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Abstract Image super-resolution aims to increase the resolution of images with good visual
experience. Over the past decades, there have been many image super-resolution algorithms
proposed for various multimedia processing applications. However, how to evaluate the
visual quality of high-resolution images generated by image super-resolution methods is still
challenging. In this paper, a Convolutional Neural Network is designed to predict the visual
quality of image super-resolution. The proposed network consists of two convolutional lay-
ers, two pooling layers including average, min and max pooling, three fully connected layers
and one regression layer. The contribution of the proposed method is twofold. The first one
is that we propose a the deep convolutional neural network to extract the high-level intrinsic
features more effectively than the hand-crafted features for super-resolution images, which
can be used to estimate the image quality accurately. The other is that we divide the super-
resolution image into small patches, to consider the local information for the visual quality
assessment of super-resolution image as well as increase the number of training data for the
deep neural network. Experimental results show that the proposed metric can obtain better
performance than other existing ones in visual quality assessment of image super-resolution.
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1 Introduction

Image super-resolution (SR) algorithms aim to provide effective solutions to the limita-
tion from some specific imaging sensors such as mobile devices and surveillance cameras.
By using image SR, low-resolution (LR) images can be displayed well on high-resolution
(HR) displays with good visual experiences for observers. During the past decades, there
have been many image SR algorithms proposed for various multimedia processing applica-
tions, including medical image processing, face/isis recognition, image editing, etc. [50, 78],
retrieval [16, 39], sparse representation [89]. However, how to evaluate the visual quality of
SR images effectively is still challenging at present.

The most common and reliable method for visual quality evaluation of SR images is the
subjective test, in which participants are invited to provide their ratings for the visual quality
of SR images. One problem with the subjective test is that it is time-consuming and expen-
sive. The other problem is that the subjective test requires subjects to be involved and thus
it cannot be used in practice. Currently, much less have been done to evaluate the visual
quality of SR images objectively. Traditional visual quality assessment methods are mainly
designed for distorted images degraded by certain specific distortion types such as Gaus-
sian noise, compression, blurring, and so on. In general, they can be classified into three
categories [38]: full-reference (FR) metrics which require complete reference information
[64], reduced-reference (RR) metrics which require part of reference information, and no-
reference (NR) metrics which do not need any reference information [9, 83]. For image
super-resolution, the complete reference information is always unavailable in real applica-
tions. Also, the sizes of LR and HR images are different greatly. As a result, most existing
RR metrics might not be used for IQA of image super-resolution. Thus, it is highly desired
to design effective NR image quality assessment (IQA) metrics to evaluate the visual quality
of HR images generated from LR images.

In the past years, there have been many NR-IQA metrics proposed for IQA by using dif-
ferent prior knowledge which are represented as various statistical properties of images [17,
19, 38, 56]. Some NR-IQA metrics are built based on the prior knowledge of specific dis-
tortion existing in images, such as blurring [36], compression distortion [23], etc. Another
commonly used prior knowledge in NR-IQA is the natural scene statistics (NSS) of undis-
torted images [9, 14, 48, 52]. The third type of prior knowledge used in NR-IQA is the
mechanism of the human visual system (HVS), which is derived by visual physiological
and psychophysical experiments [30].

Deep neural network has gained researcher’s attention and achieved great successes on
various computer vision task recently [15, 20, 22, 40, 88]. Unsurprisingly, the convolutional
neural network, one of the most representative deep neural network, can also be applied for
the super-resolution image quality assessment. In the proposed CNN model, a mixture of
max pooling, average pooling and min pooling is employed by the pooling layer. Moreover,
batch normalization is applied for the convolutional layers and fully connected layers to
prevent the gradient diffusion, and we use the method of Xavier to initialize the weights.
Then the network can learn super-resolution image quality features more effectively and
estimate the image quality more accurately. One contribution of our work is that we propose
a deep convolutional neural network which can extract the high-level intrinsic features more
effectively than the hand-crafted features for super-resolution images and can estimate the
image quality more accurately. Another contribution of our work is that we divide the super-
resolution image into 160*160 patches for the proposed method, which not only increases
the number of training data but also considers the local information for the super-resolution
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image quality. The proposed method can obtain promising performance of quality prediction
of SR images, as shown by the experimental results.

2 Related work

2.1 Image super-resolution

Image super-resolution (SR) aims to recover a high resolution (HR) image from one or
more low resolution (LR) images. The quality degradations inherent to image acquisition,
saving, and storage causes LR images to lose high frequency detail, which leads to image SR
recovery being an ill-posed problem. To solve this problem, a priori knowledge is imposed.
Thus, one important issue of image SR is to constrain SR recovery with proper priors.

