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Abstract

Text effects transfer can dramatically make the text visu-

ally pleasing. In this paper, we present a novel framework

to stylize the text with exquisite decor, which are ignored by

the previous text stylization methods. Decorative elements

pose a challenge to spontaneously handle basal text effects

and decor, which are two different styles. To address this

issue, our key idea is to learn to separate, transfer and re-

combine the decors and the basal text effect. A novel text

effect transfer network is proposed to infer the styled ver-

sion of the target text. The stylized text is finally embellished

with decor where the placement of the decor is carefully de-

termined by a novel structure-aware strategy. Furthermore,

we propose a domain adaptation strategy for decor detec-

tion and a one-shot training strategy for text effects transfer,

which greatly enhance the robustness of our network to new

styles. We base our experiments on our collected topogra-

phy dataset including 59,000 professionally styled text and

demonstrate the superiority of our method over other state-

of-the-art style transfer methods.

1. Introduction

Artistic text, or styled text, is a kind of art wildly used in

design and media. As shown in Fig. 1, with text effects

such as color, texture, shading, and extra decorative ele-

ments, artistic text becomes more visually pleasing and can

vividly convey more semantic information. Traditionally, it

needs complex manual operations to migrate text effects to

other raw text, which is time-consuming especially when a

bunch of text is to be processed. In this work, we propose a

novel framework for transferring given text effects to arbi-

trary glyphs.

Text style transfer is a sub-topic of image style transfer.

Although the task of image style transfer [8, 4, 12, 28, 6]

have been wildly studied for years, text style transfer was
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Figure 1: Demonstration of our text effects transfer method.

(a) Input . (b) Neural Style Transfer [8]. (c) Neural Doo-

dles [4]. (d) T-Effect [23]. (e)-(h) Our results, where both

the basal text effects and the decorative elements can be

transferred to the target text.

not explored until recently. Yang et al. [23, 24] first ex-

plored this problem and designed a patch-based text ef-

fect transfer model. Due to the neglect of many important

attributes such as decorative elements, directions, regular

structures, etc., it fails on many kinds of text styles. On the

other hand, Azadi et al. [1] proposed a deep-based model,

which is able to stylize capital English alphabets given a few

shots. However, it can only generate images with a limited

resolution of 64⇥ 64 and is hard to be applied to texts other

than the 26 alphabets. Moreover, all these methods have as-

sumed that the styles are uniform within or outside the text.

Thus, exquisite decorative elements, which are commonly

used in artistic text design, are ignored. These decorations

are usually drastically different from the basal text effects

and can make the text more visually impressive and more

information expressed. Treating decorative elements and

basal text effects as a whole style will seriously degrade the

visual quality of the stylization results, as shown in Fig. 1.

To address this problem, in this paper, we propose a

novel framework for text style transfer and pay special at-

tention to decorative elements. The key idea is to detect,

separate and recombine these important embellishments.
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First, we train a segmentation network to detect the deco-

rative elements in the styled text. For training our segmen-

tation network, we use synthetic data and further propose

a domain-adaptation scheme so that the framework works

well on real data. Then, based on the segmentation results,

we are able to separate the decorative elements from basal

text effects and design a text style transfer network to infer

the basal text effects for the target text. To adapt our net-

work to arbitrary text effects, a novel one-shot fine-tuning

scheme is proposed, which empowers our network to extend

to a new style with only one example required. Finally, cues

for spatial distributions and element diversities are carefully

characterized to jointly determine the layout of the deco-

rative elements, which are then adaptively integrated onto

the target text. Furthermore, to train the above models, we

build a new dataset containing 59k professionally-designed

styled texts with various text effects and fonts, and collect

four thousand decorative elements and one thousand in-the-

wild artistic texts from the web.

In summary, the contributions of this work are threefold:

• We define a new problem of text style transfer with

decorative elements, and propose a novel framework

to solve the problem. The scheme of separation and

recombination of the basal text effects and the decora-

tive elements empowers our method to adapt to differ-

ent styles and glyphs.

