algorithm
consists of two stages: the gradual magnification and the struc-
tured sparse representation. The basic procedures of our SMSR
method are given as follows. Firstly, for an input LR image y,
the HR database Dx and its corresponding LR database Dz
are separately built for the gradual magnification. Then,
the LR image zsm at the m-th is estimated from the
HR image xsm−1 by the bicubic interpolation method where

m = 1, · · · , M . The ridge regression is applied to both each
query patch of zsm and its kn nearest patches, which are
found from the LR database Dz by the approximate nearest-
neighbor (ANN) searches.1 Therefore the corresponding
HR image xsm is reconstructed from the fitted coefficients and
its kn HR nearest patches in the HR database Dx by the map
transfer. At the end of each step, the reconstructed HR image
xsm and the LR image zsm at the m-th scale are added to the
image databases Dx and Dz, respectively. These procedures
of the multi-step magnification technique are iterated until the
desired HR image xs M is achieved. To generate the initial value
x0

H of the target HR image x, the estimated HR image xs M may
be blurred and downsampled to achieve the same size of x by
the bicubic interpolation method. Next, an iteration method
for solving the problem of the image sparse representation
begins with dictionary learning. Our dictionary learning adopts
a multi-class and multi-level training framework, which is
the same as that of the NCSR method [39]. Subsequently,
according to the estimated image signal deviation, the
reference histogram of gradients is estimated. After computing
the transform function, the HR image is successively updated
by the gradient histogram preservation regularization, the data
fidelity constraint and the nonlocal means. After that, the
HR image is sparsely coded over the trained dictionaries.
Each element of the sparse coefficients is further updated with

1The ANN package by Mount & Ayra, http://www.cs.umd.edu/∼mount/
ANN.
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its nonlocal means by the shrinkage operator. The iteration
proceeds until the convergence condition is reached. Finally,
the target HR image xH is reconstructed by gathering the small
image patches with the weighted averaging method.

B. Gradual Magnification With Ridge Regression

For only a LR image available for SR reconstruction,
we need to build a training set of the LR and HR image pairs to
restore the high-frequency details lost in the LR input. Since
there is the self-similarity redundancy both within the same
scale and across different scales, the input LR image and its
degraded versions can be used to construct the LR and HR
image pairs. Considering the different sizes of the LR and HR
images, the LR input y is enlarged to the same size of
the HR image x by the bicubic interpolation, whereas it is
also a blurred and downsampled version of the HR image x.
Therefore, the correspondence between the LR and HR images
at the same scale is established as follows:

z = (y) ↑ s = ((x ∗ G) ↓ s) ↑ s = Esx, (4)

where ∗ is a convolution operator, ↑ s is an upsampling oper-
ator with the scaling factor s, ↓ s is a downsampling operator
with the scaling factor s, G is a blurring kernel (e.g., an
isotropic Gaussian kernel with the standard deviation σG ),
Es is a composite operator of blurring, downsampling and
then upsampling with the scaling factor s, y is the LR image,
x is the HR image, and z is the LR image at the same size
of x.

Note that the LR image is more similar to its HR image
when the scaling factor is smaller, whereas the high-frequency
details tend to be lost when the scaling factor is larger.
Therefore, in our example learning-based SR framework, we
adopt the multi-step magnification scheme with the ridge
regression for the initial estimation of the target HR image.
For an input LR image y with a total scaling factor d ,
M = 	log (d) / log (s)
 is determined as the number of
magnification steps, where s is the upscaling factor of each
step. Specifically, the relationship between the HR image xsm

at the m-th scale and the HR image xsm+1 at the (m + 1)-th
scale can be expressed as follows:

xsm = (
xsm+1 ∗ Gs

) ↓ s. (5)

And Eq. (4) in the multi-scale case can be written in another
form:

zsm = ((xsm ∗ Gs) ↓ s) ↑ s = Esxsm , (6)

where the input LR image y is regarded as the HR image
xs0 at the scale m = 0. Specifically, the HR image xs0 is
blurred and downsampled to generate the HR image xsm at
the scale m = −1, · · · ,−N . The LR image zs0 is produced
by first downsampling the HR image xs0 and then upsampling
the downsampled result by the bicubic interpolation.