Since 1984 [61], studies on image super-resolution have been investigated sequentially.
Single image SR can be classified into three categories: interpolation-based, reconstruction-
based and example learning-based. Interpolation-based methods [32, 34, 80, 85] utilize the
correlation between pixels to construct a prediction function to estimate the missing pixels.
Reconstruction-based methods adopt a maximum a posteriori probability (MAP) frame-
work in which various regularization terms are imposed as prior knowledge to describe
some desirable properties of natural images to constrain the solution of the ill-posed SR
recovery problem. Typical regularization terms include gradient [55, 93], nonlocal [6, 27,
44] and total variation (TV) [1, 45]. For both interpolation-based and reconstruction-based
methods, prior knowledge is typically achieved in a rather fixed or heuristic way. Thus, it is
insufficient to represent the diversified patterns of natural images.

Example-based methods learn the mappings between LR and HR image patches from
large training sets. Given an LR patch, its corresponding HR patch is estimated based on
these learned mappings. In these methods, prior knowledge is dynamically learned rather
than provided heuristically. Thus, the modeling capacity of example-based methods depends
largely on the training data source. There are usually two kinds of training data sources:
the LR data and external images, further dividing the example-based methods into two
subclasses: internal and external SR methods.

Internal SR methods [6, 11, 12, 75, 77, 87, 91], learn priors from a training set cropped
from the LR image itself. Based on the self-similarity property (that some salient features
repeat across different scales within an image), the coupled LR/HR patches extracted from a
hierarchical pyramid of LR images provide an effective prior for building the inverse recov-
ery mapping. In [91], a fast single image super-resolution method is proposed by combining
self-example learning and sparse representation. In [6], nonlocal similarity, one important
kind of self-similarity, is incorporated into the sparse representation model to constrain and
improve the estimation of sparse coefficients. To add more diversified and abundant pat-
terns to the internal dictionary, Huang et al. [21] proposed to expand the internal patch
search space by localizing planes with detected perspective geometry variations in the LR
image. In these methods, the patch priors are selected and learned from the LR images;
thus they are good at reconstructing the repeated patterns in the LR image. However, the
internal patch priors fail to cover the diversified patterns of natural images and are poor at
reconstructing the distinct patterns. Moreover, the degraded LR image loses high-frequency
details, limiting the modeling capacity of internal priors.

In contrast to the internal methods, external methods present complementary and desir-
able properties. These methods utilize the general redundancy among natural images and
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learn the LR-HR mappings from large training datasets containing representative coupled
external patches from an external dataset. Some external SR methods apply the learned
priors to SR estimation directly, without any online auxiliary adaptation, thus they are cat-
egorized into fixed external methods, including neighbor embedding [4, 35, 57, 58, 79],
kernel ridge regression [28], factor graph [71], kernel PCA [3], locality-constrained repre-
sentation [25], coupled dictionary [18, 65, 74, 76] and the recently proposed deep learning
[7, 66, 81, 82]. Compared with the internal methods, when the training set containing a vari-
ety of reference images, the priors extracted are more representative and general. However,
the fixed prior may not succeed in modeling some image patterns because of the limited
numbers of model parameters and training images.

Another branch of methods - adaptive external methods adjust the learned prior based
on the information in LR images, to make the external prior more adaptive. In [90], the
patch prior is modeled as a flexible deformation flow rather than a fixed vector. These
deformable patches are more similar to the given LR patch in the LR feature space. Thus,
HR patches estimated based on the fusion of these deformable patches present more similar
HR features. However, image degradation can make the LR information ambiguous; thus,
the deformation estimated in the LR feature space may be imprecise. Rather than adjusting
the dictionary or the training set to the LR image, some works perform online compensa-
tion, which selects and imports correlated external information to update the training set and
models. In [53], an Internet-scale scene matching performs searches for ideal example tex-
tures to constrain image upsampling. In [54], with the help of a database containing HR/LR
image segment pairs, high-resolution pixels are ”hallucinated” from their texturally similar
segments. In [60], the semantic information from parsing is used to choose the correspond-
ing anchor points adaptively to benefit anchor regression-based image SR. In [84], Yue et
al. proposed a cloud-based landmark SR method that searches for similar patches in regis-
tered and aligned correlated images and utilizes these patches to compensate the lost HR
details. In [41], Liu et al. utilized a group-structured sparse representation to further use the
nonlocal dependency information of the external HR references.

