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Abstract

Although Deep Convolutional Neural Networks (CNNs)

have liberated their power in various computer vision tasks,

the most important components of CNN, convolutional lay-

ers and fully connected layers, are still limited to linear

transformations. In this paper, we propose a novel Factor-

ized Bilinear (FB) layer to model the pairwise feature inter-

actions by considering the quadratic terms in the transfor-

mations. Compared with existing methods that tried to in-

corporate complex non-linearity structures into CNNs, the

factorized parameterization makes our FB layer only re-

quire a linear increase of parameters and affordable com-

putational cost. To further reduce the risk of overfitting of

the FB layer, a specific remedy called DropFactor is de-

vised during the training process. We also analyze the con-

nection between FB layer and some existing models, and

show FB layer is a generalization to them. Finally, we vali-

date the effectiveness of FB layer on several widely adopted

datasets including CIFAR-10, CIFAR-100 and ImageNet,

and demonstrate superior results compared with various

state-of-the-art deep models.

1. Introduction

Deep convolutional neural networks (CNNs) [21, 23]

have demonstrated their power in most computer vision

tasks, from image classification [12, 38], object detec-

tion [10, 31], to semantic segmentation [27]. The impres-

sive fitting power of a deep net mainly comes from its re-

cursive feature transformations. Most efforts to enhance the

representation power of a deep neural net can be roughly

categorized into two lines. One line of works features on

increasing the depth of the network, namely the number of

non-linear transformations. ResNet [12] is a classic exam-

ple of such extremely deep network. By using skip con-

nections to overcome the gradients vanishing/exploding and

degradation problems, ResNet achieves significant perfor-

mance improvements. The other line of efforts aims at en-
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hancing the fitting power for each layer. For example, Deep

Neural Decision Forests [19] was proposed to integrate dif-

ferentiable decision forests as the classifier. In [26], the

authors modeled pairwise feature interactions using explicit

outer product at the final classification layer. The main

drawbacks of these approaches are that they either bring

in large additional parameters (for instance, [26] introduces

250M additional parameters for ImageNet classification)

or have a slow convergence rate ([19] requires 10x more

epochs to converge than a typical GoogLeNet [38]).

In this paper, we propose the Factorized Bilinear (FB)

model to enhance the capacity of CNN layers in a simple

and effective way. At a glance, the FB model can be con-

sidered as a generalized approximation of the Bilinear Pool-

ing [26], but with two modifications. First, our FB model

generalizes the original Bilinear Pooling to all convolutional

and fully connected layers. In this way, all computational

layers in CNN could have larger capacity with pairwise in-

teractions. However, under the original settings of Bilinear

Pooling, such generalization will lead to explosion of pa-

rameters. To mitigate this problem, we constrain the rank of

all quadratic matrices. This constraint significantly reduces

the number of parameters and computational cost, making

the complexity of FB layer linear with respect to the origi-

nal conv/fc layer. Furthermore, in order to cope with overfit-

ting, we propose a regularization method called DropFactor

for the FB model. Analogous to Dropout [36], DropFactor

randomly sets some elements of the bilinear terms to zero

during each iteration in the training phase, and uses all of

them in the testing phase.

To summarize, our contributions of this work are three-

fold:

• We present a novel Factorized Bilinear (FB) model to

consider the pairwise feature interactions with linear

complexity. We further demonstrate that the FB model

can be easily incorporated into convolutional and fully

connected layers.

• We propose a novel method DropFactor for the FB

layers to prevent overfitting by randomly dropping fac-

tors in the training phase.
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• We validate the effectiveness of our approach on sev-

eral standard benchmarks. Our proposed method

archives remarkable performance compared to state-

of-the-art methods with affordable complexity.

2. Related Work

The Tao of tuning the layer-wise capacity of a DNN lies

in the balance between model complexity and computation

efficiency. The naive, linear approach of increasing layer

capacity is either adding more nodes, or enlarging receptive

fields. As discussed in [2], these methods have beneficial ef-

fect up to a limit. From a different perspective, PReLU [11]

and ELU [8] add flexibilities upon the activation function

at a minimal cost, by providing a single learned parame-

ter for each rectifier. Besides activation functions, many

other works tried to use more complex, non-linear models

to replace vector/matrix operations in each layer. For in-

stance, Network In Network (NIN) [25] replaced the lin-

ear convolutional filters with multilayer perception (MLP),

which is proven to be a general function approximator [14].