In our multi-step magnification scheme, we build
two training sets: the LR image database Dz and the
HR image database Dx. Specifically, the HR image xs0 is
blurred and downsampled to produce the HR image xsm at
the scale m = −1, · · · ,−N . The HR image database Dx is

constructed by collecting of these HR images xsm with the
scale m = −1, · · · ,−N . Correspondingly, the LR image
zs0 is produced by first downsampling the HR image xs0

and then upsampling the downsampled result by the bicubic
interpolation. Like the generation of the LR image zs0 ,
the LR image zsm at the scale m = −1, · · · ,−N is also
obtained by first downsampling the HR image xsm and
then upsampling the downsampled result by the bicubic
interpolation. The collection of these LR images zsm with the
scale m = −1, · · · ,−N is used to construct the LR image
database Dz. Initially, the image databases Dz and Dx consist
of all the patches of the LR image zsm and the HR image xsm

at the scale m = 0, · · · ,−N , respectively. At each step of the
multi-step magnification process, for the upscaling ratio sm

with m = 1, · · · , M , Dz and Dx are separately constructed by
gathering the LR images zsn and the HR images xsn , where
n = m − 1, · · · ,−N . First, the LR image zsm is estimated
from the HR image xsm−1 by the bicubic interpolation. For
each patch yzi of the LR image zsm at the m-th scale, the
ANN method is used to find the kn similar patches Nkl

n
in

the LR database Dz. We adopt the ridge regression to model
the near-linear relationships between yzi and Nkl

n
as the

constrained optimization problem:

min
γ

∥∥yzi − Nkl
n
γ
∥∥2

2 + τ‖γ ‖2, (7)

where γ is the coefficient vector, and τ is a regularization
parameter that alleviates the singularity problems and
stabilizes the solution. By solving this regularized least squares
regression problem, the closed-form solution is given by

γ =
(

NT
kl

n
Nkl

n
+ τ I

)−1
NT

kl
n
yzi , (8)

where I is an identity matrix. Then through transferring the
mapping relationship from the LR space to the HR space, the
HR patch can be reconstructed by multiplying the same coef-
ficient vector and the corresponding HR patches as follows:

yxi = Nkh
n
γ, (9)

where yxi is the corresponding HR patch of the HR image xsm

at the m-th scale, and Nkh
n

denotes the kn similar HR patches
in the HR image database Dx. Next we compute all the
HR patches yxi and then reconstruct the HR image xsm by
the weighted averaging method. The LR image zsm and
the HR image xsm are separately added to the databases
Dz and Dx. Subsequently, the multi-step magnification scheme
proceeds to the next step, which enlarges xsm to xsm+1 . Finally,
after the M steps of magnification, the HR image xs M is
obtained for subsequent processing procedures.

C. Structured Sparse Representation

1) SR Model: Since the HR image xs M reconstructed by
the multi-step magnification scheme may be larger than the
target HR image, the degraded version x0

H of the right size
is obtained by first blurring and then downsampling xs M with
the bicubic interpolation. We use x0

H as the initial value of
the target HR image for sparse modeling of SR problem.
Meanwhile, image gradients conveying abundant semantic
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Fig. 3. The flowchart of our sparse representation of single image SR model.

features are crucial to the subjective visual image quality.
Therefore, the histogram of image gradients can be used as a
feature descriptor to constrain new image SR model. Besides
that the gradual magnification is used as a preprocessing
process for structured sparse representation, we propose the
gradient histogram preservation regularization for single image
SR modeling. That is, the gradient histogram of the recon-
structed HR image should be close to that of the original
HR image, which is estimated from the given LR image. Fig. 3
shows the flowchart of the proposed sparse representation
of image SR model. Mathematically, our proposed structured
sparse coding model of single image SR with multiple image
priors is given as follows:

αy = arg min
�,α, f

⎧⎨
⎩

‖y − H� ◦ α‖2
2+λ1

∑
i ‖αi − βi‖1

+λ2‖ f (∇x|∇y) − ∇x‖2

⎫⎬
⎭,

s.t. h f = hr , (10)

where λ1 and λ2 are the regularization parameters, αi is the
coding coefficients of each patch xi over the dictionary �,
α denotes the concatenation of all αi , βi is the nonlocal means
of αi in the sparse coding domain, ∇ denotes the gradient
operator, f is the transform function, hr is the reference
histogram of x, and h f is the histogram of the transformed
gradient image | f (∇x|∇y)|. Note that f is an odd function
that is monotonically non-descending in the domain (0,+∞).
On the right side of (10), the first term is the data fidelity
of the solution, the second term is the sparse nonlocal
regularization [39] and the third term is our proposed gradient
regularization. Considering the natural images usually contain
repetitive patterns [36], the nonlocal similar patches to the
given patch xi centered at pixel i are searched not only in the
image spatial domain but also across different scales [10]. For
the current estimate x̂, the similar patches of x̂i are denoted
by x̂


i , whose coding coefficients are α

i . Then βi can be

computed as the weighted average of the sparse codes of the
associated nonlocal similar patches [39]:

βi =
∑



w


i α


i , (11)

Fig. 4. One example and the gradient histogram of
∑

i bi ∇xi . (a) Test image,
(b) the comparison between the real histogram and the fitted PDF for the test
image.

where the weight w

i is defined as

w

i = 1

W
exp

(
−

∥∥∥x̂i − x̂

i

∥∥∥
2

2
/h

)
, (12)

where h is a control parameter to adjust the decay rate and
W is a normalized factor to insure that

∑
i w


i = 1.
2) Reference Histogram of Gradients: To solve the sparse

coding problem in (10), we first need to know the reference
histogram of gradients that is assumed to be the gradient
histogram of the original HR image x. As there is only one
LR input y available, we use the gradient histogram of y
to infer that of the original HR image x. Different from
the GHP for image denoising [34], we have extended the
GHP regularization and provided the theoretical deduction for
image super-resolution as follows. Let z denote the upsampled
version of the LR image y that has the same size as the
HR image x. For the observation model of image SR problem,
Eq. (1) can be simply rewritten in the following formula:

z = B ∗ x, (13)

where B is a blurring operator. Thus we have

∇z = B ∗ ∇x = b0∇x +
∑

i
bi∇xi, (14)

where b0 and bi denotes the center coefficient and its
surrounding neighbors of the blur kernel B, respectively.
Assume that each pixel in the gradient image ∇x can
be regarded as the value of a scalar random variable.
The normalized histogram of ∇x is seen as a discrete
approximation of the probability density function (PDF) of the
random variable x . Since the PDF of x can be well modeled
by a generalized Gaussian distribution [58], the assumption
holds for the distribution of the gradient image ∇x. According
to the Lyapunov central limit theorem in probability theory,
the sum of independent random variables, i.e.,

∑
i bi∇xi,

can be approximated by the normal distribution. Fig. 4 gives
the real histogram distribution of

∑
i bi∇xi for one example

and the fitted PDF distribution of the random Gaussian
variable g. The fitted PDF of the random Gaussian variable g
is very close to the real histogram distribution of

∑
i bi∇xi

with 95% confidence bounds. The experiments verify that
both the theoretical deduction of our SMSR model and these
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assumptions are correct and hold in most cases. Then Eq. (14)
can be reformulated in another form:

z ≈ x + g, (15)

where g is a random Gaussian variable subject to N(0, σ 2
g ),

and z denotes a random variable for the distribution of the
pixels in the gradient image ∇z.

