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Abstract

In this paper, we address a rain removal problem from

a single image, even in the presence of heavy rain and rain

streak accumulation. Our core ideas lie in our new rain im-

age model and new deep learning architecture. We add a

binary map that provides rain streak locations to an exist-

ing model, which comprises a rain streak layer and a back-

ground layer. We create a model consisting of a componen-

t representing rain streak accumulation (where individual

streaks cannot be seen, and thus visually similar to mist or

fog), and another component representing various shapes

and directions of overlapping rain streaks, which usually

happen in heavy rain. Based on the model, we develop a

multi-task deep learning architecture that learns the bina-

ry rain streak map, the appearance of rain streaks, and the

clean background, which is our ultimate output. The ad-

ditional binary map is critically beneficial, since its loss

function can provide additional strong information to the

network. To handle rain streak accumulation (again, a phe-

nomenon visually similar to mist or fog) and various shapes

and directions of overlapping rain streaks, we propose a re-

current rain detection and removal network that removes

rain streaks and clears up the rain accumulation iterative-

ly and progressively. In each recurrence of our method, a

new contextualized dilated network is developed to exploit

regional contextual information and to produce better rep-

resentations for rain detection. The evaluation on real im-

ages, particularly on heavy rain, shows the effectiveness of

our models and architecture.

1. Introduction

Restoring rain images is important for many computer

vision applications in outdoor scenes. Rain degrades vis-

ibility significantly and causes many computer vision sys-

∗Corresponding author. This work was supported by National Natural

Science Foundation of China under contract No. 61472011 and Nation-

al Key Technology R&D Program of China under Grant 2015AA011605,

with additional support by the State Scholarship Fund from the China

Scholarship Council.

Figure 1. An example result of our proposed rain removal method

that removes heavy rain streaks and enhances the visibility signif-

icantly. Top: The raw image with rain streaks (left) and the output

image of our method (right). Bottom: closer looks at specific re-

gions (blue and red) for more details.

tems to likely fail. Generally, rain introduces a few types

of visibility degradation. Raindrops obstruct, deform and/or

blur the background scenes. Distant rain streaks accumulate

and generate atmospheric veiling effects similar to mist or

fog, which severely reduce the visibility by scattering light

out and into the line of sight. Nearby rain streaks exhibit

strong specular highlights that occlude background scenes.

These rain streaks can have various shapes and directions,

particularly in heavy rain, causing severe visibility degrada-

tion.

In the past decades, many researchers have devoted

their attention to solving the problem of restoring rain im-

ages. Some focus on rain image recovery from video se-

quences [3, 4, 5, 9, 13, 14, 15, 16, 44]. Others focus

on rain removal from the single image, by regarding the

rain streak removal problem as a signal separation problem

[23, 18, 33, 9, 28], or by relying on nonlocal mean smooth-

ing [24]. While there are varying degrees of success, ma-

jority of existing methods suffer from several limitations:

• Due to the intrinsic overlapping between rain streaks

and background texture patterns, most methods tend

to remove texture details in non-rain regions, leading

to over-smoothing the regions.

• The degradation of rain is complex, and the existing

rain model widely used in previous methods [23, 9]
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is insufficient to cover some important factors in real

rain images, such as the atmospheric veils due to rain

streak accumulation, and different shapes or directions

of streaks.

• The basic operation of many existing algorithms is on a

local image patch or a limited receptive field (a limited

spatial range). Thus, spatial contextual information in

larger regions, which has been proven to be useful for

rain removal [19], is rarely used.

Considering these limitations, our goal is to develop a novel

rain model that is more capable of describing various rain

conditions in real scenes, including rain streak accumula-

tion and heavy rain, and then, use them to design an effec-

tive deep learning architecture. Here, we focus on a single

input image.

