
GLADNet: Low-Light Enhancement Network with Global Awareness

Wenjing Wang*, Chen Wei*, Wenhan Yang, Jiaying Liu
Institute of Computer Science and Technology, Peking University

Abstract—In this paper, we address the problem of low-
light enhancement. Our key idea is to first calculate a global
illumination estimation for the low-light input, then adjust
the illumination under the guidance of the estimation and
supplement the details using a concatenation with the original
input. Considering that, we propose a GLobal illumination-
Aware and Detail-preserving Network (GLADNet). The input
image is rescaled to a certain size and then put into an
encoder-decoder network to generate global priori knowledge
of the illumination. Based on the global prior and the original
input image, a convolutional network is employed for detail
reconstruction. For training GLADNet, we use a synthetic
dataset generated from RAW images. Extensive experiments
demonstrate the superiority of our method over other com-
pared methods on the real low-light images captured in various
conditions.

Keywords-Low-light enhancement, deep learning, detail re-
construction, encoder-decoder

I. INTRODUCTION

Insufficient illumination can severely degrade the quality
of images. This is due to poor shooting environments, limit-
ed performance of photographic equipments and improper
operations of photographers. It often causes insufficient
saturation and contrast of images, damages visual quality
and degrades the performance of many computer vision
algorithms.

In the past decades, various algorithms have been pro-
posed to improve the subjective and objective quality of
low-light images. Histogram equalization (HE) [1] is a
widely-used technique. By restraining the histograms of
the output images to meet some constraints, HE and its
variants can improve the contrast effectively. Retinex is a
model of lightness and color perception of human vision.
Images are assumed to be a combination of two components,
reflectance and illumination. Single Scale Retinex (SSR)
[2] manipulates the reflectance component and treats it as
the final output. Multi-Scale Retinex with Color Restoration
(MSRCR) [3] extends the single-scale enter/surround retinex
to a multi-scale version. Guo et al. [4] tried to estimate
the illumination map. Fu et al. [5] simultaneously estimated
reflectance and illumination. De-hazing based methods [6]
utilize the high similarity between low-light images and
those with the dense fog. Fusion based methods [7] introduce
the fusion mechanism of human visual system to help build
an accurate image enhancement algorithm.

* indicates equal contributions.

Deep Neural Networks has achieved excellent results on
many low-level computer vision tasks. There are also efforts
on utilizing deep neural networks for low light enhancement.
Lore et al. [8] used variant of the stacked-sparse denois-
ing auto-encoder learning from synthetically darkened and
noise-added training examples for simultaneously low-light
enhancement and noise reduction (LLNet).

In this paper, we propose a GLobal illumination-Aware
and Detail-preserving Network (GLADNet). The architec-
ture of the proposed network can be divided into two
steps. In order to obtain a global illumination prediction,
the image is first down-sampled to a fixed size and passed
through an encoder-decoder network, which we call the
global illumination estimation step. The bottle-neck layer
of the encoder-decoder has a receptive field that covers the
whole image. The second step is a detail reconstruction step,
which helps to supplement the details lost in the rescaling
procedure. For training such a network, we synthesize a
training dataset from RAW pictures captured in various
conditions and use L1 norm as the loss function. The effect
of GLADNet is evaluated on real images with other state-
of-the-art methods. Extensive experiments demonstrate the
superiority of our method over other compared methods.

The rest of this paper is organized as follows. In Section
II, the proposed framework is described in detail. In Section
III, we talk about the datasets and settings for training,
evaluate the performance and applications on real images.
Section IV contains conclusions and discussions on further
work.

II. PROPOSED METHOD

The architecture of the proposed network comprises two
adjacent steps. One is for global illumination estimation and
the other is for detail reconstruction.

As shown in Fig. 1, in the global illumination estimation
step, inputs are down-sampled to a fixed size. Then, feature
maps are passed through an encoder-decoder network. At the
bottle-neck layer, the global illumination is estimated. After
scaling back to the original size, an illumination prediction
for the whole image is obtained. The global illumination
estimation step is followed by a detail reconstruction step.
Three convolutional layers adjust the illumination of the
input image referring to the global-level illumination pre-
diction, and fill in the details lost in the down-sampling and
up-sampling procedure at the same time.
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Figure 1. The architecture of GLADNet. The architecture consists of two steps, global illumination estimation step and detail reconstruction step. In the
first step, the encoder-decoder network produces an illumination estimation of a fixed size (96 × 96 here). In the second step, a convolutional network
utilizes the input image and the outputs from the previous step to compensate the details.