In our algorithm, the 1D deconvolution model is built to
estimate the reference histogram of gradients hr . Let hg be a
discrete version of the PDF of a random Gaussian variable g.
In fact, the standard deviation σg is unknown in many image
processing applications. To solve this problem, we use the
signal variance of the input LR image y to estimate the dis-
tribution of g. According to Eq. (15), the reference histogram
of gradients can be estimated by solving the deconvolution
problem as follows:

hr = arg min
hx

{∥∥hz − hx ∗ hg
∥∥2

}
, (16)

where hz is the gradient histogram of the upsampled version
of the LR input y, hx is the discrete version of the PDF
of x that can be well modeled by a generalized Gaussian
distribution [58], and hg is the discrete version of the PDF
of the independent and identically distributed (i.i.d.) random
variable g.

3) Numerical Solution: The mentioned above problem of
image super-resolution is non-convex and is hard to solve
exactly in a reasonable time. In our algorithm, we propose
an alternating minimization method to solve the image
SR problem in (10) so that the constrained optimization is
carried out with some variables fixed in cyclical fashion. First,
the multi-step magnification scheme is used to enlarge the
input LR image y to get the HR image xs M at the M-th scale.
Then the initial value of the target HR image is acquired
by downsampling xs M with the bicubic interpolation method.
Next, the iterative solution process starts with dictionary
learning like that of the NCSR method [39]. Specifically, for
the current estimation of HR image x, the k-means clustering
is used to separate the patches of its multi-scale images into
K clusters from each of which a sub-dictionary is trained
by the principal component analysis (PCA). Subsequently,
for each patch of the HR image, the PCA sub-dictionary of
which cluster it belongs to is automatically selected as the
dictionary �. For the fixed αi , βi and �, the image SR problem
in (10) is reduced to the sub-problem of the GHP as follows:

min
f

‖ f (∇x|∇y) − ∇x‖2, s.t. h f = hr . (17)

Thus we can update the transform function f by solving
the reduced sub-problem in (17). After that, for the fixed
� and f , the image SR problem in (10) is reduced to the
sub-problem in the following form:

arg min
α

{‖y − H� ◦ α‖2
2 + λ1

∑
i ‖αi − βi‖1

+λ2‖ f (∇x|∇y) − ∇x‖2

}
, (18)

where the parameter λ1 is used to weight the l1-norm sparsity
regularization term. Candes et al. [59] pointed out that
iteratively reweighting the l1-norm sparsity regularization
term can lead to a better sparse representation. To improve

the reconstruction of sparse signals, we adopt an adaptively
reweighting method in [39], [41], and [59] that exploits the
image nonlocal redundancy to estimate the regularization
parameter λ1. To solve the convex minimization sub-problem
in (18), we first update the HR image x by the gradient
descent method as follows:

x̂(t+1/2) = x̂(t) + δ

(
HT

(
y − Hx̂(t)

)
+λ2∇T

(
f − ∇x̂(t)

)
)

, (19)

where δ is a small constant. The update process of HR image
in (19) can be divided into two stages: the gradient
regularization and the data fidelity constraint. Therefore, the
sparse coding coefficients αi are updated as follows:

α
(t+1/2)
i = �T

k Ri x̂(t+1/2), (20)

where �k, k = 1, · · · , K is the PCA sub-dictionary of a
cluster that the patch x̂i belongs to. The nonlocal means βi of
αi can be estimated by Eq. (11). By employing the iterative
shrinkage operator [50] applied to each element of αi , we can
further update the coding coefficients αi in the following form:

α
(t+1)
i = Sλ/c

(
�T ◦ HT

(
y − H� ◦ α

(t+1/2)
i

)
/c

+α
(t+1/2)
i − βi

)
+ βi ,

(21)

where Sλ/c is the soft thresholding function, and c is a
regulatory parameter to ensure the convexity of the shrinkage
function. Finally, the whole HR image is reconstructed as:

x̂(t+1) = �(t+1) ◦ α(t+1)

=
(∑l

i=1
RT

i Ri

)−1 ∑l

i=1

(
RT

i �
(t+1)
k α

(t+1)
i

)
. (22)