• We train networks for effective decor detection and

text effects transfer. Two corresponding novel train-

ing strategies are proposed to make the networks ro-

bust to arbitrary text styles. We propose a structure-

aware decor recomposition method to determine the

decor layout, which produces professional artistic ty-

pography.

• We introduce a new dataset containing thousands of

styled text and decorative elements to support the train-

ing of our model.

2. Related Works

Image-to-Image Translation. The task of image-to-image

translation is to translate an image from one domain into

another, such as sketch to portrait [5], image coloriza-

tion [26, 27], and rain removal [25, 18]. Hertzmann et

al. proposed a nonparametric framework for single im-

age pairs [11]. These years, benefiting from CNNs, data-

driven methods have achieved great performance on many

computer vision tasks. Combining Generative Adversarial

Nets (GANs) [9], Isola et al. developed a common frame-

work Pix2Pix [12]. This method is driven by paired data,

which is sometimes hard to obtain. To get rid of this limi-

tation, Zhu et al. designed CycleGAN [28] which can learn

to translate images without paired ground truth. When fac-

ing N -domain translation problem, traditional models have

to divide domains into pairs and be rebuilt N(N � 1)/2
times. Choi et al. proposed to handle multi-domain trans-

lation with a single model StarGAN [6]. Although many

researches have been done on image-to-image translation,

few are targeted at styled text. Comprehensively consider-

ing the structure and the spatial distribution of artistic text,

we propose a framework for transferring text effects.

Artistic Text Synthesis. Many researches have been con-

ducted on font synthesis [20, 3, 17, 22]. However, gener-

ating text with artistic styles has not been widely studied.

Most artistic text in daily life is carefully designed and pro-

duced by experts, and is hard to expand and migrate. Yang

et al. [23] first proposed a texture-synthesis-based non-

parametric methods for transferring text effects. However,

this method needs careful parameter selections and fails on

text effects with obvious structures, such as ‘Wooden’ and

‘Stripes’. Azadi et al. [1] designed data-driven MC-GAN

that can generate styled texts given a few examples and pro-

posed a dataset containing 20k randomly synthesized color

fonts and collected 910 styled texts from the internet. How-

ever, MC-GAN can only generate 26 English capital letters

with a limited resolution of 64 ⇥ 64. Besides the low reso-

lution, the synthetic color fonts in their dataset are quite dif-

ferent from artistic text used in common life. This dataset is

not capable of training a network to produce high-resolution

artistic text of various kinds. Moreover, decorative elements

are quite common in styled text. However, they have never

been considered in the aforementioned methods. We intro-

duce a high-resolution dataset containing 59k artistic text,

and proposed a framework which is able to create artistic

typography with exquisite decor.

3. Style Transfer for Typography with Decor

The proposed text style transfer framework is shown in

Fig. 2. In this paper, we focus on artistic text with two hy-

brid styles. For clarity, we define the decorative elements

such as the red bowknot in Fig. 2 as decor. The remaining

basal style excluding decor is referred to as text effect. We

first extract a segmentation mask for decorative elements,

where a domain adaptation strategy is applied for the ro-

bustness of the model on unseen styles (Sec. 3.1). Next,

we transfer the text effects to the target text with decora-

tive elements eliminated, during which we further propose

an one-shot training strategy for improving the performance

on unseen styles (Sec. 3.2). Finally, we recompose the artis-

tic text and the decorative elements based on both the struc-

ture of the text and the spatial distribution of the decorative

elements (Sec. 3.3).
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Figure 2: The proposed text style transfer framework.

First, decorative elements are separated from the styled text.

Then, text effects are transferred to the target text. Finally,

the elements and the styled text are recomposed based on

both the structure of the text and the spatial distribution of

the decorative elements.

(a) (b) (c) (d)

Figure 3: Effect of the perceptual loss and domain adap-

tation. (a) Input. (b) Result with only L1 loss. (c) Result

without domain adaptation. (d) Result with full loss.