A. Global illumination estimation
The global illumination estimation step has three sub-

steps: scaling the input image to a certain resolution, passing
it through an encoder-decoder network for global illumina-
tion prediction, and rescaling it to the original resolution.

First, the input is down-sampled to a certain size W0×H0

by nearest-neighbor interpolation. A convolutional layer
with a ReLU is followed. Then, the feature maps pass
through a series of cascaded down-sampling blocks. The
number of down-sampling blocks are carefully designed
according to W0 and H0, so that the receptive field of the
bottle-neck layer of the encoder-decoder network can cover
the entire image. The network thus has a global awareness
of the whole illumination distribution. This design can also
reduce the requested storage, and increase the efficiency
of the network. After a series of symmetrical up-sampling
blocks, W0×H0 feature maps for illumination prediction is
obtained. By another up-sampling block, the feature maps
are rescaled to the size of the original input.

Skip connections are introduced from a down-sampling
block to its corresponding mirrored up-sampling block. Out-
puts of the down-sampling block are passed to and summed
up with the feature maps of the up-sampling block. This
enforces the network to learn residuals rather than predicting
the actual pixel values.

A down-sampling block consists of a convolutional layer
with stride two and a ReLU. In the up-sampling block,
resize-convolutional layers [9] are used to replace normal
deconvolution layers. Different from normal deconvolution
layers, resize-convolutional layers avoid checker-board pat-
tern of artifacts and have no limit of the size of the input
image. Resize-convolutional layer consists of a nearest-
neighbor interpolation operation, a convolutional layer with
stride two and a ReLU.

B. Details reconstruction
The first step is to produce an illumination estimation

from a global perspective. However, details are lost due to
the rescaling procedure. In order to address this issue, a
detail reconstruction procedure is proposed.

The original input is considered to contain more details
than the output of the encoder-decoder network, therefore
can provide information for detail restoration. Concatenation
is used instead of skip-connection to combine the feature
maps of the last up-sampling block and the input image,
so that both the original information and the illumination
estimation can be completely preserved and transmitted to
the next step. The concatenation layer is followed by three
convolutional layers with ReLUs. It assemble the input
images information with the estimated global illumination
information and finally generate enhanced results with better
details.

C. Loss function
The training procedure is achieved by minimizing the

loss between the restored image F (X,Θ) and the the
corresponding ground-truth image Y . We use L1 norm here.
L2 norm to better remove noise and ringing artifacts in the
enhanced results [10]. The loss function can be written as:

Loss(X,Y ) =
1

N

N∑
i=1

‖F (Xi,Θ)− Yi‖1, (1)

where N is the number of all training samples and ‖ · ‖1 is
L1 norm.

Also the red, the green and the blue channel have
their own weights in the loss function: (0.29891, 0.58661,
0.11448), which is the same weight for the transformation
from RGB images to gray images. This helps to maintain
color balance and improve the robustness of the network.

III. EXPERIMENTS
A. Dataset generation

We use synthesized pairs as training data. Different from
[8][11] which synthesize pairs on 8-bit RGB images, we
synthesize pairs on raw images. Calculating on 8-bit RGB
images can cause loss of information with only 256 values.
On raw images, all adjustments are performed in one step
on the raw data, leading to more accurate results.

We collect 780 raw images from RAISE [12], 700 for
generating pairs for training and 80 for validation. Adobe
Photoshop Lightroom offers a series of parameters for raw
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Figure 2. The results enhanced by different methods on natural images: (top-to-bottom) “House” from NPE dataset, “Chinese Garden” from MEF dataset,
and “Street” from DICM dataset.

image adjustment, including exposure, vibrance and contrast.
We synthesize low-light images by setting exposure parame-
ter E to [−5, 0], vibrance parameter V to [−100, 0], contrast
parameter C to [−100, 0]. In order to prevent color-bias, we
add to the training dataset 700 gray-scale image pairs which
are converted to color image pairs. To keep the black and the
white regions the same before and after the enhancement, we
add five black-to-black and five white-to-white training pairs.
Finally, all images are resized to 400 × 600 and converted
to Portable Network Graphics format.