The MLP is essentially stacked of fully connected layers.

Thus, NIN is equivalent of increasing the depth of the net-

work. In [19], random forest was unified as the final predic-

tors with the DNNs in a stochastic and differentiable way.

This back-propagation compatible version of random forest

guides the lower layers to learn better representation in an

end-to-end manner. However, the large computation over-

load makes this method inappropriate for practical applica-

tions.

Before the invention of deep learning, one of the most

common tricks to increase model capacity is to apply ker-

nels [35]. Although the computational burden of some ker-

nel methods can go prohibitively high, its simplest form –

bilinear kernel is certainly affordable. In fact, many of to-

day’s DNN has adopted bilinear kernel and have achieved

remarkable performance in various tasks, such as fine-

grained classification [26, 9], semantic segmentation [1],

face identification [6], and person re-identification [3].

2.1. Revisiting Bilinear Pooling

In [26], a method called Bilinear Pooling is introduced.

In this model, the final output is obtained by a weighted

pooling of a global descriptor, which comes from the outer

product of the final convolutional layer with itself1:

z =
∑

i∈S

xix
T
i , (1)

where {xi|xi ∈ R
n, i ∈ S} is the input feature map, S is the

set of spatial locations in the feature map, n is the dimension

1Although the original Bilinear Pooling supports input vectors from

two different networks, there is little difference performance-wise. For

simplicity, we only consider the bilinear model using identical input vec-

tors in this paper.

of each feature vector, and z ∈ R
n×n is the global feature

descriptor. Here we omit the signed square-root and l2 nor-

malization steps for simplicity. Then a fully connected layer

is appended as the final classification layer:

y = b+Wvec(z), (2)

where vec(·) is the vectorization operator which converts a

matrix to a vector, W ∈ R
c×n2

and b ∈ R
c are the weight

and bias of the fully connected layer, respectively. y ∈ R
c

is the output raw classification scores, and c is the number

of classification labels.

It is easy to see that the size of the global descriptor can

go huge. To reduce the dimensionality of this quadratic term

in bilinear pooling, [9] proposed two approximations to ob-

tain compact bilinear representations. Despite the efforts to

reduce dimensionality in [9], bilinear pooling still has large

amounts of parameters and heavy computation burden. In

addition, all of these models are based on the interactions of

the final convolution layer, which is not able to be extended

to earlier feature nodes in DNN.

3. The Model

Before introducing the FB models, we first rewrite the

bilinear pooling with its fully connected layer as below:

yj = bj +WT
j·vec(

∑

i∈S

xix
T
i )

= bj +
∑

i∈S

xT
i W

R
j·xi,

(3)

where Wj· is the j-th row of W, WR
j· ∈ R

n×n is a ma-

trix reshaped from Wj·, and yj and bj are the j-th value of

y and b. Although the bilinear pooling is capable of cap-

turing pairwise interactions, it also introduces a quadratic

number of parameters in weight matrices WR
j·, leading to

huge computational cost and the risk of overfitting.

Previous literatures, such as [41] have observed patterns

of the co-activation of intra-layer nodes. The responses of

convolutional kernels often form clusters that have seman-

tic meanings. This observation motivates us to regularize

WR
j· by its rank to simplify computations and fight against

overfitting.

3.1. Factorized Bilinear Model

Given the input feature vector x ∈ R
n of one sample, a

common linear transformation can be represented as:

y = b+wTx, (4)

where y is the output of one neuron, b is the bias term, w ∈
R

n is the corresponding transformation weight and n is the

dimension of the input features.
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To incorporate the interactions term, we present the fac-

torized bilinear model as follows:

y = b+wTx+ xTFTFx, (5)

where F ∈ R
k×n is the interaction weight with k ∈ N

+

0

factors. To explain our model more clearly, the matrix ex-

pression of Eq. (5) can be expanded as:

y = b+
n∑

i=1

wixi +
n∑

i=1

n∑

j=1

〈f·i, f·j〉xixj , (6)

where xi is the i-th variable of the input feature x, wi is

i-th value of the first-order weight and f·i is the i-th column

of F. 〈f·i, f·j〉 is defined as the inner product of f·i and f·j ,

which describes the interaction between the i-th and j-th

variables of the input feature vector.

