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Abstract. Guided by the Retinex model, image decomposition based
low-light image enhancement methods attempt to manipulate the esti-
mated illumination and project it back to the corresponding reflectance.
However, the L2 constraint on the illumination often leads to halo arti-
facts, and the noise existed in the reflectance map is always neglected. In
this paper, based on the Retinex model, we introduce a total variation
optimization problem that jointly estimates noise-suppressed reflectance
and piece-wise smooth illumination. The gradient of the reflectance is
also constrained so that the contrast of the final enhancement result can
be strengthened. Experimental results demonstrate the effectiveness of
the proposed method with respect to low-light image enhancement.
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1 Introduction

Images captured under low-light conditions suffer from many degradations, such
as low visibility, low contrast, and high-level noise. Although these degradations
can be somewhat alleviated by professional devices and advanced photographic
skills, the inherent cause of the noise is unavoidable and can not be addressed
at the hardware level. Without sufficient amount of light, the output of camera
sensors is often buried in the intrinsic noise in the system. Longer exposure time
can effectively increase the signal-to-noise ratio (SNR) and generate a noise-free
image, however it breeds new problems such as motion blur. Thus, low-light
image enhancement technique at the software level is highly desired in consumer
photography. Moreover, such technique can also benefit many computer vision
algorithms (object detection, tracking, etc.) since their performance highly relies
on the visibility of the target scene.
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(a) Observed low-light image

(b) Our enhancement result (c) Close-ups

Fig. 1. (a) The observed low-light image. (b) The enhancement result of the proposed
method. (c) Close-ups from top to bottom correspond to the input image, the enhance-
ment result of the classic histogram equalization algorithm, and that of the proposed
method. We can observe that the input image has low visibility and contrast. Intensive
noise hidden in the observed image is revealed by histogram equalization. The proposed
method generates visually pleasing results with better details and less noise.

However, this is not a trivial task, for that images captured under low-light
conditions have rather low SNRs, which means the noises are highly intensive
and may dominate over the image signals. Thus, low-light image enhancement
algorithms need to tackle not only the low visibility, but also the high-level
noises, in addition to low contrast (as illustrated in Fig. 1).

An intuitive way to enhance low-light images is to directly amplify the illu-
mination. However, relatively bright areas may be saturated and some details
might be lost through the operation. Histogram equalization (HE) based meth-
ods [1, 2], which aim to stretch the dynamic range of the observed image, can
mitigate the problem to some extent. Nevertheless, their purpose is to enhance
the contrast other than adjusting the illumination. Thus, results of these meth-
ods may be over- or under-enhanced. Furthermore, HE based methods neglect
the intensive noise hidden in low-light images.

Some researchers [3, 4] noticed that the inverted low-light images look like
haze images. Dehazing methods are therefore applied and the dehazing result is



3

inverted once more as the enhancement result. A joint-bilateral filter is applied
in [4] to suppress the noise after the enhancement. Li et al . [3] attempted to
further improve the visual quality by segmenting the observed image into super-
pixels and adaptively denoising different segments via BM3D [5]. Although these
methods can generate reasonable results, a convincing physical explanation of
their basic model has not been provided. Moreover, the order of enhancing and
denoising has always been a problem. Performing enhancement method before
denoising may result in noise amplification, which increases the difficulty of de-
noising. On the other hand, enhancement results may be somewhat blurred after
denoising.

Retinex theory [6] has been studied extensively in the past few decades,
which assumes that images can be decomposed into two components, namely
reflectance and illumination. Single-scale Retinex [7] and multiscale Retinex [8]
are the pioneering studies in this field. They manipulate the illumination com-
ponent and treat the reflectance as the final output. Wang et al . [9] proposed
a bright-pass filter to decompose the observed image into reflectance and illu-
mination, and attempted to preserve the naturalness while enhancing the image
details. Based on the bright-pass filter proposed in [9], Fu et al . [10] fused mul-
tiple derivatives of the estimated illumination to combine different merits into a
single output. The method proposed in [11] refines the initial illumination map
by imposing a structure-aware prior. Nevertheless, due to the lack of constraint
on the reflectance, these methods often amplify the latent intensive noise that
exists in low-light images.