Note that our proposed image SR model in (10) is
similar in mathematical form to the one discussed by
Attouch et al. [60], [61]. They proved that the minimization
of the nonsmooth nonconvex objective function in the form
of (10) can reach an abstract convergence result with descent
methods under certain conditions. These conditions satisfy
a sufficient-decrease assumption and allow a relative error
tolerance. The above iterative procedures are executed repeat-
edly until the convergence condition is achieved [60], [61]. The
theoretical convergence analysis of the proposed algorithm
is left for our future research. More specifically, we select a
certain number of iterations or a preset error tolerance as the
convergence conditions of our algorithm for the simplicity.

D. Method Summary

To give further clarification of the specific implementa-
tion of our proposed SMSR algorithm, it is summarized
in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this work, numerous experimental studies on image
super-resolution were carried out to verify the performance
of our proposed SMSR algorithm. In our experiments, the
basic parameters of our SMSR algorithm are set as follows:
the patch size is 6 × 6 with the overlap width equal to 4
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Fig. 5. The PSNR(dB)/SSIM results as a function of the patch size in the case of the different upscaling factors for the ‘Butterfly’ image. From left to right
and top to bottom: (a) PSNR(dB) results of our SMSR1, (b) SSIM results of our SMSR1, (c) PSNR(dB) results of SMSR2 and (d) SSIM results of SMSR2.

Algorithm 1 Pseudocodes of the SMSR-Based Image Super-
Resolution

between the adjacent patches, K = 64, λ2 = 0.1, δ = 7,
ε = 0.3, c = 0.35, s = 1.25, and τ = 0.1. Two cases
of magnification ratios d = 2 and d = 3 were separately
implemented for the test images. For d = 2, T1 = 7, T2 = 40
and M = 4, whereas for d = 3, T1 = 6, T2 = 160 and
M = 5. The proposed SMSR algorithm was also compared
with the bicubic interpolation method and the state-of-the-art
methods published recently [39], [41] for verifying its validity
both subjectively and objectively. Indeed, our SMSR algorithm
consists of two stages: the gradual magnification and the
structured sparse representation (See Fig. 2). In this paper,
for the convenience of our description, we refer to these

two output stages as ‘SMSR1’ and ‘SMSR2’, respectively,
where the output result of ‘SMSR2’ is also the final output
of our proposed SMSR algorithm.

Note that both the ScSR method [11] and the
ANR method [46] adopt the bicubic interpolation for
the generation of the simulated LR images in their reported
experimental results. However, for a fair comparision, just
like the other SR methods [39], [41], the Gaussian blurring
and downsampling operator has been used to generate the
simulated LR images in our experiments. That is, a HR image
is first blurred with a 7 × 7 Gaussian kernel with standard
deviation 1.6 and then downsampled by a total scaling
factor d in both horizontal and vertical directions. Therefore,
for test images, the simulated LR images in our experiments
are different from those obtained by the bicubic interpolation
in the experimental reports [11], [46]. For the color images,
since the human visual system presents more sensitivity to the
luminance changes, the image SR methods are only applied to
the luminance component, whereas the chromatic components
are zoomed in by the simple bicubic interpolation method.
In our SMSR model, we have also researched on the patch
size as a function of the upscaling factor. To assess the impact
of the patch size in the first stage, we have evaluated our
SMSR1 with various size of image patch in the experiments.
For the test ‘Butterfly’ image, the PSNR(dB)/SSIM results
are shown in Fig. 5 (a) and (b), where our SMSR1 achieves
the best performance with the patch size of 5 × 5 for the total
upscaling factor 2 and with the patch size of 7 × 7 for the
total upscaling factor 3, respectively. Considering the balance
between the computational complexity and the performance,
the patch size is selected as 5 × 5 pixels in the first stage.
Furthermore, we have assessed various size of image patch
in the second stage of our SMSR algorithm. For the test
‘Butterfly’ image, the PSNR(dB)/SSIM results are shown
in Fig. 5 (c) and (d), where our SMSR2 achieves the best
performance with the patch size of 5 × 5 pixels for both the
total upscaling factors 2 and 3. Considering that the patch
size is 6 × 6 pixels in the NCSR method [39], the patch size
is also chosen as 6 × 6 pixels in the second stage of our
SMSR algorithm for a fair comparison in the experiments.