Due to the obvious strengths and weaknesses of these two kinds of priors, as well as their
strong complementary properties, recent works have attempted to utilize both internal and
external priors for image denoising and image SR. In [49, 92], the advantages of internal and
external denoising methods are measured; then, these two kinds of methods are combined by
balancing the error between noise-fitting and signal-fitting. In [2], Burger et al. proposed a
learning method to adaptively combine internal and external denoising results. Timofte et al.
[59] explored seven ways to benefit image SR, one of which is to create an internal dictio-
nary containing internal anchor points for further joint anchor regression with the external
dictionary. Wang et al. [67] proposed a joint SR method to adaptively fuse the results of
sparse coding for external examples and those of epitomic matching for internal examples.

2.2 Image quality assessment

As indicated previously, IQA methods can be classified into FR [10], RR and NR methods
[9] and can be used for image retargeting [8]. Since we design a NR-IQA metric for image
super-resolution in this study, we only review existing NR-IQA methods here. Generally,
NR-IQA methods assume that the statistics of the distorted images are different from those
of the original images [62]. NR-IQA methods can be designed based on NSS models built
in both spatial and transform domains.

In the study [31], the author proposed a NR-IQA metric to evaluate the visual quality of
image blurring based on edge spread in the spatial domain. Xue et al. modeled the image
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gradient and Laplacian of Gaussian operators jointly for statistical naturalness destruction in
images [73]. A general purpose NR-IQA metric was designed by Mittal et al. based on the
distribution of locally normalized luminance and products of locally normalized luminance
[46]. In the study [9], the authors built NSSmodels of entropy and intensity for visual quality
assessment of contrast-distorted images. The features of discrete orthogonal moments are
extracted in the spatial domain for visual quality assessment of image blur [36]. Wu et al.
proposed a blind image quality assessment (BIQA) algorithm which is characterized by a
feature fusion scheme and k-nearest-neighbor-based quality prediction model [68]. Ma et
al. established a large-scale database named the Waterloo Exploration Database and present
three alternative test criteria to evaluate the performance of IQA models [43]. Wu et al.
proposed a BIQA method that introduce a pairwise rank-order constraint into the maximum
margin regression framework [70]. A NR-IQA model was proposed by developing a local
image representation which extracts the structural image information from both the spatial-
frequency and spatial domains [69].

Besides NR-IQA metrics in the spatial domain, there have also been various NR-IQA
methods. No-reference (NR) IQA measures try to estimate the human perceptual quality
be extracting discriminative features from distorted images. In general, current NR IQA
algorithms mainly can be divided into two trends. The traditional methods [17, 56] design
features based on Natural Scene Statistic (NSS) which based approaches process image
with certain type of filters and then the responses are used to extract features. Some typi-
cal domain and filters include DCT domain [52] and Wavelet domain [48]. Another trend is
based on machine learning or deep learning technique [51]. Kang et al. [26] propose a Con-
volution Neural Network (CNN) to predict image quality without a reference image, feature
extracting and regression are integrated into one optimization process within the network
structure, their network extracts discriminative features from 32*32 patches with as a sin-
gle convolutional layer and a pooling layer, and then estimates image quality score of each
patch, finally they average the scores of all the 32*32 patches to obtain a quality estimation
for the whole image. Chen et al. [5] focus on the relative quality ranking between enhanced
image rather than giving an absolute quality score for a single enhanced image, the rank
function is trained to fit the subjective assessment results, and can be used to predict ranks
of new image which indicate the relative quality of enhancement algorithms. Li et al. [33]
applied a general regression neural network that takes as input perceptual features includ-
ing phase congruency, entropy and the image gradients. And Chetouani et al. used a neural
network to combine multiple distortion-specific NR-IQA measures. Most existing methods
regard the image quality assessment as a classification problem, and require pre-extracted
handcrafted features and only use the neural network for learning the regression function. In
contrast, the proposed method does not require any handcrafted features and directly learns
intrinsic features from the deep neural network to get much better performance of visual
quality assessment of super-resolution images.

3 The proposed CNN for SR-IQA

3.1 Network architecture

The proposed deep convolutional neural network consists of five layers, as shown in Fig. 1.
The detailed configurations of the proposed network structure are shown in Table 1. For
these two convolutional layers: the ”filter” parameter specifies the number and the size of
convolutional kernels is set as num*size*size; the ”st.” and the ”pad” parameters specify the
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Fig. 1 The architecture of the proposed deep neural network

convolution stride and spatial padding respectively; the ”pool” indicates whether to apply
the max-pooling window size by size*size. For these three full connected layers, we specify
their dimensionality as 2048, 1024 and 520. The ”dropout” indicates whether the fully-
connected layer is regularized by dropout to prevent overfitting, and the output layer has
one dimension which indicates the predicted quality score.

