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Abstract— Human action analytics has attracted a lot of
attention for decades in computer vision. It is important to
extract discriminative spatio-temporal features to model the
spatial and temporal evolutions of different actions. In this paper,
we propose a spatial and temporal attention model to explore the
spatial and temporal discriminative features for human action
recognition and detection from skeleton data. We build our
networks based on the recurrent neural networks with long short-
term memory units. The learned model is capable of selectively
focusing on discriminative joints of skeletons within each input
frame and paying different levels of attention to the outputs
of different frames. To ensure effective training of the network
for action recognition, we propose a regularized cross-entropy
loss to drive the learning process and develop a joint training
strategy accordingly. Moreover, based on temporal attention,
we develop a method to generate the action temporal proposals
for action detection. We evaluate the proposed method on the
SBU Kinect Interaction data set, the NTU RGB + D data set,
and the PKU-MMD data set, respectively. Experiment results
demonstrate the effectiveness of our proposed model on both
action recognition and action detection.

Index Terms— Spatio attention, temporal attention, action
recognition, action detection, skeleton data.

I. INTRODUCTION

HUMAN action analytics, including action recognition
and detection, is a fundamental yet challenging task in

computer vision. It has revealed rapid development due to
its wide applications such as intelligent video surveillance,
human-computer interaction, video summary and understand-
ing. One of the main challenges in this research field is
the modeling of spatial and temporal evolutions for different
actions.
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Taking differences in inputs into account, human action ana-
lytics can be categorized into RGB video-based and skeleton-
based methods. For RGB videos [1]–[5], since each frame is
a capture of a highly articulated human in a 2D space, it loses
some information of the 3D space and then damnifies the
flexibility to achieve human location and scale invariance. The
other general approach leverages high level information from
skeleton data, which represents a person by 3D coordinate
positions of key joints (head, neck, etc.). Without combining
RGB information, there is a lack of appearance informa-
tion. Fortunately, biological observations [6] suggest that the
positions of a small number of joints can effectively repre-
sent human behavior even without appearance information.
Skeleton-based human representation has attracted increasing
attention for recognizing human actions thanks to its high
level representation and robustness to variations of locations
and appearances [7]. The prevalence of cost-effective depth
cameras such as Microsoft Kinect [8] and the advance of a
powerful human pose estimation technique from depth [9]
make 3D skeleton data easily accessible. It boosts research on
skeleton-based human action analytics. In this work, we focus
on action recognition and detection from skeleton data.

The human body can be represented by several key joints
in terms of coordinate positions in the 3D space. The articu-
lated configurations of joints constitute various postures and
human actions can be identified by the trajectories of skeletal
joints. With skeletons as explicit high level representations
of human posture, many works design algorithms that use
the positions of joints as inputs. Some works design and
mine discriminative features from the skeleton, such as the
histograms of 3D joint locations (HOJ3D) [10], pairwise rela-
tive position features [11], relative 3D geometry features [12],
and co-occurrence feature learning [13]. Some works learn
and model the temporal dynamics, such as Hidden Markov
Model [10], Conditional Random Fields [14], and Recurrent
Neural Networks [15]–[18]. In this work, we present a spatio-
temporal attention model to effectively incorporate the two
components.

For the spatial joints of skeletons, we propose a spatial atten-
tion module that conducts automatic mining of discriminative
joints. A certain type of action is usually only associated with
and characterized by the combinations of a subset of kinematic
joints. As the action proceeds, the associated joint set may
change accordingly. For example, the joints hand, elbow, and
head are discriminative for the action of drinking while the leg
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joints can be considered noise. Different from actionlet [11],
the attention to joints is allowed to vary over time, being
content-dependent.

Furthermore, for a sequence of frames, we propose a tem-
poral attention module, which explicitly learns and allocates
content-dependent attention to the output of each frame. For
a sequence of some action, the flow of the action may expe-
rience different stages, e.g. the preparation, climax, and end.
Taking the action of punching as an example, the two persons
approach each other, stretch out the hands, and kick out the
legs. The frames for identifying stretching out the hands and
kicking out the legs are part of the key sub-stages. Different
sub-stages/frames have different degrees of importance. In this
paper, in contrast to the ideas of extracting key frames [19],
[20], our proposed scheme pays different attention to different
frames instead of simply skipping frames.

We leverage the attention modules for efficient action
recognition and detection. With spatial and temporal attention,
discriminative joints and key frames can be automatically
determined and allocated with different levels of importance,
being content dependent. We further show how to take advan-
tage of the temporal attention in long sequences to localize
temporal segments for action detection.

Compared with our previous work [21], we propose the
spatial and temporal attention model for both action recog-
nition and detection. We enrich the experiment analysis to
give more insights on our attention model, with visualizations
of the learned patterns. The influence of parameter choice is
also explored. Furthermore, we develop a temporal action pro-
posal generation method for the purpose of action detection.
To evaluate the efficiency of our proposed model, we conduct
experiments on the largest action detection dataset for 3D
data, PKU-MMD [22]. The main contributions of our work
are summarized as follows:

• We develop an LSTM network with two types of attention
modules for action recognition and detection. A spatial
attention module with joint-selection gates is designed to
adaptively allocate different levels of attention to different
skeleton joints within each frame. A temporal attention
module with a frame-selection gate is designed to allocate
different attention to different frames.