To assess the impact of the first stage in our SMSR
framework, we have tested the different initialization methods.
These initialization methods include the nearest interpolation,
the bilinear interpolation, the bicubic interpolation, our
proposed SMSR1 and the oracle interpolation method.
The compared results of one example for objective and
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TABLE II

PSNR(dB)/SSIM RESULTS ON THE RECONSTRUCTED HR IMAGES OBTAINED BY OUR SMSR FRAMEWORK WITH DIFFERENT

INTERPOLATIONS APPLIED TO THE ‘Butterfly’ IMAGE FOR DIFFERENT SCALING RATIOS

Fig. 6. Visual comparisons of the super-resolution results of our SMSR framework with the different interpolations for the ‘Butterfly’ image (the total scaling
factor 3). From left to right: (a) Ground truth, (b) the oracle interpolation, (c) SMSR1, (d) the bicubic interpolation, (e) the bilinear interpolation, and (f) the
nearest-neighbor interpolation.

TABLE III

PSNR(dB)/SSIM RESULTS ON THE RECONSTRUCTED HR IMAGES WITH THE TOTAL SCALING FACTOR d = 2

TABLE IV

PSNR(dB)/SSIM RESULTS ON THE RECONSTRUCTED HR IMAGES WITH THE TOTAL SCALING FACTOR d = 3

subjective evaluations are shown in Table II and Fig. 6,
respectively. As can be seen from the results, our SMSR1 for
the initial estimation of the target HR image is better than
current competing interpolation methods and is very close to
the performance of the oracle interpolation.

The proposed SMSR algorithm and the current competing
methods were separately applied to a set of test images from
standard image databases. To evaluate the objective quality
of the restored HR images, the PSNR and SSIM [62] were
calculated for the comparisons of our SMSR algorithm and
the state-of-the-art methods. For a fair comparison, we have

implemented the qualitative and quantitative evaluation on the
reconstructed HR images obtained by our proposed SMSR
algorithm, the bicubic interpolation method, ANR [46],
ASDS [41] and NCSR [39]. Considering the inter-scale
similarity, the gradual magnification scheme instead of the
interpolation method is used for the initial estimation of the
target HR image in our SMSR model. For convenience, let
SMSR_ISS denote the united framework of NCSR [39] with
the initialization by our multi-step gradual magnification
scheme, and let SMSR_GHP denote the GHP regularization
combined with NCSR [39]. Both SMSR_ISS and SMSR_GHP
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Fig. 7. Visual comparisons of the super-resolution results of the proposed SMSR algorithm and other state-of-the-art methods for test images (the total
scaling factor 2). These test images include ‘Brain’, ‘Butterfly’, ‘Comic’ and ‘Hat’. From left to right and top to bottom: (a) LR input, (b) ground truth,
(c) our SMSR2, (d) NCSR [39], (e) ASDS [41], (f) the bicubic interpolation, (g) ANR [46], (h) our SMSR1, (i) our SMSR_ISS and (j) our SMSR_GHP.
Zoom into the pdf file for a detailed view.

have been separately implemented and compared with the
current competing methods to evaluate the impact of the
first stage and the GHP regularization of our SMSR model.

Note that the bicubic interpolation is used for the initial
estimation of the target HR image in the SMSR_GHP model,
whereas SMSR1 is used for the initial estimation of the target
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Fig. 8. Visual comparisons of the super-resolution results of the proposed SMSR algorithm and other state-of-the-art methods for test images (the total
scaling factor 3). These test images include ‘Brain’, ‘Butterfly’, ‘Comic’ and ‘Hat’. From left to right and top to bottom: (a) LR input, (b) ground truth,
(c) our SMSR2, (d) NCSR [39], (e) ASDS [41], (f) the bicubic interpolation, (g) ANR [46], (h) our SMSR1, (i) our SMSR_ISS and (j) our SMSR_GHP.
Zoom into the pdf file for a detailed view.