Although the logarithmic transformation is widely adopted for the ease of
modeling by most Retinex based algorithms, a recent work [12] argues that
the logarithmic transformation is not appropriate in the regularization terms
since pixels with low magnitude dominate over the variation term in the high
magnitude areas. Thus, a weighted variational model is proposed in [12] in order
to impose better prior representation in the regularization terms. Even though
this method shows rather impressive results in the decomposition of reflectance
and illumination, the method is not suitable for the enhancement of low-light
images as the noise often appears in low magnitude regions.

In this paper, instead of performing image enhancement and denoising sep-
arately, we present an optimization function designed for joint denoising and
enhancement for low-light images. The rest of the paper is organized as fol-
lows: Sec. 2 introduces the proposed optimization problem that simultaneously
estimates a noise-suppressed reflectance and a smoothed illumination map. Low-
light enhancement results and analysis are presented in Sec. 3. Finally, Sec. 4
concludes the paper.

2 The Proposed Method

In this section, we propose a new optimization function that simultaneously
estimates the reflectance R and the illumination L of the input image I:

argmin
R,L

‖R ◦ L− I‖2F + α‖∇R‖2F + β‖∇L‖1 + ω‖∇R−G‖2F , (1)
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where α, β, and ω are the coefficients that control the importance of different
terms. The operator ◦ denotes element-wise multiplication. ‖ · ‖F and ‖ · ‖1
represent the Frobenius norm and `1 norm, respectively. In addition, ∇ is the
first order differential operator, and G is the adjusted gradient of I, which will be
discussed in Equation (2). The role of each term in the objective (1) is interpreted
below:

– ‖R ◦ L − I‖2F constrains the fidelity between the observed image I and the
recomposed one R ◦ L;

– ‖∇R‖2F enforces the spatial smoothness on the reflectance R, for that noise
is often observed in the reflectance image;

– ‖∇L‖1 corresponds to the total variation sparsity and considers the piece-
wise smoothness of the illumination map L;

– ‖∇R−G‖2F minimizes the distance between the gradient of the reflectance
R and that of the observed image I, so that the contrast of the final result
can be strengthened.

As for the matrix G, it is designed as the adjusted version of ∇I. The for-
mulation of G is given as follows,

G = K ◦ ∇Î, (2)

K = (1 + λe−|∇Î|/σ), (3)

where

∇Î =

{
0, if |∇I| < ε,

∇I, otherwise.
(4)

Specifically, after suppressing small gradients (i.e., the noise), ∇Î is amplified
by the factor K that decreases with the increment of the gradient magnitude.
Note that this amplification factor makes less adjustment in areas with higher
gradient magnitude, while areas with lower gradient magnitude are strongly
enhanced. So that after the amplification, the adjusted gradient G tends to
have similar magnitude. Further, λ controls the degree of the amplification; σ
controls the amplification rate of different gradients; ε is the threshold that
filters small gradients. Images with higher noise levels often need a larger ε. In
our experiments, parameters λ, σ, and ε are all set as 10. For each observed
image, matrix G only needs to be calculated once.

The optimization problem (1) can be effectively solved by the alternating
direction minimization technique [13]. By substituting ∇L in the third term
with an auxiliary variable T, the objective (1) can be rewritten in the following
equivalent form:

argmin
R,L,T

‖R ◦L− I‖2F + α‖∇R‖2F + β‖T‖1 + ω‖∇R−G‖2F , s.t. T = ∇L. (5)
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By introducing a Lagrange multiplier Z to remove the equality constraint,
we have the augmented Lagrangian function of (5):

L(R,L,T,Z) = ‖R ◦ L− I‖2F + α‖∇R‖2F + β‖T‖1
+ ω‖∇R−G‖2F + Φ(Z,∇L−T),

(6)

where Φ(Z,∇L−T) = 〈Z,∇L−T〉+ µ
2 ‖∇L−T‖

2
F and 〈·, ·〉 represents the matrix

inner product. µ is a positive scalar. The equivalent objective function can be
solved by iteratively updating each variable while regarding other variables that
have been estimated in the previous iteration as constants.

