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One-for-All: Grouped Variation Network-Based
Fractional Interpolation in Video Coding

Jiaying Liu , Senior Member, IEEE, Sifeng Xia, Wenhan Yang , Member, IEEE,

Mading Li, and Dong Liu , Member, IEEE

Abstract— Fractional interpolation is used to provide sub-pixel
level references for motion compensation in the interprediction of
video coding, which attempts to remove temporal redundancy in
video sequences. Traditional handcrafted fractional interpolation
filters face the challenge of modeling discontinuous regions in
videos, while existing deep learning-based methods are either
designed for a single quantization parameter (QP), only gener-
ating half-pixel samples, or need to train a model for each sub-
pixel position. In this paper, we present a one-for-all fractional
interpolation method based on a grouped variation convolutional
neural network (GVCNN). Our method can deal with video
frames coded using different QPs and is capable of generating
all sub-pixel positions at one sub-pixel level. Also, by predicting
variations between integer-position pixels and sub-pixels, our
network offers more expressive power. Moreover, we perform
specific measurements in training data generation to simulate
practical situations in video coding, including blurring the down-
sampled sub-pixel samples to avoid aliasing effects and coding
integer pixels to simulate reconstruction errors. In addition,
we analyze the impact of the size of blur kernels theoretically.
Experimental results verify the efficiency of GVCNN. Compared
with HEVC, our method achieves 2.2% in bit saving on average
and up to 5.2% under low-delay P configuration.

Index Terms— High efficient video coding (HEVC), fractional
interpolation, convolutional neural network (CNN), grouped
variation network.

I. INTRODUCTION

ONE of the most important features in video coding is to
remove temporal redundancy in video sequences, which

can be achieved by motion compensation. Specifically, during
the inter prediction, reference blocks are searched from pre-
ceding coded frames. With these blocks, only corresponding
motion vectors and residuals between reference blocks and the
current block need to be coded. Generally, encoding motion
vectors and residuals are more efficient than encoding the
original block, which leads to distinct bit saving in video
coding.
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However, due to the spatial sampling of digital video,
the locations of adjacent pixels in a video frame are not
continuous. The reference blocks at integer positions may
have sub-pixel motion shifts to the current block. In order
to produce better reference blocks, video coding standards,
e.g. High Efficiency Video Coding (HEVC), generate sub-pixel
reference blocks by fractional interpolation over the retrieved
integer-position blocks.

Video coding standards adopt fixed interpolation filters
to perform fractional interpolations. For example, MPEG-4/
H.264 AVC [1] uses a 6-tap filter for half-pixel interpolation
and a simple average filter for quarter-pixel interpolation of
luma component. HEVC adopts a DCT-based interpolation
filter (DCTIF) [2] for fractional interpolation. These simple
fixed interpolation filters are effective for motion compensa-
tion. However, the quality of interpolation results generated
by fixed filters may be limited, since fixed filters can not fit
for natural and artificial video signals with various kinds of
structures and contents.

In the last decade, researchers have been dedicated on
improving the design of traditional sub-pixel interpolation
filters [1]–[5]. However, these handcrafted filters have limited
expressiveness, facing the challenge of various and abundant
local contexts in large amount of videos being generated
everyday. Moreover, these filters always assume videos to
be locally smooth and perform linear interpolations. In fact,
videos contain many discontinuous contents such as sharp
edges and local details, which are difficult to model using
handcrafted filters.

Recently, many deep learning based methods have been pro-
posed for image processing problems, e.g. denoising [6], [7],
inpainting [8], and super-resolution [9], [10], demonstrating
promising abilities and generating impressive results. Consid-
ering the great performance brought by the deep learning based
methods in image processing problems and the high imple-
mentation efficiency of deep learning based methods brought
by GPU acceleration, it is a new opportunity to utilize deep
learning based interpolation methods in motion compensation
for video coding. Yan et al. [11] first proposed a CNN-based
interpolation filter to replace the half-pixel interpolation part
of HEVC. Following that work, Zhang et al. [12] adopted
a successful network VDSR [10] in image super-resolution
problem to improve the half-pixel interpolation in HEVC.
Although performance gain can be observed in both methods,
they have some drawbacks. First of all, these methods are
QP-dependent, which means they have to train one model
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for each QP. Moreover, the method in [11] need to train one
model for each half-pixel position (i.e. three models for half-
pixel positions). Furthermore, they do not support fractional
interpolation for quarter-pixel positions. These factors lead to
higher storage costs and limit the practicability of the methods.