3.2 Convolution

In the convolutional layers, the input image patches are convolved with 32 filters and each
filter generates a feature map by Rectified Linear Units (ReLU). In these layers, the kth
output feature map mk can be calculated as follows:

mk = g(ωk ∗ n) (1)

where n denotes the input image patches with the size 160*160; wk stands for the convolu-
tional filter associated with the kth feature map; * indicates the 2D convolution operation;
g denotes the activation function. We use the Rectified Linear Units (ReLUs) instead of
sigmoid or tanh activation function in the full connected layers. Formally ReLUs can be
expressed as g = max(0,

∑
i ωiαi), where g represents the output of ReLU, ωi denotes

the weight of ReLU, and αi is the input of the previous layer. The study [29] demonstrates
that ReLUs are robust to the input range and enable the network to train several times faster
compared to using tanh units in a deep convolutional neural network. We provide the feature
maps generate by the convolutional layers as shown in Fig. 2. The proposed DCNN method
can extract high-level intrinsic features more effectively compared with the hand-crafted

Table 1 Detailed network
configurations of our proposed
for high-resolution image quality
assessment

Layers Configuration

conv1 filter 32*5*5, st. 1*1, pad 0, pooling 2*2

conv2 filter 32*5*5, st. 1*1, pad 0, pooling 2*2

fc3 2048, Relu, dropout

fc4 1024, Relu, dropout

fc5 512, Relu, dropout

fc6 1-dimensional
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Fig. 2 Row1-Row4: Column 1 are the original super-resolution image, and the rest are the feature maps of
the first convolutional layer; Row5-Row8: Column 1 are the same original super-resolution image, and the
rest are the feature maps of the second convolutional layer

features used in existing related methods. As shown in Fig. 2, the feature map calculated
by forward propagation can be used to represent the local contrast information and the edge
information in the super-resolution image which are essential to predict the visual quality
for super-resolution images. Additionally, we use some tricks during DCNN training pro-
cessing which are important to predict the perceptual scores of super-resolution images.
For instance, the combined pooling operation including max, min and mean can get more
effective information than a single pooling operation. Also, we divide the super-resolution
image into 160*160 patches in the proposed method, which not only increases the num-
ber of training data but also considers the local information for the super-resolution image
quality.

3.3 Xavier initialization

Inspire by [13], we use Xavier to initialize the network for forward propagation and pre-
vent the top hidden layer into saturation. We adopt a properly scaled uniform of Gaussian
distribution for initialization.

V ar(W) = 1

nin + nout

(2)

where W is the initialization distribution for the neuron; nin is the number of neurons
feeding into it, nout is the number of neurons where the result is fed to.

3.4 Batch normalization

Batch normalization is applied to accelerate deep network training by reducing inter-
nal covariate shift [24]. For a layer with d-dimensional input x = (x(1)...x(2)), we will
normalize each dimension as follows:

x̂(k) = x(k)−E(x(k))

√
V ar(x(k))

(3)
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where the expectation and variance are computed over the training dataset. Note that simply
normalizing each input of a layer may change what the layer can represent. To address this
problem, we introduce, for each activation x(k), a pair of parameters γ (k), β(k), which scale
and shift the normalized value:

y(k) = γ (k)x̂(k) + β(k) (4)

where the parameters can learned along with the original model parameters.

3.5 Pooling

In the two convolution layers, the input image patches are convolved with many filters and
each filter generates a feature map, then we apply pooling operation on each feature map to
reduce it to a low dimension. Specifically, the feature map of the last convolution layers is
pooled into one max value, min value and mean value as follows:

p1k = maxi,jR
k
i,j (5)

p2k = mini,jR
k
i,j (6)

p3k = meani,jR
k
i,j (7)

where m ∈ {1, 2, 3, 4, ..., M}, M is the number of kernels. N(i, j)m denotes the response
at location (i, j) of the feature map. Therefore, each node of the next fully connected layer
takes an input of size 3 ∗ M . Pooling operation is typically performed on every 2 ∗ 2 cell in
the case and it can keep some location information and the image intrinsic structure while
achieving robustness to translation.