B. Network training
The kernel size of GLADNet is set to 3× 3. W0 and H0

are both set to 96. The encoder-decoder architecture has five
down-sampling and five corresponding up-sampling blocks.
This design makes the size of the bottle-neck layer in the
encoder-decoder network 3 × 3, so that the receptive field
can cover the whole image.

We initialize the weights using the initialization proposed

by [13]. Adam is used as the optimization method and each
mini-batch contains 8 image pairs. We start with learning
rate of 1e−3, multiply 0.96 after each 100 batch. The model
is trained for 50 epochs.
C. Subjective evaluation

Although GLADNet is trained on synthetic data, we
evaluate its performance on real under-exposed images. We
compare GLADNet with several state-of-the-art methods,
including Multi-Scale Retinex with Color Restoration (M-
SRCR) [3] , dehazing based method (DeHz) [6], Illumina-
tion Estimation based method (LIME) [4] and Simultaneous
Reflection and Illumination Estimation (SRIE) [5]. Here
we show several subjective results. Quantitative results on
quality of enhanced images and the analysis of runtime can
be found in our project website1.

We evaluate our approach on real under-exposed images
from public LIME-data [4], DICM [14], and MEF [15]

1https://daooshee.github.io/fgworkshop18Gladnet/



Figure 3. Results of Google Cloud Vision API for “Eiffel Tower” from MEF dataset. Before enhancement, Google Cloud Vision can not recognize the
Eiffel Tower. After enhanced by GLADNet, the Eiffel Tower is identified and marked by a green box.

Figure 4. Results for “Room” from LIME-data dataset. Potted plant and painting in the non-enhanced version are not recognized by Google Cloud Vision.

datasets. LIME-data contains 10 low-light images used in
[4]. DICM dataset is collected by [14] including 69 captured
images with commercial digital cameras. MEF contains 17
image sequences with multiple exposure levels. We select
76 poor-exposed ones for evaluation.

Fig. 2 shows three sets of visual comparisons in the test
dataset. As we can see, MSRCR can fully illuminate the
images, but the results are kind of whitish. The results of
LIME are visually pleasant, but bright regions are over
enhanced and details are lost. For example, in “House”
and “Chinese Garden”, the sky regions behind the trees are
over-exposed. The results of DeHZ have artifacts on edges,
which reduces the visual aesthetics of enhanced results.
On the other hand, SRIE does not sufficiently improve the
brightness of low-light images and the details can not be
seen clearly. In “Chinese Garden”, tiles above the pavilion
are still not visible.

Compared with other methods, our method produces more
vivid and natural results. Since GLADNet has a global
awareness of the input and adjusts the whole image at the
same time, over-exposure in brighter regions and under-
exposure in darker regions can be avoided. Further more, the
details are still kept after enhancement, which is benefited
from the detail reconstruction step.

D. Applications on Computer Vision
One of GLADNet’s main applications is to help improve

the performance of other computer vision tasks, such as ob-
ject detection and recognition. Since most visual recognition
models are based on high-quality data, poor conditions such
as poor visibility, haze, and low-illumination can greatly
reduce the performance of these algorithms.

To illustrate the effectiveness of our method for improving

the performance of object recognition, we test several real
low-light images and their corresponding enhanced results
on Google Cloud Vision API2, which can understand the
content of images via machine learning models and dividing
them into thousands of categories.

Fig. 3 shows one of the paired results. The original image
is from MEF dataset. Due to the low-illumination, Google
Cloud Vision can only label the image as “sky”, “cloud”
and “spire”. After enhanced, the foreground Eiffel Tower is
successfully detected and marked by a green box precisely,
showing the effectiveness of our method.

Another example is from LIME dataset. Before enhance-
ment, labels are settled on “night” and “phenomenon”. The
potted plants, paintings and other items are too dark to be
detected. As shown in Fig. 4, GLADNet helps Google Cloud
Vision API identify the objects in this image.

IV. CONCLUSIONS
In this paper, a global illumination-aware and detail-

preserving network is proposed. The proposed architecture
consists of two steps. First, an encoder-decoder network
obtains an illumination prediction of a fixed size from a
global perspective. Then, a convolutional network recon-
structs details utilizing the illumination prediction and the
original input. Results show that our method outperforms
other state-of-the-art methods.
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