3.1. Decorative Element Segmentation

We propose a segmentation network for decorative ele-

ment detection. The network is trained on synthetic data,

which will be introduced in Sec. 4. To reduce the gap be-

tween training data and real styled texts, we apply a domain

adaptation strategy.

Segmentation Network. We adopt U-Net as the basic ar-

chitecture of our segmentation network netSeg. As shown

in Fig. 4, given the input artistic text D, the correspond-

ing raw text C, the segmentation ground truth M and the

prediction M̂ = netSeg(D,C), our network is tasked to

approach the ground truth M in both L1 and perceptual

senses. Thus the objective of netSeg can be expressed as

Lseg = λL1LL1 + λPerLPer, (1)

where

LL1 = ||M̂ �M ||1, (2)

LPer = ||VGG(M̂)� VGG(M)||1. (3)

As illustrated in Fig. 3, the perceptual loss [13] helps the

network better perceive the structure of the decor.

…

ℒ𝑆𝑒𝑔𝑃

netSeg

𝐷
𝐶

 𝑀 𝑀
(a) Training netSeg in the source domain (synthetic styled text)

ℒ𝑎𝑑𝑣𝑃𝑤
…

netSeg

netSegD

 𝑀w
𝐶𝑤

𝐷𝑤

(b) Training netSeg in the target domain (real styled text)

Figure 4: The framework of the segmentation network with

domain adaptation strategy. Discriminator is trained to dis-

tinguish the feature maps of the target from that of the

source. The generator needs to fool the discriminator while

giving segmentation predictions.

Adversarial-Loss-Based Domain Adaptation. There is a

gap between synthetic data and real data in terms of color,

decorative elements distribution, etc. Therefore, the net-

work only trained on synthetic data can not well adapt to

real styled texts, as shown in Fig. 3c. To address this is-

sue, we apply a domain adaptation strategy for making the

network more robust to the styled text in the wild.

The proposed domain adaptation strategy is similar

to [21]. Here, the source domain is the synthetic train-

ing data, and the target domain is the real styled text. As

shown in Fig. 4, in the phase of discriminator netSegD, it

is trained to distinguish the feature map P of the second last

layer of the generator. We exploit a cross-entropy loss for

the discriminator:

Ld(P ) = �((1� z) log(netSegD(P )) (4)

+z log(netSegD(P ))),

where z = 0 if the sample is drawn from the target do-

main, and z = 1 for the sample from the source domain.

In the phase of generator, on the source domain the genera-

tor learns how to make segmentation predictions, while on

the target domain it needs to fool the discriminator and re-

duce the gap between the two domains. The objective of the

generator can be expressed as

L = λsegLseg + λadvLadv, (5)

where

Ladv = � log(netSegD(Pw)) (6)
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Generator

Figure 5: The one-shot training scheme.

is the adversarial loss for making the target feature map

Pw closer to the source feature map P . As can be seen

in Fig. 3d, the proposed domain adaptation can effectively

improve the segmentation results.

3.2. Text Effect Transfer

Following the network architecture of Pix2pix [12], our

text effect transfer model is a combination of U-Net [19]

and PatchGAN [12]. Given Dy a styled text image with

extra decorative elements, Cy the corresponding raw text

image of Dy , and Cx a target raw text, the generator G

learns to generate a fake styled text Sx = G(Dy, Cy, Cx),
which has the text effects of Dy and the glyph of Cx. The

discriminator D needs to distinguish whether the input is

real or generated and whether it matches Dy , Cy and Cx or

not. The loss function is a combination of WGAN-GP [10]

and L1 Loss:

LG = λadvLadv + λL1LL1, (7)

where

LL1 = ||Sx � S̃x||, (8)

Ladv = ES̃x
[D(S̃x, Dy, Cy, Cx)] (9)

� ESx
[D(Sx, Dy, Cy, Cx)]

+ λGPEŜx
[(||rD(Ŝx, Dy, Cy, Cx)||2 � 1)2]],

where S̃x is the ground truth, and Ŝx is uniformly sampled

along the straight lines between the sampling of Sx and S̃x.