• Spatio-temporal regularizations are proposed to enable
better learning of the networks. The spatial regular-
ization encourages the exploration of all joints rather
than overemphasizing only some joints. The temporal
regularization prevents temporal attention from increasing
unboundedly and gradients from vanishing.

• A joint training strategy is designed to efficiently train
the entire network. To reduce the mutual influence of the
main network and subnetworks, we develop an iterative
training scheme to approach the optimized solution.

• We introduce a method for generating action temporal
proposals based on temporal attention. The start and
end points of actions in an untrimmed sequence can be
accurately localized and our method achieves state-of-the-
art performance on action detection.

The remainder of this paper is organized as follows.
In Section II, we discuss the related works on action analytics

and attention models. In Section III, we introduce our pro-
posed spatio-temporal attention model for action recognition
and detection. We evaluate the effectiveness of our proposed
method through experiments and analysis in Section IV. And
we conclude this paper in Section V.

II. RELATED WORK

A. Action Recognition

The key to the success of action recognition is how to extract
discriminative features to effectively model the spatial and
temporal evolutions of different actions. Many algorithms have
been designed to explore spatial co-occurrence and temporal
dynamics. An action is usually associated with and charac-
terized by the interactions and combinations of a subset of
skeleton joints. An actionlet ensemble model [11] is proposed
to mine such discriminative joints, where an actionlet is a
particular conjunction of the features for a subset of the
joints and an action is represented as a linear combination
of the actionlets. For example, for the action of drinking,
the subset of joints including hand, elbow, and head composes
an actionlet. Orderlet [23] makes an extension of the actionlet
by including the feature of pairwise joint distance and allowing
various sizes of a subset. Actionlets or orderlets are mined
from training samples for robust performance. With RNN,
a group sparsity constraint [13] is introduced to the connection
matrix to encourage the network to explore the co-occurrence
of joints.

For identifying an action, not all frames in a sequence have
the same importance. Some frames capture less meaningful
information, or even carry misleading information associated
with other types of actions, while some other frames carry
more discriminative information [24]. A number of approaches
have proposed using key frames as a representation for action
recognition. One is to utilize the conditional entropy of visual
words to measure the discriminative power of a given frame,
and the classification results from the top 25% most dis-
criminative frames are employed to make a majority vote for
recognition [20]. Another one [24] employs AdaBoost to select
the most discriminative key frames for action recognition.
The learning of key frames can also be cast in a max-
margin discriminative framework by treating them as latent
variables [25].

B. Action Detection

To localize and recognize actions in untrimmed video
sequences, many detection methods utilize a sliding window
approach. In [26]–[28], they slide the observation window
along temporal frames and conduct classification within each
window using multiple features, i.e. dense trajectories, CNN
features, combined with action classifiers. Inspired by recent
works on object detection from still images [29], [30],
the idea of generating object proposals has been borrowed
to perform action detection from video sequences [31]–[39].
Some of these methods [33]–[35] produce spatio-temporal
object volumes to perform spatio-temporal detection of sim-
ple or cyclic actions. To generate high quality spatial pro-
posals, Peng and Schmid [38] took full advantage of region
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proposal networks in a two-stream model, which outperform
other action detection methods. A more recent work in [39]
performs real-time spatio-temporal action localization and
early prediction, and achieves new state-of-the-art results,
by constructing action tubes with the help of Single Shot
MultiBox Detector. Besides, many works [36], [37] focus on
temporal action proposals which are likely to contain human
actions. Based on techniques for learning sparse dictionaries,
Heilbron et al. [36] introduced a learning framework to repre-
sent and retrieve high quality activity proposals from sampled
proposal candidates. An efficient multi-stage CNN is proposed
to obtain better localization accuracies [37]. Li et al. [16] and
Liu et al. [40] developed an online action detection method
to regress the start and end points of actions with an LSTM
network elegantly due to frame level prediction. Different from
all those methods, we propose to use an attention model for
action proposal generation.

C. Attention-Based Models

When observing the real-world, a human usually focuses
on some fixation points at the first glance of a scene, i.e.
paying different attentions to different regions [41]. Many
applications leverage predicted saliency maps for performance
enhancement [42], [43], which explicitly learn the saliency
maps guided by human labeled groundtruths.

The human labeled groundtruths for explicit attention are
generally unavailable and might not be consistent with real
attention related to specific tasks. Recently, the exploita-
tion of an attention model which implicitly learns atten-
tion has attracted increasing interest in various fields.
Bahdanau et al. [44] are the first to employ the attention
mechanism on machine translation, bringing about a new
phase of state-of-the-art implementation. Xu et al. [45] incor-
porate soft and hard attention for image caption generation.
Trained with reinforcement learning, the model in [46] is able
to pay attention to the most relevant regions of the input
image for multiple object recognition. For action recognition
and detection, selective focus on different spatial regions is
proposed on RGB videos [47]. Ramanathan et al. [48] pro-
pose an attention model to detect events in RGB videos while
attending to the people responsible for the event. The fusion
of neighboring frames within a sliding window with learned
attention weights is proposed to enhance the performance of
dense labeling of actions in RGB videos [49]. However, all the
attention models above for action analytics are based on RGB
videos. There is a lack of investigation for skeleton sequences,
which exhibit different characteristics from RGB videos.