In this paper, we propose a deep learning based
fractional interpolation method to infer sub-pixels for motion
compensation in HEVC. A grouped variation convolutional
neural network (GVCNN) is designed to predict sub-pixels
in different sub-pixel positions under different QPs at once.
The network first extracts feature maps from integer-position
samples, and then infers variations for different sub-pixels
using the same feature maps. In order to make our network
more adaptive to practical video coding, we elaborate several
measurements to generate training data simulating practical
situations. Moreover, we provide theoretical analysis to
generate the most appropriate and effective training data.
Experimental results show the superiority of our GVCNN in
fractional interpolation which further benefits video coding.
Our contributions are summarized as follows:

• We propose a grouped variation based neural network
to predict variations between half-/quarter-pixels and
integer-position pixels. Comparing to learning the map-
ping between pixel values, learning the variations makes
the network easier to train and more expressive.

• Instead of training one model for each QP/sub-pixel
position, we present a one-for-all model to support dif-
ferent QPs and generate all sub-pixels at one sub-pixel
level (three half-pixel positions or twelve quarter-pixel
positions) using a single model.

• In order to simulate practical situations in video coding,
we present two operations to generate training data for
our network. Specifically, we apply blurring operations
to sub-pixels to prevent aliasing effect and encode integer
pixels by HEVC to simulate reconstruction error. Further-
more, a theoretical analysis is provided to determine the
best size of blur kernels.

The rest of the paper is organized as follows. Sec. II
introduces the proposed GVCNN based fractional
interpolation. In Sec. III, details of fractional interpolation
in HEVC are first introduced and analyzed, and then the
architecture of the network is illustrated and the grouped
variation is described. Process of the generation of training
data is also presented in Sec. IV. Experimental results are
shown in Sec. V and concluding remarks are given in Sec. VI.

II. RELATED WORKS

A. Traditional Sub-Pixel Interpolation

Sub-pixel interpolations are performed by fixed filters in
most video coding standards. MPEG-4 AVC/H.264 [1] adopts
a 6-tap filter to interpolate pixels at half-pixel positions, and
simply averages interpolated pixels at integer and half-pixel
positions to calculate samples at quarter-pixel positions. Audio
and Video Coding Standard (AVS) [3] employs a Two-Step
Four-Tap (TSFT) interpolation to perform quarter-pixel
interpolations, which utilizes a 4-tap cubic convolution filter
and a 4-tap cubic B-spline filter. In HEVC [2], half-pixels

and quarter-pixels are calculated by an 8-tap filter and a 7-tap
filter respectively, with coefficients derived from DCT basis
function equations.

These fixed interpolation filters are easy to be implemented
and based on the assumptions that video signal is spatially
and temporally continuous. However, the assumption does not
always hold true in practice. Therefore, further researches
have been conducted to perform better sub-pixel interpolations.
Lakshman et al. [4] proposed a generalized interpolation by
combining Infinite Impulse Response (IIR) and Finite Impulse
Response (FIR) filters, which provides a greater degree of
freedom for selecting basis functions. Kokhazadeh et al. [5]
attempted to interpolate considering the edges of video objects.
To interpolate pixels around edges, they first extrapolated pix-
els in the dissident side based on pixels in the accordant side
and then interpolated half-pixel samples using extrapolated
pixels and pixels in the accordant side. Still, these hand-crafted
filters cannot provide sufficient capability when facing various
video contents.

B. Deep Learning Based Video Coding

Deep learning based methods have shown significant perfor-
mance in both computer vision applications and image/video
processing tasks. Deep learning is one of the efficient ways
to solve the problems encountered in developing cutting-edge
video coding standards. For instance, deep learning models are
able to learn complex patterns in various videos automatically,
without the need of manually elaborate designs; multiple lay-
ers and activation functions are capable of modeling non-linear
transformations, which are very common in video coding.