One-shot Training Scheme. Learning-based image trans-

fer methods often fail to perform well on unseen data.

Moreover, it is impossible to collect a dataset covering all

text effects that users may customize. As shown in Fig. 6b,

through the aforementioned training strategy, our network

learns to eliminate decorative elements and can generate the

basic structure of the unseen text effects. But the unseen de-

tails cannot be properly reconstructed. To address this prob-

lem, we propose an one-shot fine-tuning scheme for unseen

styles, where only one training pair is required.

(a) (b) (c)

Figure 6: Effect of our one-shot training scheme. (a) In-

put. (b) Result without one-shot fine-tuning. (c) Result after

fine-tuning.

Specifically, we collect a bunch of patches randomly

cropped from the styled text. They constitute a training

set for the fine-tuning. The masks of the decors are then

generated by the proposed segmentation network (Sec. 3.1).

Using the segmentation mask, as illustrated in Fig. 5, we

reduce the impact of decorative elements by not computing

the L1 loss on these areas and blocking them before sending

images to the discriminator. It is worth noting that unlike

the pretraining process, during our one-shot fine-tuning, the

ground truth decor-free image is not required. Out net-

work can learn to both restore style details and eliminate

the decor, which provides users with much more flexibility.

As illustrated in Fig. 6c, with one-shot training the network

can generate the iron edge and the red fabric texture.

3.3. Structure-Based Decor Recomposition

In this section, we propose to combine decorative el-

ements and styled texts according to the structure of the

styled text. First, we generate guidance maps characteriz-

ing the structure of the artistic text. Then we divide deco-

rative elements into two classes based on their importance,

and treat each class with a different transformation strategy.

Finally, the elements and the styled text are combined to

generate the final output.

Guidance Maps. We design four guidance maps charac-

terizing the properties of the artistic text. These maps play

important roles in the subsequent transformation.

• Horizon Map. Horizon map MHor identifies the posi-

tion of pixels to the text in horizontal direction. Since

human eyes are sensitive to edges, we amplify the hori-

zontal changes near the edge of the text. We first define

the gradient of MHor as GHor, which is initialized to

one everywhere. Then GHor is adjusted according to

the horizontal length of the text. For each y, define

xy,min the leftmost point of the raw text on row y, and
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xy,max the rightmost point, we generate G̃Hor by:

G̃Hor(x, y) = GHor(x, y)+ (10)










(Kw � |x� xy,min|) ⇤Ks, |x� xy,min| < Kw

(Kw � |x� xy,max|) ⇤Ks, |x� xy,max| < Kw

0, else

where Kw = Kws(xy,max � xy,min), Kws < 0.5.

Here, Kws and Ks control the width and the scale of

the adjustment respectively. If row y has no overlap

with the text body, we directly make G̃Hor(x, y) =
GHor(x, y), 8x. With G̃Hor, we build MHor by:

MHor(xy,center, y) = 0, (11)

MHor(x, y)�MHor(x� 1, y) = G̃Hor(x, y),

where xy,center is the horizontal center of the text

on row y. Finally, MHor is normalized to [0, 1] and

slightly blurred to avoid drastic changes caused by

complex edges. As illustrated in Fig. 7b, while rep-

resenting the horizontal position of the text, changes

near the edge of the text are amplified.

• Vertical Map. Vertical map MV er is similar to MHor,

except that MV er identifies the property of the text in

the vertical direction, as illustrated in Fig. 7c.

• Distribution Map. Distribution map MDis identifies

the distance of pixels to the edge of the text, as illus-

trated in Fig. 7d. Given Dis(x, y) the distribution-

aware pre-prosessing map proposed in Sec. 4, MDis

can be written as:

MDis = (1�Dis(x, y))Kdis , (12)

where Kdis controls the intensity of distribution map.