III. DEEP LSTM WITH SPATIO-TEMPORAL ATTENTION

We propose a multi-layered LSTM network with spatial and
temporal attention mechanisms for action analytics, including
action recognition and detection. The network is designed to
automatically determine dominant joints within each frame
through the spatial attention module, and assign different
degrees of importance to different frames through the temporal
attention module. Fig. 1 shows the overall architecture of
our spatio-temporal attention LSTM network (STA-LSTM),

Fig. 1. Overall architecture of our STA-LSTM.

Fig. 2. LSTM neuron structure.

which consists of a main LSTM network, a spatial attention
subnetwork, and a temporal attention subnetwork.

In the following, we first briefly review the Recurrent Neural
Network (RNN), and Long Short-Term Memory (LSTM) to
make the paper self-contained. Then we discuss the pro-
posed spatial attention module and temporal attention module,
respectively. To enable better classification, we introduce a
regularized learning objective to our module and a joint train-
ing strategy to help overcome the difficulty of model learning
for highly coupled networks. Moreover, we exploit temporal
attention to generate action proposals for action detection.

A. Overview of RNN and LSTM

RNN is a popular model for sequential data modeling and
feature extraction [50]. The output response ht at time step
t is determined by the input xt and the hidden outputs ht−1
from RNN themselves at the last time step

ht = θ
(

wT
xhxt + wT

hhht−1 + bh

)
, (1)

where θ represents a non-linear activation function, wxh and
whh denote the learnable connection vectors, and bh is the bias
value. The recurrent structure and the internal memory of RNN
facilitate its modeling of the long-term temporal dynamics of
sequential data.

LSTM is an advanced RNN architecture which mitigates
the vanishing gradient effect of RNN [50]–[52]. As illustrated
in Fig. 2, an LSTM neuron contains a memory cell ct which
has a self-connected recurrent edge of weight 1. At each time
step t , the neuron can choose to write, reset, and read the
memory cell governed by the input gate it , and the forget
gate ft .

B. Spatial Attention With Joint-Selection Gates

The action of persons can be described by the evolution of
a series of human poses represented by the 3D coordinates of
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joints. In general, different actions involve different subsets of
joints as discussed in Section II-A.

We propose a spatial attention model to automatically
explore and exploit the different degrees of importance of
joints. With a soft attention mechanism, each joint within a
frame is assigned a spatial attention weight based on the joint-
selection gates. This enables our model to adaptively focus
more on those discriminative joints.

At each time step t , given the full set of K joints
xt = (

xt,1, . . . , xt,K
)T, with xt,k ∈ R

3, the scores st =
(st,1, · · · , st,K )T for indicating the importance of the K joints
are jointly obtained as

st = Us tanh(Wxsxt + Whshs
t−1 + bs) + bus, (2)

where Us , Wxs , and Whs are the learnable parameter matrixes,
and bs , bus are the bias vectors. hs

t−1 is the hidden variable
from an LSTM layer as illustrated in Fig. 1. For the kth joint,
the activation as the joint-selection gate is computed as

αt,k = exp(st,k)∑K
i=1 exp(st,i )

, (3)

which is a normalization of scores. The set of gates controls
the amount of information from each joint to flow to the main
LSTM network. Among the joints, the larger the activation,
the more important the joint is for determining the type of
action. We also refer to the activation values as attention
weights. Instead of assigning equal degrees of importance to
all the joints xt , as illustrated in Fig. 3, the input to the main
LSTM network is modulated to x′

t = (
x′

t,1, . . . , x′
t,K

)T
, with

x′
t,k = αt,k · xt,k .
Note that the proposed spatial attention model determines

the importance of joints based on all the joints of the current
time step and the hidden variables from an LSTM layer.
On one hand, the hidden variables ht−1 contain past infor-
mation, benefiting from the merit of LSTM which is capa-
ble of exploring temporal long range dynamics. Our spatial
attention subnetwork is composed of an LSTM layer, two
fully connected layers and a normalization unit as illustrated
in Fig. 1. On the other hand, leveraging all joints within the
current frame provides a necessary ingredient for determining
their importance. Bridged by the joint-selection gate, the main
LSTM network and the spatial attention subnetwork can be
jointly trained to implicitly learn the spatial attention model.

C. Temporal Attention With Frame-Selection Gate

For a sequence, the amount of valuable information pro-
vided by different frames is generally not equal. Only some of
the frames (key frames) contain the most discriminative infor-
mation while the other frames provide contextual information.
For example, for the action of shaking hands, the sub-stage
of approaching should have lower importance than the sub-
stage of hands together. Based on this observation, we design a
temporal attention module to automatically pay different levels
of attention β to different frames.