(a) Input (b) HE (c) CLAHE [1] (d) GC

(e) NPE [9] (f) SRIE [12] (g) LIME [11] (h) Proposed

Fig. 2. Results comparison between different methods.

3 Experimental Results

In this section, we demonstrate low-light image enhancement results. All exper-
iments are conducted in MATLAB R2015b on a PC running Windows 10 OS
with 16G RAM and 3.5GHz CPU. In our experiments, the parameters α, β, and
ω are empirically set as 0.001, 0.01, and 0.01, respectively.

After the estimation of the illumination L and the reflectance R, the gamma
correction operation is applied in order to adjust the illumination. And the final
enhancement result I′ is generated by:

I′ = R ◦ L̂
1
γ , (7)
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(a) Input (b) HE (c) CLAHE [1] (d) GC

(e) NPE [9] (f) SRIE [12] (g) LIME [11] (h) Proposed

Fig. 3. Results comparison between different methods.

where L̂ is the normalized L, and γ is empirically set as 2.2.

We compare the proposed method with several state-of-the-art methods, in-
cluding histogram equalization (HE), contrast limited adaptive histogram equal-
ization (CLAHE) [1], gamma correction (GC), naturalness preserved enhance-
ment algorithm (NPE) [9], simultaneous reflectance and illumination estimation
(SRIE) [12], and low-light image enhancement via illumination map estimation
(LIME) [11]. HE and CLAHE use the MATLAB built-in functions. GC is per-
formed by Lγ with γ = 5. The codes of NPE, SRIE, and LIME are downloaded
from the authors’ websites. Test images come from LIME’s website. In this work,
we assume that each color channel has its own illumination and reflectance. Thus
the proposed method is performed on different channels of the RGB input indi-
vidually.

Figs. 2, 3 and 4 show several comparisons between enhancement results gen-
erated by different methods. As can be observed in Fig. 2, CLAHE and SRIE
cannot effectively restore the details hidden by the insufficient illumination. S-
RIE also generates halo artifacts. GC and LIME significantly improve the il-
lumination, yet some parts of their results are over-enhanced. Although NPE
shows comparable performance with the proposed method in these noise-free
images, they fail to handle noisy cases. As shown in Fig. 3, the noise hidden
in very low-light condition is really intense. After being processed by most of
the enhancement methods, the noise is often highly amplified. It is observed
that except for the proposed method, all the other methods generate noticeable
noise.
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(b)
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Fig. 4. Comparison between different enhancement methods. (a)-(h): The input image,
HE, CLAHE, SRIE, GC, LIME, NPE, and the proposed method.
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(a) Input (b) HE (c) CLAHE [1] (d) GC

(e) NPE [9] (f) SRIE [12] (g) LIME [11] (h) Proposed

Fig. 5. Comparison of denoising results with the proposed method. (a) is the input
image; (b)-(g) are enhancement results with a denoising procedure performed by BM3D
with the denoising parameter σ = 30; (h) is the result obtained by the proposed
method.
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We also provide the comparison of the proposed method with the results of
other methods post-processed by BM3D [5]. As shown in Fig. 5, BM3D success-
fully smoothes most of the amplified noise, but some details of the input image
are also lost. By contrast, our result looks sharper and contains less noise.

4 Conclusion

The well-established Retinex model for intrinsic image decomposition faces chal-
lenges when being applied to low-light image enhancement due to the ignorance
of the noise term. In this paper, we attempt to correct this point by introducing
a noise term into the classic model. The new model naturally leads to a joint
estimation for the reflectance and the illumination of the observed image. Specif-
ically, the constraint on the gradient of the reflectance preserves the contrast of
the final enhancement result. Experimental results show that our method can
produce visually pleasing results for images captured under low-light situation.
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