• Existing Element Map. Existing element map MExi

is used to avoid overlapping. MExi(x, y) = 0 repre-

sents that no element has been placed on (x, y), and

MExi(x, y) = 1 vice versa.

The final guidance map Mguide is a weighted concatena-

tion of the previous maps:

Mguide = Concat[λiMi|i 2 {Hor, V er,Dis, Exi}],
(13)

where Concat[·] indicates concatenation, and λi controls the

weight of each map. The effect of each map is illustrated

in Fig. 7. Without the horizontal or the vertical map, the

elements will be crowded together. Without the distribution

map, elements will depart from the text.

Decor Classification. We assume that there are two kinds

of decorative elements: insignificant and significant ones.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Guidance maps for the structure-based combina-

tion procedure. (a) Styled text with extra decorative ele-

ments. (b) The horizontal map. (c) The vertical map. (d)

The distribution map. (e) Result with full map. (f) Result

without the horizontal map. (g) Result without the vertical

map. (h) Result without the distribution map.

The insignificant elements are repeatable, and are often ran-

domly scattered on the text, for example, the colorful balls

in Fig. 7a. The significant elements may play an impor-

tant part in the semantic expression of the styled text, and

are often single or paired, for example, the red bowknot in

Fig. 7a.

Notice that insignificant elements usually share a similar

shape with other elements, while significant elements often

have a unique shape. For example, in Fig. 7a, the colorful

balls share the same circle shape, while the shape of the red

bow is not the same as other elements. Based on this obser-

vation, we classify elements via shape clustering. Then el-

ements belong to size-1 clusters are regarded as significant,

and the others are regarded as insignificant. Clustering can

also divide insignificant elements into several groups, where

elements in the same group share similar shapes. This clus-

tering is implemented by first re-sizing the masks to 5 ⇥ 5,

then clustering using DBSCAN [7].

Transformation and Combination. Given Dy an input

artistic text with extra decorative elements, Cy the raw text

of Dy , and Cx the target raw text, we can generate a seg-

mentation mask My using the segmentation network pro-

posed in Sec. 3.1, and the corresponding styled text (with-

out decorative elements) Sx using the transformation net-

work proposed in Sec. 3.2. Combining these, we finally

transform decorative elements in consideration of both their

distribution and the matching between them and the glyph.

We use DenseCRF [15] to refine the segmentation output

and split different decorative elements by finding connected

components. For each significant decorative element E on
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(a) 60 text effects with 52 English letters

(b) Text effects from the web (c) Icons from the web

Figure 8: An overview of our styled text dataset. Our

dataset consists of (a)-(c) three parts.

Cx, we find the area E0 2 Cy to place the element by:

argmin
E02Cy

||Mguide(E)�Mguide(E
0)||2, (14)

where Mguide(·) indicates the average value of map Mguide

for pixels on the specific area.

Then, elements are slightly re-sized and shifted to better

fit the styled text. If the area where the element and the raw

text overlap becomes smaller after placement, we zoom out

the element and move it closer to the text, and vice versa.

For insignificant elements, we randomly exchange those

elements in the same cluster and shift them by (14). This

exchanging operation increases the variation of the result.

4. Data Collection and Augmentation

Styled Text Dataset. We introduce a new dataset including

60 different kinds of text effects with 52 English letters of

19 fonts, totally 59k images. We split 51k for training and

the left for testing. Each styled text is of 320 ⇥ 320 and

provided with its corresponding raw text. A few examples

are illustrated in Fig. 8. We first collected Photoshop ac-

tions from the web or create actions following Photoshop

tutorials. Then, we used batch processing in Photoshop to

automatically replace characters and stylize raw texts. For

decorative elements, we collected 4k icons from the web1.

We also collected 1k artistic text of various text effects

from the internet. For each, we generate a rough raw text

by first thresholding then manually correcting some wrong

parts. These styled texts in the wild are used for the domain

adaptation of the segmentation network.