For sequence level classification, based on the output zt of
the main LSTM network and the temporal attention value βt

Fig. 3. Illustration of how spatial attention output α and temporal attention
output β influence the LSTM network.

at each time step t , the scores for C classes are the weighted
summation of the scores at all time steps

g =
T∑

t=1

βt · zt , (4)

where g = (g1, g2, · · · , gC)T, T denotes the length of the
sequence. Fig. 3 illustrates how the temporal attention output
β is incorporated into the main LSTM network. The predicted
probability of being the i th class given a sequence X is

p (Ci |X) = egi

∑C
j=1 eg j

, i = 1, . . . , C. (5)

As illustrated in Fig. 1, the attention module is composed
of an LSTM layer, a fully connected layer, and a ReLU non-
linear unit. It serves as the soft frame selection. The activation
as the frame-selection gate can be computed as

βt = ReLU(wx∼
xt + wh∼

h∼

t−1 + b
∼

), (6)

which depends on the current input xt , and the hidden variables
h∼

t−1 of time step t − 1 from an LSTM layer. We use
the non-linear function ReLU due to its good convergence
performance. The gate controls the amount of information
of each frame to be used for making the final classification
decision. The works [13] and [15] are our special cases
where the attention weights on each frame are equal. Bridged
by the frame-selection gate, the main LSTM network and
the temporal attention subnetwork can be jointly trained to
implicitly learn the temporal attention model.

D. Action Recognition With Joint Spatio-Temporal Attention

For action recognition, it is important to extract discrimi-
native spatio-temporal features to model spatial and temporal
evolutions of different actions. To enable the network to pay
different levels of attention to different joints and assign
different degrees of importance to different frames as an action
proceeds, we integrate spatial and temporal attention with
LSTM in the same network as illustrated in Fig. 1. How the
spatial attention model acts on the input and how the temporal
attention model acts on the output of the main LSTM network
are illustrated in Fig. 3.
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1) Regularized Objective Function: We formulate the final
objective function of the spatio-temporal attention network
with a regularized cross-entropy loss for a sequence as

L = −
C∑

i=1

yi log ŷi + λ1

K∑
k=1

(
1 −

∑T
t=1 αt,k

T

)2

+ λ2

T

T∑
t=1

‖βt‖2 + λ3‖Wuv‖1, (7)

where y = (y1, · · · , yC)T denotes the groundtruth label. If it
belongs to the i th class, then yi = 1 and y j = 0 for j �= i .
ŷi indicates the probability that the sequence is predicted as
the i th class, where ŷi = p(Ci |X). The scalars λ1, λ2, and
λ3 balance the contribution of the three regularization terms.
We discuss the regularization designs in the following.

The first regularization item aims to encourage the spatial
attention model to dynamically focus on more spatial joints
in a sequence. We find the spatial attention model is prone to
consistently ignoring many joints even though these joints are
also valuable for determining the type of action, i.e. trapped
to a local optimum. We introduce this regularization item to
avoid such ill-posed solutions. For clarity, we re-describe it
as

∑T
t=1 αt,k ≈ T , with k = 1, · · · , K . This encourages equal

attention to be paid to different joints.
The second regularization item with l2 norm is to regularize

the learned temporal attention values under control rather
than to increase them unboundedly. This alleviates gradient
vanishing in back propagation, where the back-propagated
gradient is proportional to 1/βt .

The third regularization item with l1 norm is to reduce
overfitting of the networks. Wuv denotes all the connection
matrixes in the networks.

2) Joint Training of the Networks: Due to the mutual
influence of the three networks, optimization is rather difficult.
We propose a joint training strategy to efficiently train the
spatial and temporal attention modules, as well as the main
LSTM network. The separate pre-training of the attention
modules ensures the convergence of the networks. The training
procedure is described in Algorithm 1.

E. Action Detection With Temporal Proposals

Motivated by object detection [29], [30], [53], our action
detection method consists of two stages, action proposal
generation and action classification, as shown in Fig. 4. Instead
of using sliding window strategy [28], [31], [54], we leverage
a temporal attention network to generate temporal region
proposals. Guided by attention responses, the proposals can
be localized tightly and accurately. Then each proposal is
recognized by an action classifier to identify the action type.

1) Action Proposal Generation: We leverage a temporal
attention proposal subnetwork (TAP-LSTM) to produce a
temporal attention curve and then generate temporal action
proposals based on the attention curve. As shown in Fig. 4,
we train the temporal attention proposal using the training
data composed of trimmed valid action clips (with non-
action clips excluded) collected from the detection training
set. The training procedure is supervised by classification loss,

Algorithm 1 Joint Training of the LSTM Network With
Spatio-Temporal Attention Model

Fig. 4. Our action detection framework. The action proposal generation
network is used for proposing action clips. The module with dashed lines is
for training and removed in testing.

which can be found in (7). We denote the training set for
temporal attention network as D, where D = {Dc}C

c=1 with
C valid action classes, and Dc = {Xs

c,i }nc
i=1 is the training

data corresponding to class c, Xs
c,i denotes the i th trimmed

clip of the action class c. The training procedure in action
proposal generation is shown in Fig. 4 by the Action Proposal
Generation module.