End-to-End Training. During the training, the parame-

ters in FB model can be updated by back-propagating the

gradients of the loss l. Let ∂l/∂y be the gradient of the loss

function with respect to y, then by the chain rule we have:

∂l

∂x
=

∂l

∂y
w + 2

∂l

∂y
FTFx,

∂l

∂F
= 2

∂l

∂y
FxxT ,

∂l

∂w
=

∂l

∂y
x,

∂l

∂b
=

∂l

∂y
.

(7)

Thus, the FB model applied in DNNs can be easily trained

along with other layers by existing optimizers, such as

stochastic gradient descent.

Extension to Convolutional Layers. The aforemen-

tioned FB model can be applied in fully connected layers

easily by considering all the output neurons. Besides, the

above formulations and analyses can also be extended to the

convolutional layers. Specifically, the patches of the input

feature map in the convolutional layers can be rearranged

into vectors using im2col trick [17, 30], and convolution

operation is converted to dense matrix multiplication like in

fully connected layers. Most popular deep learning frame-

works utilize this reformulation to calculate the convolution

operator, since dense matrix multiplication could maximize

the utility of GPU. Thus, the convolutional layer could also

benefit from the proposed FB model.

Complexity Analysis. According to the definition of the

interaction weight F in Eq. (5), the space complexity, which

means the number of parameters for one neuron in the FB

model, is O(kn). Although the complexity of naı̈ve com-

putation of Eq. (6) is O(kn2), we can compute the factor-

ization bilinear term efficiently by manipulating the order

of matrix multiplication in Eq. (5). By computing Fx and

xTFT first, xTFTFx can be computed in O(kn). Thus,

the total computation complexity of Eq. (5) is also O(kn).
As a result, the FB model has linear complexity in terms of

both k and n for the computation and the number of param-

eters. We will show the actual runtime of the FB layers in

our implementation in the experiments section.

3.2. DropFactor

Dropout [36] is a simple yet effective regularization to

prevent DNNs from overfitting. The idea behind Dropout

is that it provides an efficient way to combine exponentially

different neural networks by randomly dropping neurons.

Inspired by this technique, we propose a specific DropFac-

tor method in our FB model.

We first reformulate Eq. (5) as:

y = b+wTx+

k∑

j=1

xT fj·f
T
j·x, (8)

where fj· is the j-th row of interaction weight F, which

represents the j-th factor. Based on Eq. (8), Fig. 1(a) shows

the expanding structure of the FB layer which composes of

one linear transformation path and k bilinear paths. The

key idea of our DropFactor is to randomly drop the bilinear

paths corresponding to k factors during the training. This

prevents k factors from co-adapting.

In our implementation, each factor is retained with a

fixed probability p during training. With the DropFactor,

the formulation of FB layer in the training becomes:

y = b+wx+

k∑

j=1

mjx
T fj·f

T
j·x, (9)

where mj ∼ Bernoulli(p). With the DropFactor, the net-

work can be seen as a set of 2k thinned networks with shared

weights. In each iteration, one thinned network is sam-

pled randomly and trained by back-propagation as shown

in Fig. 1(b).

For testing, instead of explicitly averaging the outputs

from all 2k thinned networks, we use the approximate

“Mean Network” scheme in [36]. As shown in Fig. 1(c),

each factor term xT fj·f
T
j·x is multiplied by p at testing time:

y = b+wTx+

k∑

j=1

pxT fj·f
T
j·x. (10)

In this way, the output of each neuron at testing time is

the same as the expected output of 2k different networks

at training time.
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(a) Expanding FB model structure (b) DropFactor at training time (c) DropFactor at test time

Figure 1. The structure of the FB layer and the explanations of DropFactor. (a) The expanding FB layer contains one conventional linear

path (the blue line) and k bilinear paths (the orange lines). (b) Each bilinear path is retained with probability p at training time. (c) At

testing time, each bilinear path is always present and the output is multiplied by p.

