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A B S T R A C T

In this paper, we propose a new video Super-Resolution (SR) method by jointly modeling intra-frame re-
dundancy and inter-frame motion context in a unified deep network. Different from conventional methods, the
proposed Spatial-Temporal Recurrent Residual Network (STR-ResNet) investigates both spatial and temporal
residues, which are represented by the difference between a high resolution (HR) frame and its corresponding
low resolution (LR) frame and the difference between adjacent HR frames, respectively. This spatial-temporal
residual learning model is then utilized to connect the intra-frame and inter-frame redundancies within video
sequences in a recurrent convolutional network and to predict HR temporal residues in the penultimate layer as
guidance to benefit estimating the spatial residue for video SR. Extensive experiments have demonstrated that
the proposed STR-ResNet is able to efficiently reconstruct videos with diversified contents and complex motions,
which outperforms the existing video SR approaches and offers new state-of-the-art performances on benchmark
datasets.

1. Introduction

Video super-resolution (SR) aims to produce high-resolution (HR)
video frames from a sequence of low-resolution (LR) inputs. In recent
years, video super-resolution has been drawing increasing interest from
both academia and industry. Although various HR video devices have
been developed constantly, it is still highly expensive to produce, store
and transmit HR videos. Thus, there is a great demand for modern SR
techniques to generate HR videos from LR ones.

The video SR problem, as well as other signal super-resolution
problems, can be summarized as restoring the original scene xt from its
several quality-degraded observations {yt}. Typically, the observation
can be modeled as

= + = …t Ty D x v , 1, , .t t t t (1)

Here Dt encapsulates various signal quality degradation factors at the
time instance t, e.g., motion blur, defocus blur and down-sampling.
Additive noise during observation at that time is denoted as vt.
Generally, the SR problem, i.e., solving out xt in Eq. (1), is an ill-posed
linear inverse problem that is rather challenging. Thus, accurately

estimating xt demands either sufficient observations yt or proper priors
on xt.

All video SR methods can be divided into two classes: reconstruc-
tion-based and learning-based. Reconstructed-based methods (Baker
and Kanade, 1999; Farsiu et al., 2004; He and Kondi, 2006; Kanaev and
Miller, 2013; Liu and Sun, 2014; Omer and Tanaka, 2009; Rudin et al.,
1992) craft a video SR process to solve the inverse estimation problem
of (1). They usually perform motion compensation at first, then perform
deblurring by estimating blur functions in Dt of (1), and finally recover
details by local correspondences. The hand-crafted video SR process
cannot be applicable for every practical scenario of different properties
and perform not well to some unexpected cases.

In contrast, learning-based methods handle the ill-posed inverse
estimation by learning useful priors for video SR from a large collection
of videos. Typical methods include recently developed deep learning-
based video SR methods (Huang et al., 2015; 2017; Liao et al., 2015a)
and give some examples of non-deep learning approaches. In Liao et al.
(2015a), a funnel shape convolutional neural network (CNN) was de-
veloped to predict HR frames from LR frames that are aligned by optical
flow in advance. It shows superior performance on recovering HR video
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frames captured in still scenes. However, this CNN model suffers from
high computational cost (as it relies on time-consuming regularized
optical flow methods) as well as visual artifacts caused by complex
motions in the video frames. In Huang et al. (2015); 2017), a bidirec-
tional recurrent convolutional network (BRCN) was employed to model
the temporal correlation among multiple frames and further boost the
performance for video SR over previous methods.

However, previous learning-based video SR methods that learn to
predict HR frames directly based on LR frames, suffer from following
limitations. First, these methods concentrate on exploiting between-
frame correlations and does not jointly consider the intra- and inter-
frame correlations that are both critical for the quality of video SR. This
unfavorably limits the capacity of the network for recovering HR frames
with complex contents. Second, the successive input LR frames are
usually highly correlated with the whole signal of the HR frames, but
are not correlated with the high frequency details of these HR images.
In the case where dominant training frames present slow motion, the
learned priors hardly capture hard cases, such as large movements and
shot changes, where neighboring frames distinguished-contributed op-
erations are needed. Third, it is desirable for the joint estimation of
video SR to impose priors on missing high frequency signals. However,
in previous methods, the potential constraints are directly enforced on
the estimated HR frames.

To solve the above-mentioned issues, in this work, we propose a
unified deep neural network architecture to jointly model the intra-
frame and the inter-frame correlation in an end-to-end trainable
manner. Compared with previous (deep) video SR methods (Huang
et al., 2015; 2017; Liao et al., 2015a), our proposed deep network
model does not require explicit computation of optical flow or motion
compensation. In addition, our proposed model unifies the convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs)
which are known to be powerful in modeling sequential data. Com-
bining the spatial convolutional and temporal recurrent architectures
enables our model to capture spatial and temporal correlations jointly.
Specially, it models spatial and temporal correlations among multiple
video frames jointly. The temporal residues of HR frames are predicted
based on input LR frames along with their temporal residues to further
regularize estimation of the spatial residues.

This architectural choice enables the network to handle the videos
containing complex motions in a moving scene, offering pleasant video
SR results with few artifacts in a time-efficient way.

More concretely, we propose a Spatial Temporal Recurrent Residual
Network (STR-ResNet) for video SR as show in Fig. 1. As aforemen-
tioned, SRT-ResNet models spatial and temporal correlations among
multiple video frames jointly. In STR-ResNet, one basic component is

the spatial residual CNN (SRes-CNN) for single frame SR, which has a
bypass connection for learning the residue between LR and HR feature
maps. SRes-CNN is able to capture the correlation information among
pixels within a single frame, and tries to recover an HR frame based on
its corresponding LR frame through utilizing such correlations. Then,
STR-ResNet stacks multiple SRes-CNNs together with recurrent con-
nections between them. The global recurrent architecture captures the
temporal contextual correlation and recovers the HR frame using both
its corresponding LR frame and its adjacent frames. To better model
inter-frame motions, STR-ResNet takes not only multiple LR frames but
also the residue of these adjacent LR frames as inputs and tries to
predict the temporal residues of HR frames in the penultimate layer. An
HR frame is thus recovered by STR-ResNet by summing up its corre-
sponding LR frame and the predicted spatial residue via the SRes-CNN
component, under the guidance of the predicted temporal residue from
adjacent frames via recurrent residual learning.