In recent years, many deep learning based methods emerge
from video coding community. Intuitively, CNN can be used
in post-processing of decoded video sequences. Lin et al. [13]
presented an end-to-end mapping from decompressed frames
to enhanced versions, attempting to approximate the reverse
function of video compression. Dai et al. [14] proposed
a Variable-filter-size Residue learning CNN (VRCNN) that
learns the residue between the decoded frame and the original
one. Wang et al. [15] further presented a deep CNN-based
auto decoder (DCAD) to automatically remove artifacts and
enhance the details of HEVC-compressed videos.

Besides utilizing CNN as a post-processing procedure, some
researchers investigate the practicability of applying CNN
during the video coding process. Park and Kim [16] replaced
the Sample Adaptive Offset (SAO) filter in HEVC by their
CNN architecture. In [17], Laude and Ostermann proposed to
replace the conventional Rate Distortion Optimization (RDO)
for the intra prediction mode with CNN. Coding unit (CU)
partition mode decision can also be predicted by CNN [18]
and Long and Short-Term Memory (LSTM) network [19].
As mentioned in the introduction, Yan et al. [11] proposed to
replace the half-pixel interpolation of HEVC by the network
architecture of SRCNN [9], achieving better results compared
with the original HEVC. And similarly Zhang et al. [12]
replace the half-pixel interpolation by the network architecture
of VDSR [10]. In our work, we also focus on improving the
accuracy of sub-pixel interpolation using CNN. We propose a
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Fig. 1. Positions of different fractional pixels. Blue, green and pink blocks
indicate respectively the integer- (Ai,j), half- (h1

i,j, h2
i,j, . . . , h3

i,j) and quarter-

(q1
i,j

, q2
i,j

, . . . , q12
i,j

) pixel positions for luma interpolation.

one-for-all fractional interpolation method based on grouped
variation convolutional neural network, which generates inter-
polations for all half-pixel (or quarter-pixel) positions in a
single inference pass and only needs to be trained for once
for each sub-level.

III. GROUPED VARIATION NEURAL NETWORK

BASED FRACTIONAL INTERPOLATION

A. Fractional Interpolation in HEVC

During the motion compensation in HEVC, blocks from
preceding coded frames will be used as reference blocks.
Fractional interpolation aims to generate sub-pixel position
samples based on these reference blocks. Fig. 1 illustrates
positions of integer pixels and sub-pixels. To be more spe-
cific, positions indicated by Ai,j represent integer samples;
hk

i,j(k ∈ {1, 2, 3}) and qk
i,j(k ∈ {1, 2, · · · , 12}) denote half-

pixel positions and quarter-pixel positions, respectively. Given
a reference block I A, whose pixels are regarded as integer
samples (Ai,j), the half-pixel blocks I hk

and quarter-pixel
blocks I qk

are interpolated from I A. With these sub-pixels
interpolated, the most similar reference sample is finally
selected among integer and sub-pixel position samples to
facilitate coding the current block.

HEVC adopts a uniform 8-tap filter for half-pixel interpo-
lation and a 7-tap filter for quarter-pixel interpolation. These
fixed interpolation filters may not be flexible enough to accom-
plish the interpolation of videos that contain diversified scenes
and contents. Moreover, these interpolations only consider
the information from a very small neighborhood, and cannot
make an accurate prediction when facing signals with complex
structures.

B. Learning Grouped Variations

Learning-based interpolation methods [11], [20], [21]
aim to estimate the mapping f (·) between an input
low-resolution (LR) image y and its corresponding high-
resolution (HR) image x:

x = f (y). (1)

These approaches that directly model the mapping between
y and x usually suffer from several drawbacks: 1) the learned
model over-fits to the regularity between low-frequency parts
of image signals and high-frequency details are neglected;
2) the priors are imposed on the whole x, thus the method is
hard to learn useful guidance for recovering the high frequency
image signal; 3) useful structural correspondences in the high
frequency domain may be neglected when directly modeling x.