(a) Bilinear Pooling block (b) Factorized Bilinear block

Figure 2. The structure of bilinear pooling block and its corre-

sponding FB block. x is the input feature map of the final convo-

lutional block.

4. Relationship to Existing Methods

In this section, we connect our proposed FB model with

several closely related works, and discuss the differences

and advantages over them.

Relationship to Bilinear Pooling. Bilinear pooling [26]

modeled pairwise interactions of features by outer product

of two vectors. In the following, we demonstrate that our

FB block is a generalization form of bilinear pooling block.

As shown in Fig. 2(a), the bilinear pooling is applied af-

ter the last convolutional layer of a CNN (e.g. VGG) , then

followed by a fully-connected layer for classification. We

construct an equivalent structure with our FB model by us-

ing the FB convolutional layer with 1×1 kernel as shown in

Fig. 2(b). The final average pooling layer is used to aggre-

gate the scores around the spatial locations. Thus, Eq. (5)

can be reformulated as:

y = b+
1

‖S‖

∑

i∈S

(wTxi + xT
i F

TFxi). (11)

Compared with bilinear pooling in Eq. (3), we add the linear

term and replace the pairwise matrix WR
j· with factorized

bilinear weight FTF.

We argue that such symmetric and low rank constraints

on the interaction matrix are reasonable in our case. First,

the interaction between i-th and j-th feature and that be-

tween j-th and i-th feature should be same. Second, due

to the redundancy in neural networks, the neurons usually

form the clusters [41]. As a result, only a few factors should

be enough to capture the interactions between them. Be-

sides reducing the space and time complexity, restricting k
also potentially prevents overfitting and leads to better gen-

eralization.

An improvement of bilinear pooling is compact bilin-

ear pooling [9] which reduces the feature dimension of bi-

linear pooling using two approximation methods: Random

Maclaurin (RM) [18] and Tensor Sketch (TS) [29]. How-

ever, the dimension of the projected compact bilinear fea-

ture is still too large (10K for the 512-dimensional input)

for deep networks. Table 1 compares the factorized bi-

linear with bilinear pooling and its variant compact bilin-

ear pooling. Similar to compact bilinear pooling, our FB

model requires much fewer parameters than bilinear pool-

ing. It also reduces the computation complexity signifi-

cantly (from 133M in TS to 10M) at the same time. In addi-

tion, not only used as the final prediction layer, our method

can also be applied in the early layers as a common transfor-

mation layer, which is much more general than the bilinear

pooling methods.

Relationship to Factorization Machines. Factorization

Machine (FM) [32] is a popular predictor in machine learn-

ing and data mining, especially for very sparse data. Similar

to our FB model, FM also captures the interactions of the in-

put features in a factorized parametrization way. However,

since FM is only a classifier, its applications are restricted

in the simple regression and classification. In fact, a 2-way

FM can be constructed by a tiny network composed of a

single FB layer with one output unit. In this way, a 2-way

FM is a special case of our FB model. While our FB model

is much more general, which can be integrated into regular

neural networks seamlessly for different kinds of tasks.
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Method Parameter Computation

Bilinear [26] cn2 [262M] O(cn2) [262M]

RM [9] 2nd+ cd [20M] O(cnd) [5G]

TS [9] 2n+ cd [10M] O(c(n+ dlogd)) [133M]

Factorized Bilinear ckn [10M] O(ckn) [10M]

Table 1. The comparison of number of parameters and computa-

tion complexity among the proposed factorized bilinear, bilinear

pooling and compact bilinear pooling. Parameters n, c, d, k cor-

respond to the dimension of input feature, the dimension of output

(number of classes), the projected dimension of compact bilinear

pooling and the number of factors in factorized bilinear. Numbers

in brackets indicate typical values of each method for a common

CNN on a 1000-class classification task, i.e., n = 512, c = 1, 000,

d = 10, 000, k = 20. Note that we omit the width and height of

the input feature map for simplicity.