To achieve the goal, we explore the possible rain models

and deep learning architectures that can effectively restore

rain images even in the presence of heavy rain. Our ideas

are as follows. First, we introduce novel region-dependent

rain models. In the models, we use a rain-streak binary

map, where ’1’ indicates the presence of individually vis-

ible rain streaks in the pixels, and ’0’ otherwise. We also

model the appearance of rain streak accumulation, and the

various shapes and directions of overlapping streaks, to sim-

ulate heavy rain.

Second, based on the introduced model, we construct a

deep network that jointly detects and removes rain. Rain

streak regions are detected automatically and are used to

constrain the rain removal. With this, our network is capa-

ble of performing an adaptive operation on rain and non-

rain regions, preserving richer details.

Third, to retrieve more contextual information, we pro-

pose a contextualized dilated network to enlarge the recep-

tive field. In this network, the features are extracted and

refined progressively by aggregating information from sev-

eral parallel convolutions with different dilated factors.

Finally, to restore images captured in the environment

with both rain accumulation and various rain streak direc-

tions, we propose a recurrent rain detection and removal

network that progressively removes rain streaks. Extensive

experiments and evaluations demonstrate that our method

outperforms state-of-the-art methods on both synthesized

data and real data. Particularly for some heavy rain images,

our method achieves considerably good results.

Hence, our contributions are:

1. The first method to model the rain-streak binary mask,

and also to model the atmospheric veils due to rain

streak accumulation as well as various shapes and di-

rections of overlapping rain streaks. This enables us to

synthesize more similar data to real rain images for the

network training.

2. The first method to jointly detect and remove rains

from single images. With the additional information of

detected rain regions, our rain removal achieves better

performance.

3. The first rain removal method that uses a contextual-

ized dilated network to obtain more context while pre-

serving rich local details.

4. The first method that addresses heavy rain by intro-

ducing a recurrent rain detection and removal network,

where it removes rain progressively, enabling us to ob-

tain good results even in significantly complex cases.

Our training and testing data, as well as our codes, will

be publicly available 1.

2. Related Work

Compared with the video based deraining problem, the

single image based problem is more ill-posed, due to the

lack of temporal information. Some single-image based

rain removal methods regard the problem as a layer sepa-

ration problem. Huang et al. [23] attempt to separate the

rain streaks from the high frequency layer by sparse coding,

with a learned dictionary from the HOG features. However,

the capacity of the morphological component analysis, the

layer separation, and learned dictionary are limited. Thus, it

usually causes over-smoothness of the background. In [9],

a generalized low rank model is proposed, where the rain

streak layer is assumed to be low rank. Kim et al. [25] first

detect rain streaks and then remove them with the nonlo-

cal mean filter. Luo et al. [28] propose a discriminative

sparse coding method to separate rain streaks from back-

ground images. A recent work [26] exploits the Gaussian

mixture models to separate the rain streaks, achieving the

state-of-the-art performance, however, still with slightly s-

mooth background.

In recent years, deep learning-based image processing

applications emerged with promising performance. These

applications include denoising [35, 6, 7, 21, 1], comple-

tion [38], super-resolution [11, 12, 10, 31], deblurring [32],

deconvolution [39] and style transfer [17, 40], etc. There are

also some recent works on bad weather restoration or image

enhancement, such as dehazing [8, 37], raindrop and dirt re-

moval [13] and light enhancement [27]. Besides, with the

superior modeling capacity than shallow models, DL-based

methods begin to solve harder problems, such as blind im-

age denoising [43]. In this paper, we use deep learning to

jointly detect and remove rain.

3. Region-Dependent Rain Image Model

We briefly discuss the commonly used rain model, and

then generalize it to explicitly include a rain-streak binary

1http://www.icst.pku.edu.cn/struct/Projects/joint rain removal.html
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map. Subsequently, we introduce a novel rain model that

captures rain streak accumulation (atmospheric veils) and

rain streaks that have various shapes and directions, which

are absent in the existing rain models.