Training Data Generation and Pre-processing. Since

carefully designed styled texts with extra decorative ele-

ments are hard to collect and annotate the mask of the

1www.shareicon.net

(a) (b) (c)

Figure 9: Data pre-prosessing and augmentation. (a)

Distribution-aware pre-prosessing. (b) Augmentation ac-

cording to distribution. (c) Augmentation through texture

combination.

decorative elements, we generate synthetic data for train-

ing through the following strategy. First, we randomly se-

lected 0 to 5 decorative elements, and randomly placed them

on the styled text while avoiding overlaps between the ele-

ments. The ground truth mask is generated using the alpha

channel of the PNG-format decorative elements. Consider-

ing some elements are semi-translucent, instead of thresh-

olding the alpha channels, we kept these semi-translucent

masks.

In [23], Yang et al. pointed out that the patch patterns are

highly related to their distance to the text skeleton. Take ad-

vantage of this feature, we pre-process the raw text images

by calculating the distance of pixels to the text. This extra

information is recorded on the B channel, while the R chan-

nel still keeps the original raw text, as illustrated in Fig. 9a.

This pre-processing provides the network with distance dis-

tribution information.

Data Augmentation. Besides the 60 kinds of text effects,

we design two types of augmentation. First, as shown in

Fig. 9b, we generate random gradient colors according to

the distances of pixels to the text, which strengthens the

awareness of our network of distance distribution. Then,

we collect 300 geometric and cartoon pattern images from

the internet. While synthesizing, one of the pattern images

is chosen as the background and another one is chosen to fill

the text, as shown in Fig. 9c. This augmentation is used only

for the segmentation network. The key idea is to increase

the complication and variation of the patterns, so that the

network can be more robust to various text effects.

5. Experimental Results and Discussions

5.1. Implementation Details

For segmentation network, we use Adam with β1 = 0.5,

and β2 = 0.9, and a learning rate 1e-4 with exponential de-

cay strategy. The optimization is first performed with L1

loss for 30 epochs with a mini-batch size of 90, then per-

formed with L1 loss and perceptual loss for 50 epochs with

5894



Method MAE mIoU Running Time

FCN8s 0.0155 0.8780 4.75s

U-Net 0.0040 0.953 6.10s

SegNet 0.0036 0.960 10.70s

Ours 0.0039 0.956 6.11s

Table 1: Quantitative comparisons of our segmentation net-

work with traditional methods on the test set. We quantify

the performance using mean absolute error (MAE), mean

of intersection over union (mIoU), and total running time

on the test set with GPU.

Input U-Net SegNet Proposed

Figure 10: Subjective comparisons of segmentation net-

works on real artistic text with extra decorative elements.

a mini-batch size of 15, and finally with full loss for 5000

iterations with a mini-batch size of 10. For style transfer

network, a progressive growing strategy [14] is exploited to

stabilize the training process. The resolution of the images

increases from 64, 128, up to 256, and layers are gradually

added to the front and rear of the generator. We also use

Adam with β1 = 0.5, and β2 = 0.9, and a fixed learning

rate of 2e-4. The mini-batch size is set to 200 at 64 ⇥ 64,

90 at 128⇥ 128 and 40 at 256⇥ 256, so that CPU and GPU

resources can be fully utilized. The networks are trained on

GTX 1080 GPU.

5.2. Decor Segmentation Comparative Results

Our segmentation network is compared with four classi-

cal semantic segmentation models, FCN8s [16], SegNet [2],

and U-Net2. Among them, FCN8s and SegNet are based on

classification models. These models are all trained on our

training set with L1 loss, and tested on our test set. While

testing, we still use randomly placed semantic decorative

elements. This randomness may effect the performance,

therefore we run the testing three times and calculate the

average. By thresholding the ground truth and results into

2We use PyTorch implementations. SegNet by https://github.

com/zijundeng/pytorch-semantic-segmentation. FCN by

https://github.com/meetshah1995/pytorch-semseg

two class, we calculate the mean of intersection over union

(mIoU).