By separating the video frames into LR observations and the spatial
residue within a single frame, the low frequency parts of HR frames and
LR frames are untangled. Thus, the models can only focus on describing
high-frequency details. By considering the temporal residues, in both
their prediction path from LR temporal residues to HR temporal re-
sidues and their connection to spatial residues, the proposed STR-
ResNet models both the spatial and temporal correlations jointly and
achieves outstanding video SR performance with relatively low com-
putational complexity.

In summary, we make the following contributions in this work to
solving the challenging video SR problem:

• We propose a novel deep convolutional neural network architecture
specifically for video SR. It follows a joint spatial-temporal residual
learning and aims to predict the HR temporal residues which further
facilitate the predictions of spatial residues and HR frames. By em-
bedding the temporal residue prediction, the proposed architecture
is capable of implicitly modeling the motion context among multiple
video frames for video SR. It provides high-quality video SR results
on benchmark datasets with relatively low computational com-
plexity.

• To the best of our knowledge, the proposed STR-ResNet is the first
research attempt to incorporate the bypass connection in a deep
network to embed the joint spatial-temporal residue prediction and
model temporal correlations in video frame sequences for video
processing. The incorporated residual architecture implicitly models
inter-frame motion context and is demonstrated to be beneficial for
video SR.

• We are also among the first to investigate and unify the spatial
convolutional, temporal recurrent and residual architectures into a
single deep neural network to solve video SR problems. Extensive
experiments on video SR benchmark datasets clearly demonstrate
the contribution of each component to the overall performance.

The rest of this paper is organized as follows. Related work is briefly
reviewed in Section 2. In Section 3, we introduce our spatial-temporal
residual learning. Then, we construct a deep network to model it step-
by-step and present the details of the proposed STR-ResNet, which
models both spatial and temporal redundancies jointly in a unified
network, as well as its constituent SRes-CNN in Section 4. Experimental
results are presented in Section 5. More analysis and discussion on our
method are provided in Section 6. Concluding remarks are given in
Section 7.

2. Related work

Single image super-resolution was first investigated by Irani and
Peleg (1991). By now, it can be divided into two categories: re-
construction-based and learning-based. Reconstruction-based methods
adopt regularizations, such as gradient histogram (Sun et al., 2011),

Fig. 1. The architecture of our proposed spatial-temporal recurrent residual network
(STR-ResNet) for video SR. It takes not only the LR frames but also the differences of these
adjacent LR frames as the input. Some reconstructed features are constrained to predict
the differences of adjacent HR frames in the penultimate layer.
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nonlocal filter (Huhle et al., 2010; Mairal et al., 2009; Zhang et al.,
2013) and total variation (Marquina and Osher, 2008), to guide the SR.
Learning-based methods learn the mapping function from the training
data to model the spatial correlation of single images. These methods
include neighbor embedding (Chang et al., 2004), sparse representation
(Yang et al., 2010), anchor regression (Timofte et al., 2013), random
forest (Salvador and Prez-Pellitero, 2015), tensor regression (Yin et al.,
2015), ramp transformation (Singh and Ahuja, 2015) and deep learning
(Cui et al., 2014; Dong et al., 2014; Zeng et al., 2016). Some recent
works focus on super-resolution on a specific kind of images, such as
depth image (Ismaeil et al., 2016; Joshi and Chaudhuri, 2006), multi-
spectral image (Aguena and Mascarenhas, 2006) and multi-
resolution (Lu and Li, 2014). There are also some recent works on the
SR performance evaluation (Ma et al., 2017) or bridging the image SR
to high-level computer vision tasks (Nguyen et al., 2013; Timofte et al.,
2016).

Compared with the images where SR mainly relies on utilizing the
intrinsic spatial correlation (Freeman et al., 2002; Irani and Peleg,
1991; Sun et al., 2011; Yuan et al., 2013), the videos additionally
present the temporal correlation among adjacent frames that is valuable
for their SR in particular. Thus the attempts to effectively exploit such
temporal correlation motivate several recent video SR
approaches (Baker and Kanade, 1999; Farsiu et al., 2004; Huang et al.,
2015; 2017; Protter et al., 2009; Zhao and Sawhney, 2002). Although it
is conceptually straightforward, exploiting the temporal correlation
immediately proposes several important challenges to modern video SR
techniques: e.g., how to estimate and model motion across frames
properly for video SR and how to establish the correspondence between
pixels from adjacent frames based on the motion estimation.

Most of the existing video SR methods exploit motion information in
the following two ways: explicitly aligning multiple frames according to
estimated motion and implicitly embedding motion estimation to reg-
ularize the process of recovering HR frames. Accordingly these video SR
methods can be divided into two categories: the explicit motion-based
methods that align LR frames according to either optical flow (Fransens
et al., 2007; Liu and Sun, 2014) or motion compensation (Baker and
Kanade, 1999) and the implicit motion-based methods that embed motion
as a weighting term (Farsiu et al., 2004; He and Kondi, 2006; Kanaev
and Miller, 2013; Omer and Tanaka, 2009) or a regularization term (Liu
and Sun, 2014; Rudin et al., 1992; Yuan et al., 2013; Zhang et al., 2015)
for tuning the HR estimation.

Explicit motion-based methods generally suffer from heavy com-
putational cost for motion compensation, and artifacts caused by in-
accurate registration of local irregular motions. To overcome these
deficiencies and get rid of explicit motion estimation, implicit motion-
based methods embed motion context into the HR estimation. For ex-
ample, the nonlocal similarity and kernel regression among multiple
frames can be employed to model the temporal and spatial correlations
implicitly (Protter et al., 2009; Takeda et al., 2009a). Benefited from
implicit motion estimation, these methods avoid visual artifacts due to
inaccurate motion estimation and are able to handle local motions ef-
fectively. However, they may fail in dealing with large motions.