3.1. Rain Image Formation

The widely used rain model [26, 28, 19] is expressed as:

O = B+ S̃, (1)

where B is the background layer, and S̃ is the rain streak

layer. O is the input image with rain streaks. Based on this

model, rain removal is regarded as a two-signal separation

problem, namely: Given the observation O, how to separate

the background B from the rain streak S̃ by relying on their

unique characteristics. Existing rain removal methods using

Eq. (1) suffer from the following two deficiencies. First, S̃

in an image can have heterogeneous density, meaning some

regions can have more rain streaks than other regions. For

this case, it is hard to model S̃ with a uniform sparsity as-

sumption, which is needed for most of existing sparsity-

based methods. Second, solving the signal separation prob-

lem in Eq. (1) without distinguishing the rain and non-rain

regions will cause over-smoothness on the non-rain regions.

The main cause for these two problems lies in the intrinsic

complexity of modelling S̃. In Eq. (1), S̃ needs to constitute

both streak locations and intensity contributions to the pixel

values, which are not explored in existing methods.

To overcome these drawbacks, we first propose a gener-

alized rain model as follows:

O = B+ SR, (2)

which includes a new region-dependent variable R to indi-

cate the locations of individually visible rain streaks. Here,

elements in R are binary values, where ’1’ indicates rain re-

gions and ’0’ indicates non-rain regions. Note that, while R

can be easily estimated from S via naive thresholding, mod-

elling R separately from S provides two desirable benefits

for learning based rain removal methods: (1) it gives addi-

tional information for the network to learn about rain streak

regions, (2) it allows a new rain removal pipeline to detect

rain regions first, and then to operate differently on rain-

streak and non-rain-streak regions, preserving background

details.

3.2. Rain Accumulation and Heavy Rain

The rain image model introduced in Eq. (2) captures

region-dependent rain streaks. In the real world, rain ap-

pearance is not only formed by individual rain streaks, but

also by accumulation of rain streaks. When rain accumu-

lation is dense, the individual streaks cannot be observed

clearly. This rain streak accumulation, whose visual ef-

fect is similar to mist or fog, causes the atmospheric veil-

ing effect as well as blur, especially for distance scenes, as

(a) Heavy rain. (b) Rain acccumulation.

Figure 2. (a) In heavy rain cases, the rain streaks have various

shapes and directions (shown in blue). (b) Rain accumulation re-

duces the visibility for distant scenes (shown in red).

shown in Fig. 2.a. Aside from rain accumulation, in many

occasions, particularly in heavy rain, rain streaks can have

various shapes and directions that overlap to each other, as

shown in Fig. 2.a and 2.b.

To accommodate these two phenomena (i.e., rain streak

accumulation and overlapping rain streaks with different di-

rections), we create a new model. The model comprises

of multiple layers of rain streaks, representing the diversi-

ty of rain streaks. It also includes the appearance of rain

accumulation, by relying on the Koschmieder model that is

approximately applicable to many turbid media, including

mist, fog (e.g. [30]) and underwater (e.g. [34, 2]). Our new

rain model is expressed as:

O = α

(
B+

s∑

t=1

S̃tR

)
+ (1− α)A, (3)

where each S̃t is a layer of rain streaks that have the same

direction. t is the index of the rain-streak layers, and s

is the maximum number of rain-streak layers. A is the

global atmospheric light, α is the atmospheric transmis-

sion. Based on Eq. (3), we can generate synthetic images

that are better representative of natural images than those

generated by Eq. (1). Thus, we can use these images to

train our network. Fig. 3 shows some generated images.

Note that, the rain accumulation appearance is enforced on

the rain-contaminated image
(
B+

∑s

t=1
S̃tR

)
, hence E-

q. (3) implies that, we can handle rain accumulation and

rain streak removal separately, which provides convenience

for our training.

In the following section, we first develop a deep con-

volutional network to detect and remove rain streaks from

the rain images. Then, we consider rain accumulation and

heavy rain situations, where we generalize our CNN to a

recurrent model.