With the well-trained temporal attention network, we for-
ward the untrimmed video Xu to get the attention response



3464 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 7, JULY 2018

Fig. 5. Action proposal generations by temporal attention.

from the attention model. Given the response β =
[β1, . . . , βT ] on Xu , we now introduce how to locate action
proposals. An interval (a, b) is roughly defined as an action
proposal if it satisfies (1) a = ε, (2) b = ε, (3) the
response of each point βi within (a, b) is larger than the
threshold ε, that is, βi > ε,∀i ∈ (a, b). With the rules
above, the interval (sp+1, ep+1) in Fig. 5 is located as an
action proposal. However, the temporal attention response
might be disturbed and lower than ε for a short time due to
skeleton noises. As in Fig. 5, with the aforementioned rules,
the interval (sp, ep) includes three short but close proposals,
which actually belong to one action. To address this issue,
we merge adjacent proposals whose distance in between is less
than w. Thus, (sp, ep) is another action proposal in Fig. 5.
To formulate the action proposal generation, we locate the
ordered start points of proposals as

S = {sp|βsp = ε, βsp−t < ε, ∀t ∈ (0, min(sp, w)]}, (8)

where sp is the start point position of the pth proposal and
is subject to sp−1 < sp < sp+1, ε denotes the threshold for
the response. Since the temporal attention response could be
disturbed due to skeleton noises as illustrated above, we use
w to ignore such influence to be robust to noises. Similarly,
the ordered end points are defined as

E = {ep|βep = ε, βep+t < ε, ∀t ∈ (0, max(T − ep, w)]},
(9)

where ep is the end point position of the pth proposal and
is subject to ep−1 < ep < ep+1. Therefore, the generated
temporal proposals are {(sp, ep)|p = 1, . . . , P}.

2) Multiscale Scheme: Inspired by the design of multiple
scale anchor boxes in object detection [29], at each proposal
location, we simultaneously generate several temporal pro-
posals with different centers and lengths. By default, given
the original proposal centered at l, where l = �(sp + ep)/2	,
we consider additional proposals centered at {l − δ, l, l + δ},
where δ = �(ep − sp + 1)/3	. At each center, proposals
with length δ, 3δ, 4δ, are generated. That is, for each proposal
location, 9 proposal candidates are produced.

3) Action Classification: Each proposal goes through an
action classifier which is able to distinguish C + 1 classes
(including an extra class corresponding to non-action clips).
In practice, we leverage the proposed spatio-temporal attention
network (see Fig. 1) as the action classifier trained with the
data D∗, where D∗ = {Dc}C+1

c=1 . Afterwards, to eliminate
the proposals highly overlapped with others, non-maximum

Algorithm 2 Training for Action Detection

suppression (NMS) is adopted on the proposal regions based
on their classification scores. Finally, we merge the adjacent
proposals that share the same label and the distance is less
than 20 frames to reduce fragments.

We summarize the training procedure for action detection
in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. Datasets and Settings

We perform our experiments on the following datasets:
the SBU Kinect interaction dataset [55], the largest RGB+D
dataset of the NTU [56], and the newly collected action
detection dataset, PKU-MMD [22]. Note that we utilize PKU-
MMD for both action recognition and detection.

1) SBU Kinect Interaction Dataset (SBU): The SBU dataset
is an interaction action recognition dataset with two sub-
jects for each action. It contains 230 sequences of 8 classes
(6614 frames) with subject independent 5-fold cross valida-
tion. Each person has 15 joints and the dimension of the input
vector is 15 × 3 × 2 = 90. Note that we smooth each joint’s
position of the skeleton in the temporal domain to reduce the
influence of noise [13], [15].

2) NTU RGB + D Dataset (NTU): The NTU dataset is
currently the largest action recognition dataset with high qual-
ity skeleton [56]. It contains 56880 sequences (with 4 million
frames) of 60 classes, including Cross-Subject (CS) and Cross-
View (CV) settings. Each person has 25 joints. We implement
a preprocessing method similar to [56] to have position and
view invariance. To avoid destroying the continuity of a
sequence, no temporal down-sampling is performed.

3) PKU Multi-Modality Dataset (PKU-MMD): The
PKU-MMD is a newly captured large-scale dataset for human
action understanding with well annotated action positions
and types. PKU-MMD [22] consists of 1076 video sequences
of 51 action categories, performed by 66 subjects in three
camera views. It contains more than 5.4 million frames and
20000 action clips in over 3000 minutes. Each long sequence
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Fig. 6. Performance evaluation of our attention models and the regularization
items on two datasets in terms of accuracy (%).

contains about 20 action shots in 3 − 4 minutes. We also
follow the Cross-Subject and Cross-View protocols in [22].

Since the action detection dataset is well annotated and is
large with flexible actions and actors, we cut the annotated
valid action clips under the same Cross-Subject and Cross-
View participation defined in action detection. We take them
as a new action recognition dataset. We use this dataset for
both action recognition and action detection evaluation. The
detailed partition protocol can be found in [22].