5. Experiments

In this section, we conduct comprehensive experiments

to validate the effectiveness of the proposed FB model. In

Sec. 5.1, we first investigate the design choices and proper-

ties of the proposed FB model, including the architecture of

the network, parameters setting and speed. Then, we con-

duct several experiments on three well-known standard im-

age classification datasets and two fine-grained classifica-

tion datasets, in Sec. 5.2. In the following experiments, we

refer the CNN equipped with our FB model as Factorized

Bilinear Network (FBN).

Implementation Details. We adopt two standard network

structures: Inception-BN [16] and ResNet [13] as our base-

lines. Our FBN improves upon these two structures. Some

details are elaborated below. For one specified network and

its corresponding FBN, we use all the same experiment set-

tings (e.g. the training policy and data augmentation), ex-

cept two special treatments for FBNs. (i) To prevent the

quadratic term in FB layer explodes too large, we change

the activation before every FB layer from ‘ReLU’ [28] to

‘Tanh’, which restricts the output range of FB layers. We

do not use the power normalization and l2 normalization

in [26]. The reason is that: 1) square root is not numerically

stable around zero. 2) we do not calculate the bilinear fea-

tures explicitly. (ii) We use the slow start training scheme,

which shrinks the initialized learning rate of the FB layer by

a tenth and gradually increases the learning rate to the reg-

ular level in several epochs (e.g. 3 epochs). This treatment

learns a good initialization and is beneficial for converging

of FBNs, which is similar to the warmup step in [12].

5.1. Ablation Analyses

In this section we investigate the design of architecture

of FBNs and the appropriate parameters, such as the num-

ber of factors k and the DropFactor rate p 2. Most of the

2More exploration experiments can be found in supplemental material.

Figure 3. The structure of the simplified version of Inception-BN

and the SimpleFactory block.

following experiments are conducted on a simplified ver-

sion of Inception-BN network3 on CIFAR-100. Some de-

tails about the experiment settings, such as training policies

and data augmentations, will be explained in Sec. 5.2.

Architecture of FBNs. As discovered in [41], the lower

layers of CNNs usually respond to simple low-level fea-

tures. Thus, linear transformation is enough to abstract

the concept within images. Consequently, we modify the

higher layers of Inception-BN network to build our FBNs.

As shown in Fig. 3, the original Inception-BN is constructed

by several SimpleFactories, and each SimpleFactory con-

tains a 1 × 1 conv block and a 3 × 3 conv block. The five

FBNs with different structures are explained as follows:

1. In5a-FBN. We replace the 1x1 conv layer in In5a fac-

tory with our FB convolutional layer. The parameters

such as kernel size and stride size are kept the same.

2. In5b-FBN. This is same as In5a-FBN except we apply

FB model in In5b factory.

3. FC-FBN. The final fully-connected layer is replaced

by our FB fully connected layer.

4. Conv-FBN. As shown in Fig. 2(b), Conv-FBN is con-

structed by inserting a FB conv layer with 1× 1 kernel

before the global pooling layer and removing the fully-

connected layer.

5. Conv+In5b-FBN. This network combines Conv-FBN

and In5b-FBN.

The results of original Inception-BN and five FBNs are

shown in Table 2. The training and testing curves for these

networks are presented in Fig. 4. The number of factors k of

different FBNs is fixed as 20 and the appropriate values for

the DropFactor rate p are chosen for different FBNs (More

experiments about k and p are shown in Table 3 and Fig. 5).

From Table 2, we can see that most FBNs achieve better re-

sults than the baseline Inception-BN model, and Conv-FBN

achieves 21.98% error which outperforms Inception-BN by

a large margin of 2.72%. It demonstrates that incorporating

FB model indeed improves the performance of the network.