Our method also attempts to estimate a mapping function,
except that the mapping estimated is between integer pixels I A

and sub-pixel samples I hk
(or I qk

). On the other hand,
we propose a novel image model, i.e. grouped variation image
representation, to overcome the aforementioned drawbacks.

Motivated by wavelet transformation [22], [23] and variation
image statistics [24]–[26], we make use of the local redun-
dancy to remove the auto-correlation of I A and I hk

(or I qk
)

as well as their correlation, and to construct more useful struc-
tural correspondences between adjacent pixels. Specifically,
a pixel can be represented by the summation of one of its
nearest neighbors and a very small difference value, i.e. the
variation. This operation removes much of auto-correlation
within adjacent pixels. For a reference block I A, the variations
between its pixels and sub-pixels are demonstrated below:

�I hk = I hk − I A, k ∈ {1, 2, 3}, (2)

where �I hk
denotes the variations of half-pixels.

Similarly, the variations of quarter-pixels are constructed as:

�I qk = I qk − I A, k ∈ {1, 2, · · · , 12}. (3)

Thus, in our work, we focus on estimating the variations
�I hk

and �I qk
, which naturally leads to a modified mapping:

I hk − I A = fh(I A), k ∈ {1, 2, 3},
I qk − I A = fq(I A), k ∈ {1, 2, · · · , 12}, (4)

where fh(·) and fq (·) represent the learned mapping between
integer pixels and grouped variations of half- and quarter-pixel
positions, respectively.

This image representation (4) has three major advantages
compared with (1):

• Fitting to high frequency image signals. According to the
local dependency, low frequency part is removed, and the
regularity between the high frequency is focused on.

• Direct priors. The priors are imposed on the missing part
of the reference block I A, which benefits learning useful
guidance for recovering the high frequency part of the
image signal.

• Plenty of structural correspondences. Compared with an
image signal, the variation signal significantly increases
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Fig. 2. Framework of the proposed GVCNN. The network first extracts feature maps from the integer-position sample. Then the group variations that identify
the differences between different sub-pixel position samples and the integer-position sample are inferred using the same feature maps. Final results of sub-pixel
position samples are naturally obtained by adding the variations back to the integer-position sample.

the patch repetitiveness, which benefits the inference of
missing details in the restoration process.

In summary, for fractional interpolation, compared with pre-
dicting sub-pixel values, it is more simple to predict sub-pixel
variations based on integer pixels. Thus, the model training
for learning-based methods becomes easier than directly end-
to-end learning from integer pixels to sub-pixels. Therefore,
the modeling capacity of a model also becomes larger.

C. Grouped Variation Neural Network

As discussed in Sec. II, deep convolutional neural network
based methods have obtained much success in different kinds
of low-level image processing problems. With the help of
large-scale training data, deep CNN based methods attempt to
learn a mapping from the input signal x to the target result y ′
as follows:

y ′ = f (x,�), (5)

where � represents the set of parameters of the convolutional
neural network, learnt on the training data with the back-
propagation.

In this subsection, we introduce the proposed one-for-all
fractional interpolation method based on grouped variation
convolutional neural network (GVCNN). It first extracts a
feature map from integer-position samples I A and then infers
residual maps of different sub-pixel positions sharing the same
feature map.

In the shared feature map extraction component, a feature
map with 48 channels is initially generated from the integer-
position sample, followed by 8 convolution layers with 10
channels. The 10-th layer later derives a 48 channel feature
map. This shrinkage in the middle design makes the network
lightweight and cost less to train. The residual learning tech-
nique is utilized in shared feature map extraction to accelerate

the convergency of the network. So that we add the 1-st layer
to the 10-th layer and then activate their sum with parametric
rectified linear unit (PReLU) [27] function to obtain the shared
feature map. After 9 convolutional layers with 3×3 kernel size,
the receptive field of each pixel in the shared feature map is
19 × 19 in the input space, which means that a large nearby
area in the integer-pixel position sample has been considered
for the feature extraction of each pixel.