4) Implementation Details: For the action recognition net-
work, we use three LSTM layers for the main LSTM network,
and one LSTM layer for each attention network. Each LSTM
layer is composed of 100 LSTM neurons. For the action pro-
posal generation module, we use bidirectional LSTM in each
layer to leverage both the previous and the future information
for proposal generation. Adam [57] is adopted to automatically
adjust the learning rate during training. The batch sizes for
the SBU, NTU and PKU-MMD datasets are 8, 256, and 256
respectively. We set λ1, λ2, and λ3 to 0.001, 0.0001, and
0.0005 for the SBU dataset, and 0.01, 0.001 and 0.00005
for the NTU and PKU-MMD datasets experimentally. Dropout
with a probability of 0.5 is utilized to mitigate overfitting [58].

B. Evaluation on Action Recognition

In this subsection, we validate the effectiveness of our
spatio-temporal attention model for action recognition. The
ablation study, overall performance comparison, and visual-
ization analysis will be given respectively.

1) Ablation Study of Attention Models: To validate the
effectiveness of our attention designs in action recognition,
we conduct experiments with different configurations on the
SBU and NTU datasets as follows.

• LSTM: main LSTM network without attention designs.
• SA-LSTM(w/o reg.): LSTM + spatial attention without

regularization (only includes 1st and 4th items in (7)).
• SA-LSTM: LSTM + spatial attention network.
• TA-LSTM(w/o reg.): LSTM+temporal attention without

regularization (only includes 1st and 4th items in (7)).
• TA-LSTM: LSTM + temporal attention network.
• STA-LSTM: LSTM+ spatio-temporal attention network.
Fig. 6 shows the performance comparisons on the

SBU, NTU (Cross-Subject), NTU (Cross-View) datasets.

TABLE I

COMPARISONS ON THE SBU DATASET IN ACCURACY (%)

TABLE II

COMPARISONS ON THE NTU DATASET WITH CROSS-SUBJECT

AND CROSS-VIEW SETTINGS IN ACCURACY (%)

In comparison with the baseline scheme LSTM, the intro-
duction of the spatial attention module (SA-LSTM) and the
temporal attention module (TA-LSTM) generates up to 5.1%
and 6.4% accuracy improvement, respectively. The best perfor-
mance is achieved by combining both modules (STA-LSTM).
In the objective function as defined in (7), the second and
the third items for regularizations are designed for the spatial
and temporal attention model, respectively. We see that they
improve the performance of both the spatial attention model
and temporal attention model.

2) Overall Performance Comparisons: We show the overall
performance comparisons of our final scheme in Table I,
Table II and Table III for the SBU, NTU and PKU-MMD
datasets, respectively. Thanks to the introduction of the spatio-
temporal attention models with efficient regularizations and
the training strategy, our model is capable of extracting dis-
criminative spatio-temporal features. For the SBU and NTU
datasets, we achieve comparable results with more recent
works [59], [60]. On the PKU-MMD dataset, the introduction
of attention model brings performance improvement of 3.2%
and 1.6% for CS and CV settings, respectively.

3) Influence of Parameters: We explore the effects of λ1
and λ2 as in (7), which control the contribution of spatial and
temporal regularization terms and influence the learned spatial
and temporal patterns.
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TABLE III

COMPARISONS ON THE PKU-MMD WITH CROSS-SUBJECT
AND CROSS-VIEW SETTINGS IN ACCURACY (%)

Fig. 7. Influence on performance of parameters of (a) λ1 for spatial attention
regularization term and (b) λ2 for temporal attention regularization term.

Fig. 7 shows the performance of SA-LSTM and TA-LSTM
with different parameter settings on the NTU dataset, respec-
tively. We can see that the optimized performance is achieved
when λ1 and λ2 is around 0.01 and 0.001 respectively.

To analyze how the parameters affect the response of spatial
attention, we count the most engaged joints for various actions
under different values for λ1. As shown in Fig. 8, a larger λ1
(Fig. 8(c)) leads to spatial attention distribution on many more
joints, making it hard for the network to extract discriminative
joints. Whereas a smaller λ1 (Fig. 8(a)) makes the network
focus on too few joints, resulting in information loss.

On the other hand, λ2 is utilized to avoid unbounded
increases of temporal attention. The temporal attention curves
of the action drinking water learned from different λ2 settings
is shown in Fig 9. A smaller λ2 results in larger amplitude
of the attention response and the network faces with gradient
vanishing, considering that the gradient is proportional to 1/β,
where β is the attention response. However, with a larger λ2,
temporal attention is constrained to be small or even close
to zero. The attention difference among different frames also
decreases, resulting in the failure of attending informative
frames. As a result, the performance degrades significantly
as shown in Fig. 7(b). We find the influence of λ3 is much
less significant.

4) Visualization of the Learned Attentions: We analyze
the learned spatial and temporal attention by visualizing the
attention responses of our model for the test sequences. We
have observed the attention patterns on a variety of actions
with the response of each action obtained statistically from
many sequences of that action type.

Fig. 10 shows the statistical visualization of spatial attention
and temporal attention for four actions from the NTU dataset.
We first calculate the average sequence length in the dataset,
which is about 85 frames per sequence. Then, the spatial

Fig. 8. Distribution of most engaged joints to different actions under various
parameter settings (NTU Cross-Subject). Note that the joints whose average
attention responses are less than 80% of the maximum response value are
suppressed. (a) λ1 = 0. (b) λ1 = 0.01. (c) λ1 = 1.