Recently, several deep learning methods (Huang et al., 2015; Liao
et al., 2015a) have been proposed to address the video SR problem in
both explicit and implicit ways. Compared with conventional methods,
in these works, CNNs and RNNs are used to model some parts of the
video SR pipeline, i.e. feature extraction, motion compensation, and
multi-frame fusions, achieving superior video SR performance.

Besides the video SR, many deep learning-based low level proces-
sing applications raised, with promising performance. These applica-
tions include denoising (Agostinelli et al., 2013; Burger et al., 2012a,b;
Jain and Seung, 2009; Vincent et al., 2010), completion (Xie et al.,
2012), super-resolution (201, 2016; Dong et al., 2014; Osendorfer et al.,
2014), deblurring (Schuler et al., 2016), deconvolution (Xu et al., 2014)
and style transfer (Gatys et al., 2016; Yan et al., 2016). They focus on
exploiting a deep network to learn a mapping between the source /

degraded signal and the target / high-quality signal for a single image,
by capturing the spatial correlation.

3. Spatial-temporal residual learning

In this section, we illustrate our spatial-temporal residual learning.
Let x and y be HR and up-sampled LR sequences which have the same
size to the HR sequences, respectively. Then, the inverse mapping
function for video SR can be represented by

= fx y( ),n (2)

where fn( · ) is the process to predict the HR image X directly based on
the LR image Y.

An end-to-end learning following Eq. (2) will be trapped into the
difficulties mentioned in Section 1: (i) separation of intra- and inter-
correlations modeling, (ii) contamination from frames due to treating
neighboring frames equally and lack of constraints for adjacent pre-
dicted frames.

To address the issues (i) and (ii), we change to solve video SR by
learning to predict the spatial residue = −r x yt t t instead of the whole xt
as

= +fX Y Y( ) ,s (3)

where fs( · ) is the process to predict the difference between the HR
image x and the LR image Y based on Y.

This change makes a learning-based method capable to fit the high-
frequency mapping between LR frames {yt} and the spatial residue {rt}
instead of the mapping between LR frames {yt} and HR frames {xt},
where the low frequency mapping plays a dominant role. In the de-
gradation, the down-sampling operation usually brings in aliasing effect
that the local high-frequency patterns change after the down-sampling
operation. Following the simplification in Liu and Sun (2014), we re-
gard the aliasing signal as structural noise. Thus, we do not model it
explicitly and expect the recovery process, i.e. fs( · ), can automatically
model its removal.

Besides, from the perspective of patch statistic, Eq. (3) provides
more structural correspondences than Eq. (2) as shown in Fig. 2. We
calculate “patch repetitiveness” across frames to observe the structural
correspondences via the average MSE between a local 5× 5 patch and
it most similar patches. We first search the top-10 similar patches for
each patch among three successive frames and calculate the MSE be-
tween the patch and its similar patches. Then, the average MSE of each
patch is converted into a probability based on Gaussian function. We
calculate this statistic in two domains – the original signal domain and
spatial residual domain, and visualize the results. The subfigure (d) in
Fig. 2 is the heat map for the patch repetitiveness of (b) across frames in

Fig. 2. Top panel: (a)–(c) local regions in the Tractor sequence and (d) the patch re-
petitiveness of the 35th frame. Bottom panel: (a)–(c) local regions in the temporal re-
sidues of the Tractor sequence and (d) the patch repetitiveness of the spatial residue in the
35th frame. Red signifies high values, Blue signifies low values. It is clearly demonstrated
that the spatial residue domain across frames provides more patch repetitiveness than the
original image space.
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the top panel – an normal 2D sub-image in Eq. (2), that for the patch
repetitiveness of (b) across frames in the bottom panel – the difference
image – in the spatial residue space in Eq. (3), respectively. In these
heat maps, red signifies high values and blue signifies low values. From
the result, the third issue (iii) is clearly demonstrated that the spatial
residue domain across frames provides more patch repetitiveness than
the original image space across frames. This property is significant for
us to design a learning-based image SR approach, especially when many
previous works (Dong et al., 2013; Wu and Zheng, 2013) have proved
that the structural correspondence in the target domain provides useful
information to infer and locate the manifold where the HR signal locate.

Then, to address the issue (iii) and impose effective constraints on
the predicted HR frames, we build the connection between spatial and
temporal residues. We define HR frames t and +t 1 as

= +x r y ,t t t (4)

= ++ + +x r y ,t t t1 1 1 (5)

Let Eq. (5) subtract Eq. (4), we have

− = − + −+ + +x x r r y y( ) .t t t t t t1 1 1 (6)

Define the temporal residue for xt and yt. = −+δ x xt t t
x

1 and
= −+δ y y ,t t t

y
1 then

− = −+δ δ r r .t t t t
x y

1 (7)

Although the derivation of Eq. (7) is straightforward, it bridges the
predictions of the spatial and temporal residues. This connection is
beneficial to video SR from two aspects. First, it provides a more ef-
fective learning strategy – the prediction for temporal residues δt

x is first
learned and then precise predictions for δt

x will naturally lead to more
precise spatial residue estimations and finally more precise ̂xt . Second,
with Eq. (7), the predictions for spatial residues +rt 1 and rt are reg-
ularized explicitly by that their differences are equal to the differences
of the temporal residue −δ δt t

x y . This provides effective side informa-
tion to regularize a learning-based model, leading to both fast con-
vergence rate and higher accuracy.

4. Spatial-temporal recurrent residual networks for multi-frame
SR

In this section, a basic network structure – SRes-CNN for spatial
residual learning for single image SR is presented in formulation. Then,
motivated by our spatial-temporal residual learning, we construct our
proposed STR-ResNet step by step. Finally, a new proposed STR-ResNet
by stacking and connecting the basic component – SRes-CNN for joint
temporal learning is elaborated.