3https://goo.gl/QwVS3Z
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Network type p CIFAR-100

Inception-BN - 24.70

In5a-FBN 0.8 24.73

In5b-FBN 0.8 22.63

FC-FBN 0.5 24.07

Conv-FBN 0.5 21.98

In5b+Conv-FBN (0.8, 0.5) 23.70

Table 2. Test error (%) of original Inception-BN and five FBNs on

CIFAR-100. p is the DropFactor rate. The (0.8, 0.5) of p in the

last row indicates that p is set as 0.8 in In5b factory and 0.5 in the

Conv FB layer.

Figure 4. Training on CIFAR-100 with different architectures.

Dashed lines denote training error, and bold lines denote testing

error. Best viewed in color.

From Table 2 and Fig. 4, we have several interesting find-

ings: 1) Comparing the results of Conv-FBN, In5b-FBN

and In5a-FBN, we find that incorporating FB model in the

lower layers may lead to inferior results and suffer from

overfitting more. 2) The difference between FC-FBN and

Conv-FBN is whether to consider the interactions across

different locations of the input feature map. The results

show that the pairwise interactions should be captured at

each position of the input separately. 3) Incorporating two

FB blocks (In5b+Conv-FBN) does not further improve the

performance at least in CIFAR-100, but leads to more se-

vere overfitting instead.

Number of Factors in FB layer. As the number of pa-

rameters and computational complexity in the FB layer in-

crease linearly in the number of factors k, we also evaluate

the sensitivity of k in a FB layer. Table 3 shows the results

of In5b-FBN and Conv-FBN on CIFAR-100. As can be no-

ticed, after k grows beyond 20, the increase of performance

is marginal, and too large k may be even detrimental. Thus,

we choose 20 factors in all the subsequent experiments.

DropFactor in FBNs. We also vary the DropFactor rate

p to see how it affects the performance. Fig. 5(a) shows the

testing error on CIFAR-100 of In5b-FBN and Conv-FBN

with different p. Note that even the FBNs without Drop-

factors k In5b-FBN Conv-FBN

10 23.07 22.99

20 22.63 21.98

50 22.82 21.90

80 23.07 21.88

Table 3. Test error (%) on CIFAR-100 of In5b-FBN and Conv-

FBN with different number of factors. The DropFactor rate p is

0.8 and 0.5 for In5b-FBN and Conv-FBN according to the perfor-

mance.

Factor (p = 1.0) can achieve better results than the baseline

method. With the DropFactor, FBNs further improve the

result and achieve the best result 21.98% when p = 0.5
for Conv-FBN and 22.63% when p = 0.8 for In5b-FBN.

Fig. 5(b) and 5(c) show the training and testing curves with

different p. As illustrated, the testing curves are similar at

the first 200 epochs for different networks, yet the training

curves differ much. The smaller DropFactor rate p makes

the network less prone to overfitting. It demonstrates the

effectiveness of DropFactor. On the other hand, a too small

rate may deteriorate the convergence of the FBNs.

Speed Analysis of FB networks. We show the runtime

speed comparison of a small network (Inception-BN) and a

relatively large network (ResNet of 1001 layers) with and

without FB layers in Table 4. The test is performed on

the Titan X GPU. Since the FB layers implemented on our

own are not optimized by advanced implementation such as

cuDNN [5], we also show the results of all methods without

cuDNN for a fair comparison. For Inception-BN, the loss

of speed is still tolerable. In addition, since we only insert

a single FB block, it has little impact on the speed of large

networks, e.g. ResNet-1001. Lastly, cuDNN accelerates all

methods a lot. We believe that the training speed of our FB

layers will also benefit from a deliberate optimization.

Speed (samples/s)

w/o cuDNN cuDNN

Inception-BN (24.70%) 722.2 2231.1

Inception-BN-FBN (21.98%) 438.1 691.7

ResNet-1001 (20.50%) 20.3 79.1

ResNet-1001-FBN (19.67%) 20.1 74.9

Table 4. The training speeds of different methods on CIFAR-100.

We use the Conv-FBN structure in the comparison.