Fig. 9. Temporal attention curves on action drinking water under different
λ2 settings.

attention map for each sequence is resized to N×85 by bicubic
interpolation, where N = 25 × n, n represents the number
of actors within one frame and 25 is the number of joints
for each actor. The average spatial attention map obtained
from many sequences of the same type can be generated. The
statistical temporal attention visualization is generated in a
similar manner.

For spatial attention, it is observed that the characteristics
of spatial attention differ for different action types. In Fig. 10,
for sitting down and kicking, we observe the ankles, knees,
and feet have high degrees of spatial attention. Interestingly,
these joints are the most discriminative joints for determining
these actions for human sense. For actions mainly involving
arms, such as making a phone call, we see that the left elbow
and left finger have high degrees of spatial attention. In the
NTU dataset, we find that most actors make a phone call with
their left arms. For the action dominated by both arms like
crossing hands, the model concentrates on the joints on left
and right elbows and fingers. The learned spatial model is
capable of paying more attention to the discriminative joints,
being content adaptive.

For temporal attention, the attention value increases as the
action proceeds. For instance, the attention response for sitting
down goes to its climax when the actors bend their knees
and are about to sit down. The response curve for kicking
reaches its peak when the actor lift their legs. For making
a phone call, the latter frames are paid more attention than
the earlier frames. It is also interesting that the spatial and
temporal attention are synchronous in temporal evolution.
Taking crossing hands as an example (Fig. 10(c)), the joints
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Fig. 10. Visualization of spatial attention (top subfigures) and temporal attention (bottom subfigures) on actions of sitting down, kicking, crossing hands, and
making a phone call (NTU Cross-Subject). Horizontal axis denotes the frame indexes (time). (a) Sitting down. (b) Kicking. (c) Crossing hands. (d) Making a
phone call.

Fig. 11. The temporal attention obtained from bidirectional LSTM is more
effective and the action can be localized more accurately. The groundtruth
of action proposals are shown in red boxes. (a) Temporal attention response
from unidirectional LSTM. (b) Temporal attention response from bidirectional
LSTM.

with larger spatial attention (the reg region) concentrate in
the duration from the 50th frame to 60th, while the temporal
attention also has stronger response in the same duration. More
examples can be found in Fig. 10.

C. Evaluation on Action Detection

In this subsection, we validate the effectiveness of our
temporal attention method for action detection. The implemen-
tation details on proposal generation, classification, evaluation
criteria, and experiment results will be discussed.

1) Proposal Generation: As described in Section III-E,
temporal attention is utilized to generate temporal segments

and thus action proposals. The interval is selected as a proposal
if the attention response is higher than a threshold. The TAP-
LSTM is trained with trimmed videos. The temporal attention
response curve can be obtained for a long untrimmed sequence
after going through TAP-LSTM and thus the action proposals.

We find that the temporal attention learned from bidirec-
tional LSTM for TAP-LSTM is more effective and the action
can be localized more accurately, as shown in Fig. 11. Both
history frames and future frames are utilized for learning in
the bidirectional LSTM network, leading to cleaner action
boundaries and suppressing the wrong responses over non-
action intervals in Fig. 11(b).

In practice, we smooth the temporal attention curve with an
average filter of window size 30. To increase the robustness
of our proposal generation approach, multi-scale schemes
are adopted and each proposal location generates 9 proposal
candidates. We explore the influence of parameters ε, w and
δ in Fig. 12 by average recall analysis (IoU ∈ {0.1, 0.3, 0.5}),
respectively. We first assess the impact of ε and w when gen-
erating proposals with bidirectional TAP-LSTM. With fixed
w = 30, we evaluate with different ε ∈ {0, 0.1, 0.2, 0.3}
in Fig. 12(a), which controls the suppression of lower atten-
tion response. The results suggest that ε is a crucial hyper-
parameter for achieving higher recall. A lower ε results in
proposal fragments, while a higher ε could easily filter some
actions as well. Based on the analysis, ε is set to 0 and
0.2 for the Cross-Subject and Cross-View settings, respec-
tively. As shown in Fig. 12(b), our model is not very sensitive
to w, which limits the distance of adjacent proposals. Though
more proposals are generated with a smaller w, the recall rate
is not satisfactory. In the multi-scale scheme in Fig. 12(c),
which generates more proposals compared with single scale
and achieves higher recall, there is little impact for different δ
with fixed w and ε. We choose a value of δ = �(ep−sp+1)/3	
for our multi-scale scheme.

2) Proposal Classification: The generated proposals are fed
into an action classifier. Here we take our STA-LSTM as the
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Fig. 12. We explore the influence of parameters ε, w and δ in the process
of proposal generation using bidirectional LSTM. (a) The influence of ε.
(b) The influence of w. (c) The influence of δ (w = 30, ε = 0 for
Cross-Subject and w = 30, ε = 0.2 for Cross-View).

classifier. Since the PKU-MMD is well annotated, we cut
the long sequences to action clips and we can train our
STA-LSTM on these clips. Note, we add non-action as an extra
action type (background) to exclude false proposals. Table III
shows the performance with STA-LSTM, which also illus-
trates the effectiveness of our spatial and temporal attention
model. With the well-trained model for action recognition,
action detection is achieved by conducting classification on
those proposals and NMS on the classification results (the
confidence threshold is set as 0.1).