4.1. Architecture of SRes-CNN

Single frame SR aims to reconstruct an HR frame from a single LR
frame. Some recent deep learning based SR methods (Dong et al., 2014;
Wang et al., 2015a; Yang et al., 2017) propose to use a CNN model to
extract features from LR frames and then map them to HR ones. A ty-
pical CNN architecture for single frame SR consists of three convolu-
tional layers as proposed in Dong et al. (2014) which jointly performs
sparse coding and reconstruction over the LR frames as shown in
Fig. 4 (a). However, striving for directly recovering the complete HR
frames may cause the CNN models to miss some important high fre-
quency details. In contrast, separately modeling LR signals and their
residues with high-frequency details, as shown in Fig. 4 (b)–(e), could
recover high frequency details better. Besides, we hope to construct an
easy training network and expect its training to converge fast and to a
good state even without advanced training skills.

Keeping such an idea in mind, we propose a new CNN architecture –
Spatial Residual CNN (SRes-CNN) – to learn spatial residue between HR
and LR frames as shown in Fig. 4 (c). Specifically, SRes-CNN contains

nice layers, including six convolutional layers, three bypass connections
and three element-wise summations, as shown in Fig. 3. The bypass
connections forward the feature maps output from the ith layer ( =i 1, 4
for the SRes-CNN we use in the experiments) to the +i( 2)th layer di-
rectly. Then, the feature maps output from the +i( 2)th and ith layers
are fused as input to the next +i( 3)th convolution layer. To focus on
predicting the high-frequency components, SRes-CNN also establishes a
bypass connection from the input LR frame to the penultimate layer.
Note that, these two kinds of bypass connections play different roles in
STR-ResNet. The first “long-range”one directly forwards an input LR
frame to its penultimate layer (the 7th one). The other bypass con-
nections provide a coarse-to-fine refinement. For example, the feature
maps of the 1st layer correspond to the low-level features directly ex-
tracted from the LR image, and then the feature maps of the 3rd and 5th
layers therefore concentrate on capturing the enhanced details of HR

Fig. 3. The bypass structure and spatial residual learning in the proposed SRes-CNN. The
feature bypass connection forwards the feature maps output from a previous layer (1st /
4th) to a later one (4th / 7th). The LR bypass from the LR frame to the last layer (9th)
makes the network focus on predicting the residue, the high frequency component of a
frame.

Fig. 4. Network architectures from vanilla SRCNN to our proposed spatial-temporal re-
sidual network. (a) SRCNN. (b) SRCNN with LR bypass connections. (c) SRes-CNN has
both LR and feature bypass connections. (d) Multiple SRes-CNNs connected by context
and recurrent convolutions to model inter-frame motion context. (e) In STR-ResNet, the
differences of LR images δt

y are inputed into the network and parts of features in the
penultimate layer aim to predict the differences of HR images δ ,t

x which further regularize
and benefit the joint estimation of ̂x{ }t . (Best viewed in color.).
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features. Besides, the bypass connections also make constructing a
deeper network possible and speed up the training process (Dong et al.,
2014).

We here provide more formal description corresponding to Fig. 3 on
the operations of each layer in SRes-CNN. The output of each layer,
denoted as Ci for = …i 1, ,9, is calculated as

̂
̂

̂

= +

= +

= +

= +

= +

= +

= +

= +

= +

=

=

C W y B
C W C B
C W C B
C C C
C W C B
C W C B
C C C
C W C B
C y x

x C
x C

max(0, * ),
max(0, * ),

*
max(0, ),
max(0, * ),

* ,
max(0, ),

* ,
,

,
,

t

h h

t h t

h t

t

1 1 1

2 2 1 2

3 3 2 3

4 3 1

5 5 4 5

6 6 5 6

7 6 4

8 7

9 ,

, 8

9 (8)

where Wi and Bi are the filters and biases associated with the ith layer
respectively. Here we use the subscript h to indicate the parameters and
outputs that are related to high frequency predictions. Regarding the
network size, Wi consists of ni filters with a size of × ×−n f f ,i i i( 1) and

−ni 1 is the number of input feature maps of the ith layer which also
counts the output feature maps of the −i( 1)st layer. We use fi to denote
the kernel size of convolution filters of the ith layer. The bias Bi is an ni
dimensional vector. The outputs of each convolution layer (besides the
last convolution layer C8) also go through a Rectified Linear Unit
(ReLU). Particularly, n0 is the channel number of an input frame, where

=n 10 for the gray frame and =n 30 for the color frame, respectively.
The last convolutional layer is not connected with a ReLU unit. It is
noted that, C4, C7 and ̂xt have bypass connections from C1, C4 and yt
respectively. Taking the single LR and HR frames as the input and
output of the network respectively, SRes-CNN is capable of predicting
the HR frame according to a single LR frame by utilizing the spatial
correlation. However, it does not capture the temporal correlation
among adjacent frames in videos.

4.2. Modeling spatial-temporal residues: step by step

We now proceed to illustrate how to construct SRes-CNN and STR-
ResNet step by step in details. The vanilla SRCNN (Dong et al., 2014)
models the learning paradigm of Eq. (2) shown in Fig. 4 (a). The net-
work learns to predict xt based on yt directly. To model the learning
paradigm of Eq. (3), a bypass connection that forwards yt to the final
prediction ̂xt is added as shown in Fig. 4 (b). Training this network
needs additional training constraints and a deliberate crafted hyper-

parameter tuning, i.e. adjustable gradient clipping (Kim et al., 2016b),
thus, an improved version – the recurrent residue learning (Yang et al.,
2017) with not only the LR forward path but also the feature forward
path is proposed as shown in Fig. 4 (c). With bypass connections, the
network converges faster and to a better solution.

To utilize the temporal redundancy among different frames, the
relationship between different frames is modeled. We follow a similar
method as Huang et al. (2015) by adding recurrent and context con-
volutions in each recurrence of the recurrent residual learning, as
shown in Fig. 4 (d). To utilize temporal residues to facilitate the SR
network training and HR image predictions, motivated by Eq. (7), we
further propose a network structure as shown in Fig. 4 (e), where the
differences of LR images δt

y are inputed into the network and parts of
features in the penultimate layer aim to predict the differences of HR
images δ ,t

x which further regularize and benefit the joint estimation of
̂x{ }t . We then focus on illustrating Fig. 4 (c) and (e) in formulation.