From Table. 1, we can see that benefiting from the per-

ceptual loss and domain adaptation, the performance rises

compared to our U-Net baseline. Although the accuracy of

our segmentation network is slightly lower than SegNet on

test set, our segmentation network is more efficient and per-

forms better on unseen text effects, which is clearly verified

in Fig. 10 that the proposed segmentation network outper-

forms SegNet on real artistic texts with decorative elements.

This is because the domain adaptation strategy helps the

network to adapt to unfamiliar text effects and decorative

elements.

5.3. Text Transfer Comparative Results

We first compare the proposed text effect transfer net-

work with five state-of-art transfer methods in Fig. 11. The

first two are image style transfer methods. Neural Style

Transfer [8] uses CNNs to transfer the style of an image to

another. It fails to find the correspondence between the style

and the text. Therefore it twists the glyph and generates

confused textures. Neural Doodles [4] uses neural-based

patch fusion and has a context-sensitive manner in the algo-

rithm. However it still twists the structure and the texture.

The following two methods StarGAN [6] and Pix2Pix [12]

are image-to-image translation methods based on GAN, and

they are all re-trained on our dataset. StarGAN is a multi-

domain translation model, whose domains in this task are

the 60 different kinds of text effect. StarGAN is not ca-

pable of reconstructing details. The input of Pix2Pix [12]

is revised to be the same as our input. Pix2pix generates

wrong textures and artifacts. Benefiting from the progres-

sive growing strategy and the WGAN-GP, our model is

more stable than Pix2Pix. T-Effect [23] is a patch-based

text effect transfer method. Although T-Effect is able to

generate the main structure, it generates confused stripe

textures. By comparison, our model is able to reconstruct

vivid details, and fully adapt text effects to the given glyph.

The ability of eliminating decor is further demonstrated in

Fig. 12.

The framework is also compared with two one-shot

methods Neural doodles and T-Effect on text effects not in-

cluded in our dataset. Doodle still fails to well reconstruct

the structure. Due to the neglect of regular structure and

direction, T-effect distorts the texture, fails to preserve the

background, and mistakes the shadow direction. Benefiting

from the one-shot training scheme, our network is able to

transfer the text effects even though these text effects are

not included in the training set.

5.4. Comparative Results for Texts with Decor

We compare our full framework with T-Effect and Doo-

dle on the task of transferring texts with decorative ele-
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Style Content Ground Truth NST Doodle StarGAN Pix2Pix T-Effect Ours

Figure 11: Subjective comparisons of text effect transfer.

Figure 12: Subjective results of the proposed method for transferring basal text effects from the styled text with decor. First

row: styled text with random decorative elements. Second row: our results.

Style Content Doodle T-Effect Ours

Figure 13: Subjective comparisons of text effects transfer

for one-shot task.

ments. Since neither T-Effect nor Doodle has a consider-

ation of decorative elements, they all twist or drop the el-

ements, therefore their results are not visually satisfying.

Our framework not only successfully migrates the text ef-

fect onto the target glyph, but also preserves the intact form

of the elements. Moreover, in our result, the elements are

not just simply extracted and then placed. As shown in

Fig. 14, in the Snowman artistic text, the black hat is re-

sized to better fit the new glyph. In the Xmas artistic text,

the little stars and balls are reshuffled, while the red bow is

still at the bottom of the glyph.

Style Content Doodle T-Effect Ours

Figure 14: Subjective comparisons of text effects transfer

for one-shot task: (top-to-bottom) Snowman, Xmas, Face.

6. Conclusion

In this paper, we propose a novel framework for trans-

ferring text effects with decorative elements. We first ex-

tract a segmentation mask for decorative elements, where a

domain adaptation strategy is applied for improving the ro-

bustness. Next, we transfer the text effect to the target and

eliminate decorative elements, during which we propose an

one-shot training strategy for handling unseen styles. Fi-

nally, we recompose the artistic text and the decorative el-

ements based on the structure of the text. Experimental re-

sults demonstrate the superiority of our framework.
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