3.6 Learning process

We train our network on non-overlapping 160*160 patches taken from super-resolution
images and their perceptual scores from 50 subjects(the mean of the median 40 subject
scores is used as perceptual score). By taking small patches as input and the geometric trans-
form for the original image, we have a much larger number of training samples. Formally,
We provide a set of super-resolution image patches and the label scores for the convolutional
neural network. The training objective function of the network is to minimize the Minimum
Squared-Error:

c = 1

N

N∑

i=1

||yi − y
′
i ||

2
(8)

δ′ = min
δ

c (9)

where yi represents the label of the input super-resolution image patch, yi ∈ (y1, y2, ......,

yN), N is the total numbers of the input data. y
′
i denotes the score computed through the

deep convolutional neural network. The optimizer we used for minimizing the loss func-
tion is Adaptive Moment Estimation which is a method for Stochastic Optimization, Adam
optimizer adjust the learning rate for each parameters dynamical by using the estimation for
moments of order 1 and 2 of the gradients. In our experiment we boost the performance by
using the dropout which is a technique that prevents overfitting in training neural network
and an efficient approximation of training many different networks with shared weights by
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masking out the neurons randomly. Specifically, the outputs of neurons are set to zero with
a probability of 0.5 in the training stage and divided by 2 in the test stage. Unlike L1 and
L2 regularization, dropout doesn’t rely on modifying the cost function.

4 Experimental results

In this section, we provide the experimental results for the performance evaluation of the
proposed method. The evaluation methodology for the comparison experiments, including
the used database, evaluation methods, and existing IQA metrics are first introduced. Then
the comparison results are given to demonstrate the performance of the proposed method.
We conduct the comparison experiments based on the database including 1440 HR images
generated from 180 LR images using 8 different image super-resolution algorithms [42]. In
that database, they conducted an user study by collecting subjective scores from 50 partici-
pants (the mean of the median 40 subject scores is used as the MOS (Mean Opinion Score)).
For the proposed deep convolutional neural network, the weights of the convolutional lay-
ers are initialized from zero mean Gaussian with a standard deviation of 0.01 and the bias
is set to 0. The fully-connected layers are initialized by Xavier Initialization. The proposed
network is trained on the dataset whose images are divided into small patches (160*160)
with 40K iterations for super-resolution image quality assessment. The learning rate is set
to 10−5.

4.1 Evaluation

We evaluate the performance of the proposed method by the correlation between subjective
scores and objective scores predicted by IQA metrics. In this study, we use three commonly
used methods to calculate the correlation between the subjective and objective scores: Spear-
man’s Rank-order Correlation Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC) and Kendall Rank Correlation Coefficient (KRCC). PLCC is used to measure the
linear dependence between subjective scores and the predicted quality. Given the i-th image
in the database with size N, its subjective and objective scores are si and oi , respectively. We
use a nonlinear function oi to map the raw predicted scores to MOS scale as follows [62]:

o
′
i = β1[1

2
− 1

1 + exp(β2(oi − β3))
] + β4oi + β5 (10)

where β1, β2, β3, β4, β5 are parameters. PLCC can be calculated as follows:

PLCC =
∑

i (o
′
i − o

′
)(si − s)

√
∑

i (o
′
i − o

′
)
∑

i (si − s)

(11)

SRCC and KRCC measure the strength of association between the predicted scores and
subjective scores in the aspect of monotonic relationship. They can be computed as follows:

SRCC = 1 − 6
∑N

i=1 e2i

N(N2 − 1)
(12)

where ei is the difference between the i-th image’s ranks in subjective and objective results.

KRCC = 1 − Nc − Nd

1
2N(N − 1)

(13)
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where Nc and Nd denote the numbers of concordant and discordant pairs in the dataset,
respectively.

To demonstrate the performance of the proposed method, we have conducted the com-
parison experiments by using some existing IQA metrics including four state-of-the-art
no-reference methods ( BRISQUE [46], ILNIQE [86], NIQE [47], QAC [72], NRSL [37])
and three full-reference metrics (PSNR, SSIM [64], MSSSIM(multi-scale SSIM) [63]). The
source code of these metrics were obtained from the corresponding authors or their public
Websites. In Fig. 3, we provide the scatter plots of objective quality scores against subjective
scores for different IQA metrics. From these scatter plots, we can observe that the points by
the proposed method are more centralized than other existing NR-IQA and FR-IQA meth-
ods, which demonstrates that the objective quality scores obtained by the proposed method
are more consistent with the subjective scores. The experimental results of PLCC, SRCC,
RMSE and KRCC values are shown in Table 2. From Table 2, we can observe that: (1)
the proposed method can get higher values of PLCC, SRCC and KRCC than other exist-
ing methods; (2) the proposed method can obtain lower RMSE value than other existing
methods. These results denote that the scores predicted by the proposed method can obtain
higher correlation with subjective data than those from other existing IQA methods.