4.3. Architecture of STR-ResNet

We now elaborate how the STR-ResNet exploits inter-frame corre-
lation by connecting multiple SRes-CNNs with convolutions and how it
incorporates temporal residual information for multi-frame SR. The
intuition of choosing the architecture is to propagate information across
multiple frames recurrently in order to capture the temporal context.
STR-ResNet uses recurrent units to connect several SRes-CNNs to
embed the temporal correlation. The STR-ResNet takes not only the LR
frames but also the differences of adjacent LR frames as inputs. It re-
constructs an HR frame through fusing its corresponding LR frame and
the predicted spatial residue, under the guidance of the predicted
temporal residues among adjacent frames. As shown in Fig. 5, STR-
ResNet performs following six types of operations:

1. Forward convolution. The convolution operations in each SRes-
CNN component for single frame SR.

2. Recurrent convolution. To propagate information across adjacent
frames and restore lost information from the adjacent frames, STR-
ResNet performs recurrent convolutions (the gray arrows between
frames as shown in Fig. 5) to propagate the features of the ith layer
of the adjacent −t( 1)st and +t( 1)st frames (defined as −C t i

a
( 1, ) and

+C t i
a
( 1, ) ) to the ith layer of the tth frame (defined as C t i

r p
( , )
, and C t i

r n
( , )
, .)

3. Context convolution. With the similar intuition of transmitting
complementary information among frames, the context convolution
(the light-green arrows between frames as shown in Fig. 5) propa-
gates the features of the −i( 1)th layer of the adjacent −t( 1)st and

+t( 1)st frames (defined as − −C t i
a
( 1, 1) and + −C t i

a
( 1, 1) ) to the ith layer of

the tth frame (defined as C t i
c p
( , )
, and C t i

c n
( , )
, .)

4. Temporal residue embedding. In the 8th layer, we first predict the

Fig. 5. The architecture of the STR-ResNet. It has a two-layer structure, which includes spatial and temporal residuals jointly in a unified deep framework. To model the inter-frame
correlation, we construct a temporal residual RNN by piling up and connecting spatial residual CNNs. It takes not only the LR frames but also the differences of these adjacent LR frames as
the input. Some reconstructed features are constrained to reconstruct the differences of adjacent HR frames in the penultimate layer. (Best viewed in color) (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.
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temporal residues (the green rectangles between the 7th and 8th
layers as shown in Fig. 5). In the training, these outputs are con-
strained by the loss function to regress the ground-truth temporal
residues, which will be presented more clearly in the next subsec-
tion. Then, we concatenate the predicted temporal residues with the
output feature maps from the 7th layer to generate the output fea-
ture maps of the 8th layer.

5. Feature bypass. The operation to transmit the features output from
the 1st/4th layers and combine them with the output of the 3rd/6th
layers respectively.

6. LR bypass. It bypasses the LR frames to the output of the 8th layer,
which generates the estimated HR details of frame t.

7. Feed forward. The operation to propagate the feature maps to the
subsequent unit.

Among these operations, the recurrent and context convolutions are
only deployed in the 2nd, 3rd, 5th and 6th layers of SRes-CNNs as
shown in Fig. 5 (b). All the recurrent connections transmit outputs of
layers (2nd, 3rd, 5th and 6th) on the tth frame to their corresponding
layers (2nd, 3rd, 5th and 6th) of the adjacent −t( 1)th and +t( 1)th
frames. All the context connections transmit from a previous layer (1st,
2nd, 4th and 5th) of the tth frame to their corresponding next layer
(2nd, 3rd, 5th and 6th) of the adjacent −t( 1)th and +t( 1)th frames.
After all these convolutions, an element-wise summation operation is
employed to fuse these convolution outputs and produce a new feature
map. The outputs of the five convolutional operations and the fusion
operation are formulated as follows,
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where = …i 2, 3, ,6, and W and B are filters and biases, respectively.
The superscripts f, c, r and a denote the unit type – forward convolution,
context convolution, recurrent convolution and element-wise summa-
tion aggregation. The superscripts p, n denote the direction of the
convolution, from the previous frame or the next frame. The subscript
(t, i) denotes that the operation is performed on the ith layer of the tth
frame. Consequently, C ,t i

f
( , ) C ,t i

c p
( , )
, C ,t i

c n
( , )
, C t i

r p
( , )
, and C t i

r n
( , )
, are the outputs of

the forward convolution, context convolution from the previous frame,
context convolution from the next frame, recurrent convolution from
the previous frame and recurrent convolution from the next frame in
the ith layer of the tth frame respectively. C t i

a
( , ) performs an element-

wise summation overall all the five outputs, for combining the predic-
tions from the current frame and adjacent frames. A ReLU unit is then
connected subsequently. The responses of previous layers are as fol-
lows,

= =iC C , for 1, 4, 7, 9.t i
a

t i
f

( , ) ( , ) (10)

For the 8th layer, we try to predict the temporal residues of HR frames
and utilize them as parts of the features to estimate the spatial residues,
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With the help of context and recurrent convolutions as well as the
temporal residue constraints, the STR-ResNet captures the inter-frame
motion context propagated from adjacent frames for video SR.

4.4. Training STR-ResNet

To learn meaningful features and capture some consistent motion
contexts between frames, STR-ResNet shares its parameters among

different frames. That is, for all C C C C, , , ,t i
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r p, , and are decided

by the unit type, denoted by superscript, and layer depth, and have
nothing to do with the frame number.

For training STR-ResNet, provided with LR video frames y{ }t
g and

HR frames x{ },t
g we minimize the Mean Square Error (MSE) between the

predicted frames and the ground truth HR frames:
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where
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=x xg g
0 1 and = …λ i{ , 1, 2, ,8, 9}i are the weighting parameters that

control the relative importance of these terms. c is set to 0.1 to play a
role but not the dominant one. We set =n 9T as the step/recurrence
number because it is the maximum value of temporal recurrences that
can be affordable for the GPU memory when using a mini-batch of 6
samples for training. Besides, it is also the default setting in the previous
RNN-based video SR method (Huang et al., 2015). For the setting of λt,
we propose to use a coarse-to-fine strategy: (1) “scattered” pre-training,
i.e., setting =λ 1t for all t forces the network to capture general motion
trends and to learn the features that are good at reconstructing a whole
video clip instead of a single frame; (2) “focused” fine-tune, namely as-
sociating the values of λt with an exponential decayed weight from the
center frame to other frames to focus on the prediction of the center
frame. The value configuration of λt is illustrated as Table 1.