4. Joint Rain Streak Detection and Removal

We construct a multi-task network to perform JOint

Rain DEtection and Removal (JORDER) that solves the in-

verse problem in Eq. (2) through end-to-end learning. Rain

regions are first detected by JORDER to further constrain

the rain removal. To leverage more context without losing
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Figure 4. The architecture of our proposed recurrent rain detection and removal. Each recurrence is a multi-task network to perform a joint

rain detection and removal (in the blue dash box). In such a network, a contextualized dilated network (in the gray region) extracts rain

features Ft from the input rain image Ot. Then, Rt, St and Bt are predicted to perform joint rain detection, estimation and removal.

(a) (b) (c)

Figure 3. Synthesized rain images (b) and (c) from (a) following

the process of Eq. (2) and Eq. (3), respectively.

local details, we propose a novel network structure – the

contextualized dilated network – for extracting the rain dis-

criminative features and facilitating the following rain de-

tection and removal.

4.1. Multi­Task Networks for Joint Rain Detection
and Removal

Relying on Eq. (2), given the observed rain image O,

our goal is to estimate B, S and R. Due to the ill-posedness

nature of the problem, we employ a maximum-a-posteriori

(MAP) estimation:

arg min
B,S,R

||O−B−SR||22+Pb(B)+Ps(S)+Pr(R), (4)

where Pb(B), Ps(S) and Pr(R) are the enforced priors on

B,S and R, respectively. Previous priors on B and S in-

clude hand-crafted features, e.g. cartoon texture decompo-

sition [23], and some data-driven models, such as sparse

dictionary [28] and Gaussian mixture models [26]. For deep

learning methods, the priors of B, S and R are learned from

the training data and are embedded into the network implic-

itly.

The estimation of B,S and R is intrinsically correlated.

Thus, the estimation of B benefits from the predicted Ŝ and

R̂. To convey this, the natural choice is to employ a multi-

task architecture, which can be trained using multiple loss

functions based on the ground truths of R, S and B (see the

blue dash box in Fig. 4).

As shown in the figure, we first exploit a contextualized

dilated network to extract the rain feature representation F.

Subsequently, R, S and B are predicted in a sequential or-

der, implying a continuous process of rain streak detection,

estimation and removal. Each of them is predicted based on

F:

1. R is estimated from the convolutional process of F,

2. S is predicted from the convolutional process of the

concatenation of
[
F, R̂

]
,

3. B is computed from the convolutional process of the

concatenation of
[
F, R̂, Ŝ,O− R̂Ŝ

]
.

There are several potential choices for the network struc-

tures, such as estimating the three variables in the order of

S, R, B, or in parallel (instead of sequential). We compare

some alternative architectures and demonstrate empirically

the superiority of ours in the supplementary material.

4.2. Contextualized Dilated Networks

For rain removal task, contextual information from an

input image is demonstrated to be useful for automatical-

ly identifying and removing the rain streaks [19]. Thus,

we propose a contextualized dilated network to aggregate
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context information at multiple scales for learning the rain

features. The network gains contextual information in t-

wo ways: 1) through a recurrent structure, which is similar

to the recurrent ResNet [41], and provides an increasingly

larger receptive field for the subsequent layers; 2) in each re-

currence, the output features aggregate the representations

of the three convolution paths with different dilated factors

and receptive fields.

Specifically, as shown in the gray region of Fig. 4, the

network first transforms the input rain image into feature s-

pace via the first convolution. Then, the network refines the

features progressively. In each recurrence, the results from

the three convolution paths with different dilated factors are

aggregated with the input features from the last recurrence

via the identity forwarding. The dilated convolution [42]

weights pixels with a step size of the dilated factor, and

thus increases its receptive field without losing resolution.

Our three dilated paths consist of two convolutions with the

same kernel size 3 × 3. However, with different dilated

factors, different paths have their own receptive field. As

shown in the top part of the gray region in Fig. 4, path P2

consists of two convolutions with the dilated factor 2. The

convolution kernel is shown as the case of DF= 2. Thus,

cascading two convolutions, the three paths have their re-

ceptive fields of 5× 5, 9× 9 and 13× 13.