5.2. Evaluation on Multiple Datasets

In this section, we compare our FBN with other start-

of-art methods on multiple datasets, including CIFAR-10,

CIFAR-100, ImageNet and two fine-grained classification

datasets. For the following experiments, we do not try ex-

haustive parameter search and use the Conv-FBN network

with fixed factors k = 20 and DropFactor rate p = 0.5 as

the default setting of FBNs, since this setting achieves the
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(a) Test error of In5b-FBN and Conv-FBN (b) Training curves of In5b-FBN (c) Training curves of Conv-FBN

Figure 5. Training on CIFAR-100 of Conv-FBN networks with k = 20 and different p. (a) Test error (%) on CIFAR-100 of In5b-FBN

and Conv-FBN networks. (b)(c) Training curves of In5b-FBN and Conv-FBN networks. Dashed lines denote training error, and bold lines

denote testing error. Note that we do not show the results of smaller DropFactor rates, since the performance drops significantly when p is

too small. Best viewed in color.

best performance according to the ablation experiments in

Sec. 5.1. Our FB layers are implemented in MXNet [4] and

we follow some training policies in “fb.resnet”4. We will

make the implementation public if the paper is accepted.

5.2.1 Results on CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 [20] datasets contain

50,000 training images and 10,000 testing images of 10 and

100 classes, respectively. The resolution of each image is

32× 32. We follow the moderate data augmentation in [13]

for training: a random crop is taken from the image padded

by 4 pixels or its horizontal flip. We use SGD for optimiza-

tion with a weight decay of 0.0001 and momentum of 0.9.

All models are trained with a minibatch size of 128 on two

GPUs. For ResNet and its corresponding FBNs, we start

training of a learning rate of 0.1 for total 200 epochs and

divide it by 10 at 100 and 150 epochs. For Inception-BN

based models, the learning rate is 0.2 at start and divided by

10 at 200 and 300 epochs for total 400 epochs.

We train three different networks: Inception-BN,

ResNet-164 and ResNet-1001, and their corresponding FB

networks. Note that we use the pre-activation version of

ResNet in [13] instead of the original ResNet [12]. Table 5

summarizes the results of our FBNs and other state-of-the-

art algorithms. Our FBNs have consistent improvements

over all three corresponding baselines. Specifically, our

Inception-BN-FBN outperforms Inception-BN by 2.72% on

CIFAR-100 and 0.24% on CIFAR-10, and ResNet-1001-

FBN achieves the best result 19.67% on CIFAR-100 among

all the methods. A more intuitive comparison is in Fig. 6.

Most remarkably, our method improves the performance

with slightly additional cost of parameters. For exam-

ple, compared to ResNet-1001 with 10.7M parameters, our

ResNet-1001-FBN obtains better results with only 0.5M

(5%) additional parameters. This result is also better than

the best Wide ResNet, which uses 36.5M parameters. Al-

4https://github.com/facebook/fb.resnet.torch

though Bilinear Pooling methods [26, 9] were not utilized

in general image classification tasks, we also re-implement

them here using Inception-BN and ResNet-164 architec-

tures. Their performance is inferior to our results.

Figure 6. Comparison of different baselines and their correspond-

ing FBNs on CIFAR-100.

5.2.2 Results on ImageNet

Although lots of works show their improvements on small

datasets such as CIFAR-10 and CIFAR-100, few works

prove their effectiveness in large scale datasets. Thus, in

this section we evaluate our method on the ImageNet [34]

dataset, which is the golden test for image classification.

The dataset contains 1.28M training images, 50K valida-

tion images and 100K testing images. We report the Top-1

and Top-5 errors of validation set in the single-model sin-

gle center-crop setting. For the choice of FBN, we use the

Conv-FBN structure in Sec. 5.1 and the DropFactor rate is

set as 0.5. In the training, we also follow some well-known

strategies in “fb.resnet”4, such as data augmentations and

initialization method. The initial learning rate starts from

0.1 and is divided by 10 at 60, 75, 90 epochs for 120 epochs.