4.5. Image degradation and aliasing

In our work, we follow previous works (Huang et al., 2015; Liao
et al., 2015b) and only evaluate on 4× enlargement, because it is
considered as the most difficult case among the commonly used ex-
perimental settings usually with 2, 3 and 4 as scaling factors. For the
blur kernel, a comprehensive study has been conducted in Bayesian
video SR (Liu and Sun, 2014). We follow its conclusion that, a point
spread function kernel for upscaling factor of 4 can be approximated by
a Gaussian with standard deviation from 1.2 to 2.4, and use a Gaussian
kernel with standard deviation 1.6 in our degradation setting.

Besides, as discussed in Liu and Sun (2014), this blurring operation
brings in the aliasing effect. High frequency components in the original
signal present different local patterns after down-sampling. This effect
may lead to inaccurate motion estimations and raise the problem of
inter-frame inconsistency. However, in our STR-ResNet, we do not ex-
plicitly model it because of two reasons: 1) STR-ResNet does not rely on
an explicit motion estimation; 2) in such a degradation, the aliasing can
be modeled as random noise (Liu and Sun, 2014), because the magni-
tude of the aliasing signal is relatively small compared to the whole
signal. Thus, the video SR with aliasing can be regarded as a problem of
joint denoising and SR, and is expected to be addressed through an end-
to-end learning.

Table 1
The adopted values of λt in “focused” fine-tune.

#Frame 1 2 3 4 5 6 7 8 9

3 — — — 0.7 1 0.7 — — —
5 — — 0.5 0.7 1 0.7 0.5 — —
7 — 0.35 0.5 0.7 1 0.7 0.5 0.35 —
9 0.25 0.35 0.5 0.7 1 0.7 0.5 0.35 0.25
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5. Experiments

In this section, we evaluate the performance of the proposed SR
method and compare it with state-of-the-art single image SR and video
SR methods.

5.1. Comparison methods

The compared single image SR baselines include Bicubic inter-
polation, A+ (Timofte et al., 2014) and super-resolution convolution
neural network (SRCNN) (Dong et al., 2014). The compared video SR
baselines include a commercial software video enhancer (VE)2,
3DSKR (Takeda et al., 2009b), Draft SR (Liao et al., 2015a) and
BRCN (Huang et al., 2015). We implement BRCN using Caffe (Jia et al.,
2014). Other baseline methods are tested by the released executable or
source codes provided by the authors. For learning based methods,
including (Timofte et al., 2014) and (Dong et al., 2014), we retrain or
fine-tune the models on the training set in the given experimental set-
ting. For the pixel shifting case, such as VE, we first adjust the input LR
image by Bicubic interpolation before SR.

5.2. Parameter setting

To evaluate the effectiveness of our method, we simulate the de-
gradation process and enlarge the generated LR images to their original
scales. Peak Signal to Noise Ratio (PSNR) is chosen as the metric. The
testing scaling factor is chosen as 4. In the simulation of degradation,
the LR frames are generated by blurring HR frames with a 9× 9
Gaussian filters with blur level 1.6.

5.3. Datasets

For training our STR-ResNet, we use 300 collected video sequences,
sampled uniformly from 30 high-quality 1080 p HD video clips as our
training set3,4. We use 6 HDTV sequences downloaded from the Xiph.org
Video Test Media2 as the testing set, which are commonly used high quality
video sequences for video coding testing. The name and content of the six
sequences are shown in Fig. 6. To reduce the memory storage needed in the
training phrase, we crop these frame groups into 75,000 overlapped patch
groups as the input of training. Each patch group contains 9 adjacent
patches in the temporal domain with the same location in the spatial do-
main. Similar to Dong et al. (2014), the size of the spatial window of each
patch group is set to 33×33 and the spatial stride is set to 11.

5.4. Network training

The proposed STR-ResNet uses the following parameters: all con-
volutions have a kernel size of 3×3 and a padding size 1; the layer
type and number are set as mentioned above; the channel size of the
intermediate layers is set to 64. We employ stochastic gradient descent5

to train the whole network. The training strategy is standard: learning
rates of weights and biases of these filters are set to 0.0001 initially and
decrease to 0.00001 after 2.5× 105 iterations (about 37 epochs). We
stop the training in 3× 105 iterations (about 44 epochs). In the first
step, we set =λ 1t and in the second step, we set λt as mentioned in
Table 1. The batch size is set to 6.

Fig. 6. The test HDTV sequences with their names as the
captions.

2 http://www.infognition.com/videoenhancer/.

3 https://media.xiph.org/video/derf/. (Xiph.org Video Test Media [derf’s collec-
tion]).

4 http://www.harmonicinc.com/resources/videos/4k-video-clip-center. (Dataset
from Harmonic Inc.).

5 http://caffe.berkeleyvision.org/tutorial/solver.html.
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5.5. Objective evaluation

We evaluate these methods with PSNR. Tables 2 and 3 show PSNR
results of compared video super-resolution methods on the testing
image set. The proposed method and the BRCN method are evaluated
with 9 adjacent frames as inputs. For Draft Learn, we report its results
in two cases: (1) taking 31 adjacent LR frames (Draft31) as its input; (2)
taking 5 adjacent LR frames (Draft5) as its input. For 3DSKR, the HR
estimation is generated based on adjacent 5 LR frames. From the result,
one can observe that even compared with the recent Draft Learning and
BRCN, our proposed STR-ResNet achieves a significant performance
gain over them. In particular, the average gain over the second best
BRCN is as high as 0.56 dB. VE and 3DKR achieve better reconstructed
results than Bicubic. However, their PSNR results are lower than very
recent single image SR methods, such as SRCNN and A+, which only
make use of the intra-frame spatial correlation. Due to exploiting the
spatial and temporal correlations jointly, the proposed STR-ResNet
achieves the best objective result. Draft learning shows inferior per-
formance to many methods in the objective evaluation because it suf-
fers from the artifacts caused by inaccurate optical flow estimation.
However, it is worth noting that the subjective evaluation hereafter will
demonstrate its superiority on visual quality for reconstructing salient
features of images, where optical flow estimation is reliable.