HR image in our SMSR model. For the set of test images,
the PSNR/SSIM results of these different methods are
shown in Table III for the total scaling factor d = 2 and

Table IV for the total scaling factor d = 3, respectively.
Both Table I and Fig. 1 show that the bicubic interpolation
with the NCSR method is usually superior to the
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nearest-neighbor interpolation or the bilinear interpolation
with the NCSR method. Thus only the bicubic interpolation
with the NCSR method is compared with our SMSR
algorithm for performance evaluation. As can be seen from
Table III to Table IV, it is found that the average PSNR gains
of our SMSR algorithm over the second best method,
i.e., NCSR [39], are about 0.4dB and 0.2dB for these test
LR images, respectively. Moreover, for a comparison of
the initialization of NCSR [39] and our SMSR algorithm,
the average PSNR gains of our SMSR1 algorithm over the
bicubic interpolation method are separately about 0.5dB
and 0.2dB in the cases of d = 2 and d = 3. From the
PSNR/SSIM results, our proposed SMSR algorithm is
generally superior to the current state-of-the-art methods.
To further inspect the effectiveness of our SMSR algorithm,
the detailed reconstructed HR results of our SMSR algorithm
and other competing methods [39], [41] for the test images
are shown in Fig. 7 for the case d = 2 and Fig. 8 for the
case d = 3, respectively. The visual comparisons between
our SMSR algorithm and the baseline methods [39], [41]
demonstrate that the proposed SMSR algorithm can recover
finer structures and sharper edges and also has less color
distortion for color image super-resolution.

It is also found that our proposed SMSR algorithm has
achieved noticeable performance gains in great part due to
the knowledge of the blur kernel. Unlike Timofte et al. [46]
and followers assuming sharp input LR images, the proposed
SMSR algorithm assumes that the blur kernel is known
beforehand. As the initialization of our SMSR model, the
example-based SMSR1 can achieve better results, especially
for sharp input LR images, whereas our SMSR2 reaches
its best performance with accurate blur kernel for image
super-resolution, which is especially useful when the input
image is severely blurred. To the best of our knowledge,
our proposed SMSR algorithm obviously outperforms the
best existing state-of-the-art methods, e.g., NCSR [39],
not only in the objective assessment but also in the visual
comparisons. As seen from the experimental results, the
proposed SMSR algorithm works well for a wide variety of
images, and can reach better super-resolution results than the
state-of-the-art methods both subjectively and objectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a solution to the single image
super-resolution problem with an SMSR method. Since there
is abundant similarity redundancy both within the same scale
and across the different scales, the multi-scale magnification
scheme with the ridge regression is first used to compute the
initial estimation of the target HR image. Then the sparse
modeling of single image super-resolution is designed with
a gradient regularization term that preserves the gradient
histogram of the target HR image. Another centralized
sparse constraint that exploits the image local and nonlocal
redundancy is also incorporated to improve the performance
of the image sparse representation. To approximate the
global optimization result, which is nonconvex and hard
to solve directly, an alternating minimization method with
an iteratively reweighted regularization parameter is used

to solve the structure-constrained optimization problem of
single image super-resolution. The sparse coefficients of the
estimated HR image are further corrected by an efficient
iterative shrinkage function. We have conducted extensive
experiments on image super-resolution and evaluated the
results of both the proposed algorithm and the popular
SR methods. Experimental results demonstrated that our
SMSR algorithm that can produce sharper edges and
suppress aliasing artifacts is promising and competitive to
the state-of-the-art methods, and outperforms other leading
SR methods both visually and quantitatively in most cases.
To further improve the performance and the efficiency of
super-resolution, we will study on accurate estimation of blur
kernel and noisy image super-resolution in the future.
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