Compared with the method in [11], which investigates
several networks to predict each subpixel position samples sep-
arately, our GVCNN is more compact and effective. We argue
that there is no need to separately extract different feature
maps to predict sub-pixel position samples, once the spatial
correlation and continuity of the sub-pixels are fully consid-
ered. In our network, a shared feature map is generated and
then used to infer sub-pixel samples at different locations. The
shared feature map is followed by a specific convolutional
layer, which generates a residual map for each sub-pixel
position. The final results of sub-pixels can be obtained by
adding the integer-position sample to the residual maps.

Fig. 2 shows the architecture of GVCNN. The network takes
the integer-position sample I A as its input. PReLU is utilized
for nonlinearity between the convolutional layers. Specifically,
we define f out

k to be the output of the k-th convolutional layer.
f out
k is obtained by:

f out
k = Pk

(
Wk ∗ f out

k−1 + Bk
)
, (6)

where f out
k−1 is the output of the previous layer, Wk is the

convolutional filter kernel of the k-th layer and Bk is its bias.
f out
0 is the input integer-position sample. The function Pk (·)

is the PReLU function of the k-th layer:

Pk (x) =
{

x, x > 0,

ak ∗ x, x ≤ 0.
(7)
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Fig. 3. Flow chart of the training data generation for GVCNN. For the integer position sample generation, pixels at integer positions are first sampled and
then coded for simulation. Sub-pixel position samples are sampled from the raw image blurred by a Gaussian kernel to prevent aliasing effects.

x is the input signal and ak is the parameter to be learned for
the k-th layer. ak is initially set as 0.25 and all channels of
the k-th layer share the same parameter ak .

During training process, mean square error is used as the
loss function. Let F (·) represent the learnt network that infers
sub-pixel position samples from the integer-position sample
and � denote the set of all the learnt parameters including the
convolutional filter kernels, bias and ak of the PReLU layer.
The loss function can be formulated as follows:

L (�) = 1

n

n∑

i=1

‖F (xi ,�) − yi‖2, (8)

where pairs {xi , yi }n
i=1 are the ground-truth pairs of integer-

position and sub-pixel position samples.

IV. TRAINING DATA GENERATION

FOR MOTION COMPENSATION

In this section, we focus on the generation of training data
that is going to be fed to the proposed GVCNN. We present a
framework to simulate the practical process to generate ground
truth for fractional interpolation. Specifically, we encode
the integer-position pixels with HEVC and perform blurring
operations before down-sampling. In addition, we provide
theoretical analysis of the performance bound for motion
estimation with quantization to choose the appropriate size
of blur kernels.

A. Training Data Generation

In most video coding standards, motion compensation is
used to compress redundant information between adjacent
frames. Intuitively, corresponding pixels projected by pre-
dicted motion vectors between frames are likely to be located
at sub-pixel positions, and this is where fractional interpolation
is used. It generates reference samples in sub-pixel positions
for motion vectors to project on. The effectiveness of fractional
interpolation methods can be quantitatively evaluated by the

final coding performance, which is affected by a great many
factors in the complex video coding system. It means there is
no exact ground truth for fractional interpolations.

Thus, in our work, we attempt to generate simulated ground
truth for our GVCNN. Similar to previous works, we also
obtain sub-pixel position samples by down-sampling from
high-resolution pixel grids. Nevertheless, our training data
generation framework has two key considerations:

1) Since fractional interpolation is performed on recon-
structed coded frames, which contains reconstruction
error especially under high quantization parameters,
the input of our network is coded and reconstructed
by video coding system to simulate practical situations.
As shown in the lower part of Fig. 3, input integer-
pixels are coded and reconstructed by HEVC after down-
sampled from the raw image.

2) High-frequency components in the original high-
resolution signal become aliasing after down-sampling,
which leads to different appearance than the original
signal. To deal with the problem, we perform blurring
operations to alleviate the aliasing effect caused by
down-sampling. The upper part of Fig. 3 illustrates
the process. The high-resolution signal is first blurred
and then down-sampled to generate simulated ground-
truth sub-pixels. The size of the blur kernel is essential.
Generally, a large blur kernel effectively reduces the
influence of aliasing. However, it also introduces more
noise in reconstruction. In the next subsection, we dis-
cuss the optimal size of blur kernels theoretically.