4.3. Network Training

Let Frr(·),Frs(·) and Fbg(·) denote the inverse recovery

functions modelled by the learned network to generate the

estimated rain streak binary map R̂, rain streak map Ŝ and

background image B̂ based on the input rain image O. We

use Θ to collectively represent all the parameters of the net-

work.

We use n sets of corresponding rain images, back-

ground images, rain region maps and rain streak maps

{(oi,gi, ri, si)}
n

i=1
for training. We adopt the following

joint loss function to train the network parametrized by Θ

such that it is capable to jointly estimate ri, si and gi based

on rain image oi:

L(Θ) =
1

n

n∑

i=1

(
||Frs (oi;Θ)− si||

2 + λ1||Fbg (oi;Θ)− gi||
2

−λ2 (log r̂i,1ri,1 + log(1− r̂i,2)(1− ri,2))) ,
(5)

where

r̂i,j =
exp {Frs,j (oi;Θ)}

∑2

k=1
exp {Frs,k (oi;Θ)}

, j ∈ {1, 2} .

Parameters λ1 and λ2 are the weighting factors. The net-

work is trained to minimize the above loss, using the back-

propagation.

5. Rain Removal in Real Image

In the previous section, we construct a multi-task net-

work to jointly detect and remove rain streaks. In this sec-

tion, we further enhance our network to handle both multi-

ple rain-streak layers (where each layer has its own streak

direction) and rain accumulation.

5.1. Recurrent Rain Detection and Removal

Our recurrent JORDAR network can be understood as

a cascade of the convolutional joint rain detection and re-

moval networks to perform progressive rain detection and

removal and recover the background layer with increasing-

ly better visibility.

Architecture. We define the process of the network in the

blue dash box of Fig. 4, which generates the residual im-

age T (·) by computing the differences between O and B.

Then, our recurrent rain detection and removal works as fol-

lows,

[ǫt,Rt,St] = T (Ot) ,

Bt = Ot − ǫt, (6)

Ot+1 = Bt.

In each iteration t, the predicted residue ǫt is accumulated

and propagated to the final estimation via updating Ot and

Bt. Note that, while the estimated rain mask Rt and streak

layer St are not casted into the next recurrence directly, the

losses to regularize them in fact provide strong side infor-

mation to learn T (·). The final estimation can be expressed

as:

Bτ = O0 +
τ∑

t=1

ǫt, (7)

where τ is the total iteration number. The method removes

rain streaks progressively, part by part, based on the inter-

mediate results from the previous step. The complexity of

rain removal in each iteration is consequently reduced, en-

abling better estimation, especially in the case of heavy rain.

Network Training. Our recurrent JORDAR network in-

troduces an extra time variable t to the loss function L(Θ)
in Eq. (5) and gives L(Θt, t), where L(Θ0, 0) = L(Θ0).
When t > 1, L(Θt, t) is equivalent to L(Θ) that replaces

oi and Θ by oi,t and Θt, respectively, where oi,t is gen-

erated from the t-th iterations of the process Eq. (6) on the

initial oi. Then, the total loss function LIter for training T is

LIter({Θ0, ...,Θτ}) =

τ∑

t=0

L(Θt, t). (8)
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5.2. Rain­Accumulation Removal

Distant rain streaks accumulate and form rain atmo-

spheric veil, which is visually similar to fog. It causes vis-

ibility degradation, and thus needs to be removed. We call

this process rain-accumulation removal. Since the degrada-

tion effect and the model (Eq. (3)) are similar to that of fog,

our rain-accumulation removal is essentially similar to de-

fogging (e.g., [8])). Like in defogging, the output of our rain

removal clears up the veil effect and boosts the contrast.

Eq. (3) suggests that the rain-accumulation removal

should be the first step in the whole process of deraining.