3) Evaluation Criteria: Inspired by the objection detection
in images [65], the action proposal is determined as correct
when the overlapping ratio between the proposed interval I
and the groundtruth interval I ∗ exceeds a threshold θ , which
is given as

|I ∩ I ∗|
|I ∪ I ∗| > θ, (10)

where I ∩ I ∗ denotes the intersection of the predicted and
ground-truth intervals and I ∪ I ∗ denotes their union. With
the above criterion to determine a correct detection, we use
F1 score and mean average precision (mAP) to measure the
detection performance.

• F1-Score. With a threshold θ , the precision p and recall
r can be calculated. Therefore, the F1-score is

F1 = 2 × Precision ∗ Recall

Precision + Recall
. (11)

• Mean Average Precision (mAP). As [65], we use the
interpolated precision pint , which is able to remove
jiggles on the precision-recall curve, to calculate mean
average precision. At a given recall level r , the interpo-
lated precision pint is defined as

pint (r, θ) = max
r ′≥r

p(r ′, θ), (12)

where p(r, θ) is the precision-recall function under
threshold θ . Then the mean average precision is formu-
lated by

mAP(θ) = 1

C

C∑
c=1

1

mc

mc∑
k=1

pint (rck, θ), (13)

where C is the total number of action classes, for each
class with type id of c, there are mc action occurrences
and rck is the recall result of the kth ranked detections.

4) Performance Comparisons: We evaluate our action
detection performance scheme with the following configura-
tions:

• TAP-U: The detection scheme with our temporal action
proposal generation network built by Unidirectional
LSTM layers.

• TAP-U-M: The detection scheme with our temporal
action proposal generation network with Multi-scale pro-
posals built by Unidirectional LSTM layers.

• TAP-B: The detection scheme with our temporal action
proposal generation network built by Bidirectional LSTM
layers.

• TAP-B-M: The detection scheme with our temporal
action proposal generation network with Multi-scale pro-
posals built by Bidirectional LSTM layers.

To further verify the effectiveness of the proposed action
detection method, we introduce several approaches for com-
parison. (a) SVM-SW. An SVM detector is trained to
detect the action with a sliding window (SW) strategy.
(b) STA-LSTM-SW. Detection is performed based on sliding
window design with each window recognized by STA-LSTM.
The window size is set to 10 with a step of 5 for both SVM-
SW and STA-LSTM-SW. Other different window sizes are
evaluated experimentally and the window size of 10 gives
relatively good average results. (c) JCR-RNN [16]. The Joint
Classification-Regression RNN regresses the start and end
points in an end-to-end manner with frame level action detec-
tion. (d) STA-LSTM-JCR. We use the proposals generated by
JCR-RNN [16], and each proposal is classified by STA-LSTM.

We show the mAP and F1-score results in Table IV and
Table V, respectively. For each method, we calculate the
F1-score using the precision and recall value which take
all the generated proposals into account. Due to cleaner
action boundaries, the quality of temporal proposals built from
bidirectional LSTM is much better and thus obtain superior
performance compared with unidirectional LSTM. The multi-
ple scale proposal scheme results in even better performance,
since it generates more proposal candidates around the center
candidate to refine the action boundary. Fig. 13 compares
precision-recall curves for different methods. The performance
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TABLE IV

COMPARISON OF DIFFERENT METHODS IN MAP ON THE PKU-MMD

TABLE V

COMPARISON OF DIFFERENT METHODS IN F1-SCORE ON THE PKU-MMD

Fig. 13. Precision-recall curves for action detection on the PKU-MMD under
different IoU θ . (a) Cross Subject. (b) Cross View.

of other methods is significantly inferior to our proposed
action detection framework. Sliding-window based methods
lack flexibility on window sizes while adaptive window sizes
require high computation complexity. JCR-RNN and STA-
LSTM-JCR detect actions in the frame level, resulting in
many action fragments. Relying on the temporal attention,
our proposal generation method is more flexible. Thanks to
accurate proposal localizations and remarkable classification
performance, our method outperforms other state-of-the-arts.

V. CONCLUSION

We present an attention based LSTM network for action
analysis from skeleton data. To select discriminative joints
automatically and adaptively, we propose a spatial attention

module with joint-selection gates to assign different levels
of importance to different joints. To automatically exploit the
different levels of importance for different frames, we propose
a temporal attention module to allocate different levels of
attention to each frame within a sequence. We design a joint
training procedure to efficiently combine spatial and temporal
attention with a regularized cross-entropy loss. Our temporal
attention is capable of locating the action intervals. We lever-
age the attention response to generate multiple scale action
proposals. Action detection is then achieved by recognizing the
action types of each proposal. Experiment results demonstrate
the effectiveness of our proposed scheme, which achieves
remarkable performance in comparison with other state-of-the-
art methods for both action recognition and detection.
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