B. Performance Bound for Motion Estimation
With Quantization

We analyze the performance bound for motion estima-
tion with quantization and give suggestions for choos-
ing the best blur kernel size in training data generation.
Specifically, we consider the Cramer-Rao bounds (CRB) for
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Fig. 4. Illustration of the degradations caused by quantization, up-sampling and Gaussian blurring during sub-pixel interpolation.

motion estimation, which provides the minimum mean square
error that an unbiased estimator can achieve. The CRB can be
obtained by constructing the maximum likelihood estimator
and Fisher information matrix.

The following derivation refers to [28] and [29]. Our
analysis has two distinct properties: 1) Our analysis considers
quantization errors; 2) In the analysis of [28], the original
and shift signals go through the same degradation. However,
in our analysis, the shifted signals go through an additional
quantization degradation process. For simplicity, we only
consider 1-D signal.

1) Frequency Signals With Motion Shift: Consider two
signals: a low frequency signal ω1, and a high-frequency
aliasing signal ω2, where ω2 = ω1 + NL . The original signal
with these two frequency components in the time domain is
presented as follows,

It1 (n) = A1

NL
e
− i2πω1n

NH + A2

NL
e
− i2πω2n

NH , (9)

where NL and NH are the lengths of down-sampled and orig-
inal signals, respectively, and NH serves as a normalization
constant. n is an integer indexes a certain frequency band.
A1 and A2 are magnitudes of low frequency signal and high-
frequency signals, respectively. Note that, the magnitudes of
signals are assumed to follow a power law [30], thus the
magnitude of ω2 is much larger than those of other high-
frequency components. That is why we can assume that, there
is only one high frequency component in the given signal.
Assuming a motion u2 happens on the original grid in t2 time,
the shifted signal can be presented as follows,

It2 (n) = A1

NL
e
− i2πω1(n−u2)

NH + A2

NL
e
− i2πω2(n−u2)

NH ,

= A1

NL
W−w1(n−u2) + A2

NL
W−w2(n−u2), (10)

where W = exp
(

i2π
NH

)
.

We then conduct the further analysis in DFT domain, where
the shifts in time naturally become changes in the phase of the
signal. The DFTs of the original signals are

Ĩt1(ω) = Z0 [A1δ(ω − ω1) + A2δ(ω − ω2)],

Ĩt2(ω) = Z0
[
A1δ(ω − ω1)W u2ω1 + A2δ(ω − ω2)W u2ω2

]
,

(11)

where Z0 = NH /NL .
2) Up-Sampled Quantized Signals: We then deduce the

degradation version of Eqs. (10) and (11). In our sub-pixel
interpolation for motion estimation, the current block is given
in the high-resolution space, and the reference block is

assumed to be at first quantized and then up-sampled by our
algorithm. The whole process is shown in Fig. 4. To suppress
the negative effect of the potential aliasing and quantization
noises on motion compensation, blurring operations can be
conducted on the current block and reference blocks. There
are two kinds of blurring operations. The first one is implicitly
conducted by our interpolation method. The second one is
set in the training data synthesis. Thus, in the formulation,
the two signals are degraded by rescaling operation (modeled
as Gaussian blur), quantization (modeled as random noise)
and contaminated by random noises. The DFTs of these two
degraded signals are presented as follows,

J̃t1(ω) = [
Gσp(ω1)A1 + Gσp(ω2)A2

]
δ(ω − ω1) + n1(ω),

J̃t2(ω) = {[
Gσq (ω1)Gσk (ω1)A1W u2ω1 + Gσq (ω1)n

q1
1 (ω1)

]

+Gσq (ω2)Gσk (ω2)A2W u2ω2
}
δ(ω − ω1) + n2(ω),

(12)

where n1 and n2 are assumed to be additive Gaussian noise
with variances σ 2

n1
and σ 2

n2
, respectively. DFTs of the Gaussian

blur kernels that are used to suppress aliasing and quantization

are denoted by Gσp (ω) = exp

(
−ω2σ 2

p
2

)
and Gσq (ω) =

exp

(
−ω2σ 2

q
2

)
, where σp and σq are the standard deviations.