However, placing it as a preprocessing degrades the qual-

ity of rain streaks. Since, all rain streaks, including those

that are already sharp and clearly visible, are further boost-

ed, causing the streaks to look different from those in the

training images. Hence, in our proposed pipeline, we apply

the streak removal first, followed by the rain-accumulation

removal, and then the streak removal again. This, as it turns

out, is beneficial, since the rain-accumulation removal will

make the appearance of less obvious rain streaks (which are

likely unnoticed by the first round of the streak removal)

become more obvious.

For our rain-accumulation removal, we create another

network based on the structure of contextualized dilated

network, with only one recurrence, trained with the syn-

thesized data generated with the random background re-

liance and transmission value (similar to a defogging tech-

nique [8]). Overall, we find that our sequential process

(streak removal, rain-accumulation removal, and streak re-

moval) is generally effective (see the experimental results

and supplementary material for the evaluation).

6. Experimental Results

Datasets. We compare our method with state-of-the-art

methods on a few benchmark datasets: (1) Rain12 2 [26],

which includes 12 synthesized rain images with only one

type of rain streaks; Rain100L, which is the synthesized

data set with only one type of rain streaks (Fig. 5.c); (2)

Rain20L, which is a subset of Rain100L used for testing the

competing network architectures in the supplementary ma-

terial; (3) Rain100H, which is our synthesized data set with

five streak directions (Fig. 5.d). Note, while it is rare for

a real rain image to contain rain streaks in many different

directions, synthesizing this kind of images for training can

boost the capacity of the network.

The images for synthesizing Rain100L, Rain20L and

Rain100H are selected from BSD200 [29]. The dataset for

training our network and another deep learning baseline –

SRCNN for deraining – is BSD300, excluding the ones ap-

peared in Rain12. The rain streaks are synthesized in two

ways: (1) the photorealistic rendering techniques proposed

2http://yu-li.github.io/

(a) Synthesized streak [15] (b) Synthesized sharp line streak

(c) An example from Rain100L (d) An example from Rain100H

Figure 5. Examples of synthesized rain streaks and rain images.

by [15] as shown in Fig. 5.a; (2) the simulated sharp line

streaks along a certain direction with a small variation with-

in an image as shown in Fig. 5.b. We release our training

and testing sets, as well as their synthesis codes to public.

Baseline Methods. We compare the four versions of our

approaches, JORDER- (one version of our methods that has

only one convolution path in each recurrence without using

dilated convolutions), JORDER (Section 4), JORDER-R

(Section 5.1), JORDER-R-DEVEIL (Section 5.2) with five

state-of-the-art methods: image decomposition (ID) [23],

CNN-based rain drop removal (CNN) [13], discriminative

sparse coding (DSC) [28], layer priors (LP) [26] and a com-

mon CNN baseline for image processing – SRCNN [22],

trained for deraining. SRCNN is implemented and trained

by ourselves, while other methods are kindly provided by

the authors.

For the experiments on synthesized data, two metric-

s Peak Signal-to-Noise Ratio (PSNR) [20] and Structure

Similarity Index (SSIM) [36] are used as comparison crite-

ria. We evaluate the results only in the luminance channel,

which has a significant impact on the human visual system

to perceive the image quality. Our results and codes are on-

line available.

Quantitative Evaluation. Table 1 shows the results of d-

ifferent methods on Rain12. As observed, our method con-

siderably outperforms other methods in terms of both P-

SNR and SSIM. Table 2 presents the results of JORDER

and JORDER-R on Rain100H. Note that, our JODDER-R

is designed to handle such hard cases, thus achieves con-

siderably better results than the other methods. The PSNR

of JORDER-R gains over JORDER more than 1dB. Such

a large gain demonstrates that the recurrent rain detection

and removal significantly boosts the performance on syn-

thesized heavy rain images.
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Figure 6. Results of different methods on real images. From top to down: rain image, DSC [28], LP [26] and JORDER-R. Their corre-

sponding full images are presented in the supplementary material.