5.6. Subjective evaluation

Figs. 7–9 visualize the SR results of different methods. Bicubic
generates blurred results. A+ and SRCNN generate sharper results.
However, without exploiting the temporal correlation, some visually

important features are blurred, such as the brand text in Fig. 7 and the
long edge of the tractor surface in Fig. 8. In contrast, video SR methods,
such as 3DSKR and Draft Learning, generate results with richer details.
But 3DSKR may suffer from inaccurate motion estimation and generate
block artifacts, and Draft Learning produces granular artifacts in
smooth regions, where optical flow estimation is unreliable. Due to
RNN’s strong capacity of modeling complex motions, BRCN and our
method present rather sharp results. Especially, the proposed STR-Re-
sNet recovers details with a very natural look, such as the long edge of
the tractor in Fig. 8 and the wings of the bee in Fig. 9.

We also visualize the SR results on a group of adjacent frames from
four real-time SR methods (A+, VE, BRCN and STR-ResNet) in Fig. 10.
A+ and VE generate over-smooth reconstructed results, e.g., a wider
railtrack. The result of BRCN contains obvious ring artifacts. The pro-
posed STR-ResNet produces a clean estimation, with a long direct
railtrack and the sharpest Letter B.

5.7. Time cost

We report the time cost of our STR-ResNet and compare its effi-
ciency with other state-of-the-art methods. Table 4 presents their run-
ning time (in secs.) in 4× enlargement on input images with two re-
solution input settings (50×50 and 495×270, Sunflower). The BRCN
is implemented by ourselves. Other compared methods are tested based
on the public available codes from the authors. We implement BRCN
and our STR-ResNet using Caffe with its Matlab wrapper. We evaluate
the running time of all the algorithms with the following machine
configuration: Intel X5675 3.07 GHz and 24 GB memory. For A+, NE
+LLE, NE+NNLS, 3DKR, and Draft, their publicly available CPU

Table 2
PSNR results among different methods for Video SR (scaling factor: 4). The bold numbers denote the best performance.

Video Bicubic NE+LLE A+ SRCNN VE

Tractor 31.10 32.04 32.07 32.13 31.27
Sunflower 37.85 38.75 38.87 38.69 37.55
Blue ky 28.77 30.02 30.02 30.16 29.19
Station 33.35 34.20 34.26 34.38 33.36
Pedestrian 33.51 34.28 34.43 34.55 33.60
Rush Hour 38.17 39.17 39.15 38.90 37.96
Average 33.79 34.74 34.80 34.80 33.82
Video 3DSKR Draft5 Draft31 BRCN STR-ResNet
Tractor 32.27 31.73 30.34 33.23 33.85
Sunflower 37.57 35.62 36.43 39.28 40.02
Blue Sky 29.74 30.34 30.92 31.40 32.23
Station 34.80 32.99 33.22 35.20 35.63
Pedestrian 33.91 33.40 31.78 34.95 35.22
Rush Hour 37.49 36.93 36.22 39.86 40.30
Average 34.30 33.50 33.15 35.65 36.21

Table 3
SSIM results among different methods for Video SR (scaling factor: 4). The bold numbers denote the best performance.

Video Bicubic NE+LLE A+ SRCNN VE

Tractor 0.8315 0.8465 0.8496 0.8514 0.8307
Sunflower 0.9626 0.9650 0.9662 0.9658 0.9600
Blue Sky 0.8957 0.9092 0.9128 0.9150 0.9019
Station 0.8738 0.8716 0.8756 0.8781 0.8636
Pedestrian 0.8836 0.8918 0.8955 0.8980 0.8810
Rush Hour 0.9471 0.9499 0.9505 0.9496 0.9428
Average 0.8990 0.9057 0.9083 0.9097 0.8967
Video 3DSKR Draft5 Draft31 BRCN STR-ResNet
Tractor 0.8742 0.8221 0.8074 0.8745 0.8867
Sunflower 0.9653 0.9432 0.9566 0.9631 0.9673
Blue Sky 0.9197 0.9229 0.9332 0.9277 0.9349
Station 0.8953 0.8911 0.9045 0.8877 0.8952
Pedestrian 0.8971 0.8572 0.8309 0.8990 0.9024
Rush Hour 0.9471 0.9318 0.9266 0.9487 0.9521
Average 0.9165 0.8947 0.8932 0.9168 0.9231
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Fig. 7. The reconstruction results of Pedestrian with different methods (enlarge factor: 4× ).
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versions are tested. For BRCN and STR-ResNet, their GPU versions are
tested. For SRCNN, both versions are evaluated.

We present the running time in Table 4 and for better visualizing the
trade-off between the effectiveness and efficiency of these methods, we
also present Fig. 10. As shown in Table 4, two single image SR methods,
A+ and NE+LLE, are the most time-efficient. Our method, with GPU
support, costs 2.797 and 124.945 s for performing SR on an input image

with input sizes of 50× 50 and 480×270 and the corresponding
output sizes of 200×200 and 1920× 1080. BRCN is faster than SR-
ResNet because it owns a lighter framework. SR-ResNet and BRCN keep
the same in orders as the CPU version of SRCNN, NE+NNLS in running
time. Comparatively, two effective video SR methods, 3DKR and
DraftLearn, suffer from high computational complexity, with more than
3 h to reconstruct one HR frame. That is because they suffer from the

Fig. 8. The reconstruction results of Tractor with different methods (enlarge factor: 4× ).
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Fig. 9. The reconstruction results of Sunflower with different methods (enlarge factor: 4× ).
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computational burden of steering kernel computation and regularized
optical flow estimation, respectively.

6. More discussions

STR-ResNet addresses the problems of video super-resolution im-
plicitly. Now, we explain the configuration about them and how the
network handles the related factors.