We adopt two modern network structures: Inception-

BN [16] and ResNet [13] in this experiment. Table 6 shows

their results compared with FB variants. Relative to the

original Inception-BN, our Inception-BN-FBN has a Top-

1 error of 26.4%, which is 1.1% lower. ResNet-34-FBN
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Method # params CIFAR-10 CIFAR-100

NIN [25] - 8.81 35.67

DSN [24] - 8.22 34.57

FitNet [33] - 8.39 35.04

Highway [37] - 7.72 32.39

ELU [8] - 6.55 24.28

Original ResNet-110 [12] 1.7M 6.43 25.16

Original ResNet-1202 [12] 10.2M 7.93 27.82

Stoc-depth-110 [15] 1.7M 5.23 24.58

Stoc-depth-1202 [15] 10.2M 4.91 -

ResNet-164 [13] 1.7M 5.46 24.33

ResNet-1001 [13] 10.2M 4.62 22.71

FractalNet [22] 22.9M 5.24 22.49

Wide ResNet (width×8) [40] 11.0M 4.81 22.07

Wide ResNet (width×10) [40] 36.5M 4.17 20.50

Inception-BN-Bilinear [26] 13.1M 5.82 25.72

Inception-BN-TS [9] 2.0M 5.75 24.63

ResNet-164-Bilinear [26] 8.3M 5.32 23.85

ResNet-164-TS [9] 2.0M 5.58 23.48

Inception-BN 1.7M 5.82 24.70

ResNet-164 (ours) 1.7M 5.30 23.64

ResNet-1001 (ours) 10.2M 4.04 20.50

Inception-BN-FBN 2.4M 5.58 21.98

ResNet-164-FBN 2.2M 5.00 22.50

ResNet-1001-FBN 10.7M 4.09 19.67

Table 5. Top-1 error (%) of different methods on CIFAR-10 and CIFAR-100 datasets using moderate data augmentation (flip/translation).

The number of parameters is calculated on CIFAR-100.

Method Top-1 (%) Top-5 (%)

Inception-BN [16] 27.5 9.2

Inception-BN-FBN 26.4 8.4

ResNet-34 [13] 27.7 9.1

ResNet-34-FBN 26.3 8.4

ResNet-50 [13] 24.7 7.4

ResNet-50-FBN 24.0 7.1

Table 6. Comparisons of different methods by single center-crop

error on the ImagNet validation set.

and ResNet-50-FBN achieve 26.8% and 24.7% Top-1 er-

ror, and improve 1.4% and 0.7% over the baselines, respec-

tively. The results demonstrate the effectiveness of our FB

models on the large scale dataset.

5.2.3 Results on Fine-grained Recognition Datasets

Original Bilinear pooling methods [26, 9] only show their

results on fine-grained recognition applications, thus we ap-

ply our FB models in two fine-grained datasets CUB-200-

2011 [39] and Describable Texture Dataset (DTD) [7] for

comparisons. We use the same base network VGG-16 in

this experiment. Table 7 compares our method with bilinear

pooling [26] and two compact bilinear pooling [9] methods

(RM and TS). The results show that our FBN and the bi-

linear pooling methods all improves significantly over the

VGG-16. We also re-implement bilinear pooling under the

same training setting as our FBN. It should be more fair to

compare its results (in the brackets) with our FBN. Note that

our FBN also has much lower cost of memory and compu-

Dataset FC Bilinear [26] RM [9] TS [9] FBN

CUB 33.88 16.00 (17.79) 16.14 16.00 17.09

DTD 39.89 32.50 (32.26) 34.43 32.29 32.20

Table 7. Comparisons of different methods by classification error

on CUB and DTD datasets. The number in the brackets are our

re-implemented results.

tation than bilinear pooling methods as described in Sec. 4.

6. Conclusion and Future Work

In this paper, we have presented the Factorized Bilinear

(FB) model to incorporate pairwise interactions of features

in neural networks. The method has low cost in both mem-

ory and computation, and can be easily trained in an end-

to-end manner. To prevent overfitting, we have further pro-

posed a specific regularization method DropFactor by ran-

domly dropping factors in FB layers. Our method achieves

remarkable performance in several standard benchmarks,

including CIFAR-10, CIFAR-100 and ImageNet.

In the future work, we will go beyond the interactions

inside features, and explore the generalization to model the

correlations between samples in some more complicated

tasks, such as face verification and re-identification.
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