Qualitative Evaluation. Fig. 6 shows the results of real

images. For fair comparisons, we use JORDER-R to pro-

cess these rain images and do not handle rain accumulation

on these results, to be consistent with other methods. As

observed, our method significantly outperforms them and is

successful in removing the majority of rain streaks.

We also compare all the methods in two extreme cases:

dense rain accumulation, and heavy rain as shown in Fig. 7.

Our method achieves promising results in removing the ma-

jority of rain streaks, enhancing the visibility and preserving

details.

Table 3 compares the running time of several state-of-

the-art methods. All baseline methods are implemented in

MATLAB. Our methods are implemented on the Caffe’s

Matlab wrapper. CNN rain drop and some versions of our

methods are implemented on GPU, while others are based

on CPU. Our GPU versions is computationally efficien-

t. The CPU version of JORDER, a lightest version of our

method, takes up the shortest running time among all CPU-

based approaches. In general, our methods in GPU are ca-

pable of dealing with a 500× 500 rain image less than 10s,

which is considerably faster than the existing methods.
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Figure 7. Examples of JORDER-R-DEVEIL on heavy rain (left two images) and mist images (right two images).

Table 1. PSNR and SSIM results among different rain streak re-

moval methods on Rain12 and Rain100L.

Baseline Rain12 Rain100L

Metric PSNR SSIM PSNR SSIM

ID [23] 27.21 0.75 23.13 0.70

DSC [28] 30.02 0.87 24.16 0.87

LP [26] 32.02 0.91 29.11 0.88

CNN [13] 26.65 0.78 23.70 0.81

SRCNN [22] 34.41 0.94 32.63 0.94

JORDER- 35.86 0.95 35.41 0.96

JORDER 36.02 0.96 36.11 0.97

Table 2. PSNR and SSIM results among different rain streak re-

moval methods on Rain100H.

Metric ID [23] LP [26] DSC [28]

PSNR 14.02 14.26 15.66

SSIM 0.5239 0.4225 0.5444

Metric JORDER- JORDER JORDER-R

PSNR 20.79 22.15 23.45

SSIM 0.5978 0.6736 0.7490

Table 3. The time complexity (in seconds) of JORDER compared

with state-of-the-art methods. JR and JRD denote JORDER-R and

JORDER-R-DEVEIL, respectively. (G) and (C) denote the imple-

mentation on GPU and CPU, respectively.

Scale CNN [13] (G) ID [23] DSC [28] LP [26]

80×80 0.85 449.94 14.32 35.97

500×500 6.39 1529.85 611.91 2708.20

Scale JORDER (C) JORDER (G) JR (G) JRD (G)

80×80 2.97 0.11 0.32 0.72

500×500 69.79 1.46 3.08 7.16

Evaluation on Streak and Rain-Accumulation Removal.

Fig. 8 shows the significant superiority of our method (f),

namely, [streak removal, rain-accumulation removal, streak

(a) Rain image (b) Derain (c) Derain-Derain

(d) Derain-deveil (e) Deveil-derain (f) Derain-deveil-

derain

Figure 8. The results of JORDER-R-DEVEIL in different orders.

removal], than other potential combinations ((b)-(e)).

7. Conclusion

In this paper, we have introduced a new deep learning

based method to remove rain from a single image, even in

the presence of rain streak accumulation and heavy rain. A

new region-dependent rain image model is proposed for ad-

ditional rain detection and is further extended to simulate

rain accumulation and heavy rains. Based on this model, we

developed a fully convolutional network that jointly detect

and remove rain. Rain regions are first detected by the net-

work which naturally provides additional information for

rain removal. To restore images captured in the environ-

ment with both rain accumulation and heavy rain, we intro-

duced an recurrent rain detection and removal network that

progressively removes rain streaks, embedded with the rain-

accumulation removal network. Evaluations on real images

demonstrated that our method outperforms state-of-the-art

methods.
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