Overall, the proposed metric can get perfect performance against the state-of-the-art
methods, which can be attributed to: most existing NR-IQA methods include two stages of
feature extraction and model learning for visual quality prediction. However, the features
used in existing NR-IQA approaches are extracted for specific distortions, such as blur-
ring, compression artifact, and so on. However, the visual distortion generated from image

Fig. 3 Quality indices generated by different methods to perceptual scores
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Table 2 Performance evaluation of the proposed method

Models PSNR SSIM MSSSIM BRISQUE ILNIQE NIQE QAC NRSL Ours

PLCC 0.3335 0.5726 0.6218 0.6176 0.6198 0.6364 0.4704 0.8011 0.9156

SRCC 0.3110 0.5562 0.6452 0.5723 0.6282 0.6254 0.4938 0.6874 0.8394

RMSE 2.9383 1.798 1.0272 10.0747 18.3748 1.5582 0.0695 0.9149 1.2527

KRCC 0.2181 0.4012 0.4666 0.4181 0.4557 0.4573 0.3455 0.5112 0.6435

super-resolution is strongly correlated with the image content and there might be several dif-
ferent distortions in HR images. The features used in existing NR-IQA approaches cannot
cover various visual content, and thus, traditional NR-IQA methods cannot be used for IQA
of image super-resolution. And the deep convolutional neural network can get the high-level
intrinsic feature to predict the scores for the super-resolution image.

4.2 Effects of parameters

Several parameters are defined in the proposed deep neural network. In this section, we
will analysis the effects of parameters to the experiment performance on the dataset. There
are some advantages that we divide the whole super-resolution images into small image
patches. Not only it can extremely increase our training and testing data but also can learn
and prediction of image quality on local image regions. Local quality calculation is impor-
tant for the image denoising or reconstruction problems, applying enhancement only where
required. The problem we face is that which size of the image patch is the best for the
experiment results. Extensive experiments have been conduct for which size we choose to
the super-resolution image patches, from the Fig. 4 which provides the relationship between

Fig. 4 PLCC and SROCC under different on different image patch
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Fig. 5 PLCC and SROCC under different number of kernels

PLCC, SRCC values and the size of super-resolution image patches, it is obvious that we
can get better performance with larger patches and get the best results when the patch size
is 160*160.

In the convolutional layers, different size of convolve kernel may lead different per-
formance. Convolutional neural network further achieve to imitate human ’s perceptual
characteristics compare to normal neural network. The observation of human for the natural
scenes are from local to global, it’s not based on every pixel but a local region information
which can extract global feature by integrating themselves. The kernel size which control
the size of perceptual region is crucial in the convolutional neural network, and Table 3
shows the performance with different kernel size in the proposed framework. It is clearly
that the size of 5*5 for the kernel can get the better performance in the experiment.

Another effects of parameter is the number of convolutional kernels. The convolutional
neural network can get better performance with a larger number of kernels on the condi-
tion that we have big enough training and testing data to conduct the experiment. And more
convolutional kernels bring extensive training parameters and have higher cost on the com-
putation. How the performance varies with the number of convolutional kernels as shown in
Fig. 5. From the Fig. 5, it can be seen that the number of kernels influence the experiment
performance significantly. As the number of filters increase, the experiment performance
have been improved accordingly. But little performance boost is required when the number
of filters exceeds 24.

Table 3 Performance evaluation
of the proposed method Size 3x3 5x5 7x7 9x9 11x11

PLCC 0.9012 0.9156 0.9149 0.8856 0.8712

SRCC 0.8034 0.8394 0.8325 0.8123 0.7921
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5 Conclusion

In this study, we build an effective NR-IQA metric based on deep convolutional neural
network for super-resolution images. Our algorithm combines high-level intrinsic feature
extracting and regression as a complete optimization process, which enables us to apply
modern training trick to obtain favorable neural network. We divide the whole super-
resolution image into small image patches. It can not only increase the training and testing
data but also can predict and prediction of image quality on local image regions. The
proposed method for super-resolution image quality assessment by using convolutional neu-
ral network can get better performance compare to the other existing state-of-the-art IQA
methods.
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