6.1. Degradation factors

The capacity of STR-ResNet to handle the restoration is decided by
the paired training data synthesized from a certain kind of degradation
conditions. It is also flexible for STR-ResNet to extend to deal with
different degradation conditions in commonly used ways: (1) one model
for one degradation condition as shown in Fig. 11 (a), such as
SRCNN (201, 2016), A+ (Timofte et al., 2014) and BRCN (Huang et al.,
2015); (2) one model for all cases as shown in Fig. 11 (b), such as
VDSR (Kim et al., 2016b) and DRCN (Kim et al., 2016a); (3) a cascaded
or recurrent model to handle different cases at different stages as shown
in Fig. 11 (c), such as CSCN(Wang et al., 2015b) and deep Laplacian

pyramid network (Lai et al., 2017).

6.2. Modeling motion context

We use RNNs to model the temporal dependency between adjacent
frames. The information is propagated by inter-frame connections, i.e.
context convolution and recurrent convolution, through every direct
adjacent frame pairs gradually. For example, as shown in Fig. 12, to
predict the tth HR frame, the information of the −t( 2)th frame is first
propagated to the −t( 1)th sub-network which aims to estimate the

−t( 1)th HR frame. Then, the information in the −t( 1)th sub-network
passes to the tth sub-network. In this process, the feature transforma-
tion, alignment and fusion between the adjacent frames are modeled
end-to-end.

Some works (Kim et al., 2016a; 2016b) on related fields have
proved that, a convolutional network has the capacity to automatically
estimate motions. For a single convolutional layer, it can both model
the geometric transformation and carry on filter processing. Using the
kernels in Fig. 13(a) and (b), the convolutions could shift pixels in the
left-top direction and carry on Gaussian filter, respectively.

By cascading several inter-frame convolutional connections among
adjacent frames, STR-ResNet embeds motions implicitly and equally

Fig. 10. The performance of our STR-ResNet compared with state-of-the-art methods,
including the effectiveness and time complexity, in 4× enlargement on sunflower (the
input spatial resolution: 480× 270). (C) and (G) denote the speeds of the CPU and GPU
version, respectively.

Table 4
The time complexity of STR-ResNet compared with state-of-the-art methods.

Input Resolution SRCNN (C) SRCNN (G) A+ (C) NE+LLE (C)

50 × 50 2.465 0.005 0.141 0.662
480 × 270 137.950 0.816 11.760 40.696
Input resolution 3DKR (C) Draft (C) BRCN (G) STR-ResNet (G)
50 × 50 134.169 625.222 1.206 2.797
480 × 270 10693.080 31431.126 48.497 124.945

Fig. 11. Different ways to deal with various super-resolution factors. (a) One model for
one degradation condition. (b) One model for all cases. (c) A cascaded or recurrent model
to handle different cases at different stages.

Fig. 12. The convolutional paths that propagate the information of the −t( 2)th frame to
the tth one, denoted in orange color.(For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

Fig. 13. The convolutional layers for (a) shifting the pixel locations and (b) carrying on
Gaussian filter, respectively.

Fig. 14. The large displacement makes it hard for the information of the −t( 2)th frame
to be transported to the −t( 1)th sub-network.
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carries on filters on the motion trajectories. Besides, to better model
inter-frame motions, STR-ResNet further takes not only multiple LR
frames but also the residues of these adjacent LR frames as inputs and
tries to predict the temporal residues of HR frames in the penultimate
layer. It is clearly shown that, in the ablation analysis of the supple-
mentary material, adding temporal residue prediction boosts the SR
performance.

6.3. Occlusions and large displacements

Because the tth sub-network is constrained to estimate the tth HR
frame, only useful information from adjacent frames for that purpose is
aggregated to the tth sub-network. The information flow between the
adjacent frames where occlusions and large displacements happen will
be cut off.

For example, as shown in Fig. 14, if the −t( 2)th frame has a large
displacement to the −t( 1)th one, the −t( 1)th sub-network may fuse
less information from the −t( 2)th sub-network. Therefore, when esti-
mating the tth HR frame, the information propagated from the −t( 1)th
sub-network contains less information from the −t( 2)th sub-network.
Then, the tth frame prediction is influenced little by the large dis-
placement.

We provide a video supplementary material6 to show the robustness
of STR-ResNet when occlusions and large displacements exist. In the
supplementary material, the SR results of Pedestrian and Tractor se-
quences clearly demonstrate that our method presents naturally looking
results.

6.4. Motion compensations

We compare the versions with/without motion compensations. The
results are shown in Table 5. The limits and advantages of STR-ResNet
in an implicit way to model motions are observed. The STR-ResNet
without motion compensations is capable to handle complex motions
robustly and achieves superior performance in Sequences Sunflower,
Blue Sky and Rush Hour. Comparatively, when the motions in the se-
quences are consistent and there are available salient geometric fea-
tures, motion compensation significantly boosts the SR performance.

6.5. Temporal consistency

Most learning-based SR approaches, including STR-ResNet, by
nature are good at keeping temporal consistency. These methods,
trained solely with MSE loss, they usually “regression to
mean” (Timofte et al., 2016). Namely, the network tends to predict the
mean of several HR signals. Thus, based on the similar LR inputs, the
network will reconstruct similar HR results. Our video supplementary
material demonstrates that, compared with Video Enhancer, the im-
plicit methods BRCN and STR-ResNet provide more temporally con-
sistent SR results.

7. Conclusion and future work

In this paper, we proposed a novel Spatial-Temporal Recurrent
Residual Network (STR-ResNet) for video super-resolution. This net-
work simultaneously models high frequency details of single frames,
the differences between high resolution (HR) and low resolution (LR)
frames, as well as the changes of these adjacent detail frames. To model
intra-frame correlation, a CNN structure with bypass connections is
constructed to learn spatial residual of a single frame. To model inter-
frame correlation, STR-ResNet estimates the temporal residue im-
plicitly. Extensive experiments have demonstrated the effectiveness and
efficiency of our method for video SR. However, the recurrence step of
STR-ResNet to model frames is limited by available GPU memory and
the convolutional recurrent connections cannot have a long-term
memory. In the future work, we aim to overcome such limitations and
implement a longer-term memorized video SR method, which makes
use of longer LR video clips to reconstruct one HR frame.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.cviu.2017.09.002.
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