DFT of the Gaussian blur kernel caused by up-sampling

is denoted by Gσk (ω) = exp

(
−ω2σ 2

k
2

)
, where σk is the

standard deviation. nq1
1 is the quantization error, which follows

a uniform distribution ranging between [− q
2 , q

2 ], where q is
assumed to be linearly correlated to A1. The expectation and
variance of nq1

1 are:

E(nq1
1 ) = 0,

var(nq1
1 ) = C1 A2

1, (13)

where C1 is a constant correlated to the peak and range of
the signal, as well as the quantization step. Since A1 and A2
follow a power law [30], the magnitude of quantization error
of ω1 is much larger than that of ω2. Thus, we here neglect
the quantization error of ω2.

Similar to [28], the aliasing signals can be regarded as
additive white Gaussian noise. Hence, the problem becomes

J̃t1(ω) = [
Gσp(ω1)A1 + Gσp(ω2)A2

]
δ(ω − ω1) + n1(ω),

= Gσp (ω1)A1δ(ω − ω1) + n′
1(ω),

J̃t2(ω) = Gσq (ω1)Gσk (ω2)A1δ(ω − ω1)W u2w1
NH

+ n′
2(ω),

(14)
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where n′
1 = n1 + Gσp(ω2)A2 has the variance

σ 2
n′

1
= G2

σp
(ω2)A2

2 + σ 2
n1

, (15)

and n′
2 = n2 + Gσq (ω2)Gσk (ω2)A2 + Gσq (ω1)n

q
1 has the

variance

σ 2
n′

2
= G2

σk
(ω2)G2

σq
(ω2)A2

2 + σ 2
n2

+ G2
σq

(ω2)C1 A2
1. (16)

3) Cramer-Rao Bounds for Motion Estimation: The
Cramer-Rao bounds [31] provides a bound for unbiased
estimators. It is obtained by calculating the inverse of the
Fisher information matrix. The Fisher information matrix is
calculated by taking derivatives of a log-likelihood in terms
of the unknown parameters.

The negative log likelihood function for the input down-
sampled image is

− log p
(
J̃t1, J̃t2 |A1, u2

)

= 1

2σ 2
n′

2

|| J̃t2(ω1) − Gσq (ω1)Gσk (ω1)A1W u2w1
NH

||22

+ 1

2σ 2
n′

1

|| J̃t1(ω1) − Gσp(ω1)A1||22, (17)

where || ∗ ||22 evaluates the �2 norm for complex signals.
Then, we can get Fisher Information Matrix for the

unknown parameters θ = {Re {A1} , Im {A1} , u2} as follows,

Iθ =
⎛

⎝
t1 + t2 0 st2

0 t1 + t2 st2
st2 st2 s2t2
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⎠, (18)
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I−1
θ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

t1
t2
1 − t2

2

t2
t2
1 − t2

2

−1

st1 − st2
t2

t2
1 − t2

2

t1
t2
1 − t2

2

−1

st1 − st2−1

st1 − st2

−1

st1 − st2

t1 + t2
s2(t1 − t2)t2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (19)

Thus, we obtain the following Cramer-Rao bounds for
estimating motion u2 as

var[û2] ≥ I−1
θ (3, 3) = t1 + t2

s2(t1 − t2)t2
= 1

s2t2
H1, (20)

where
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Since the power spectral of natural images follows a power
low, i.e. |A1| � |A2|, the quantization error term related to
|A1| in σ 2

n′
2

makes σ 2
n′

2
dominate σ 2

n′
2
+ G2

σq
(ω1)σ

2
n′

1
in magni-

tude. Then, 1 ≤ H1 ≤ 1 + α, and 1 + α is the upper-bound

of H1. Therefore, we can replace H1 with a constant h1. After
that, we have

var[û2] ≥ I−1
θ (3, 3) = 1
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We can observe the effects of the blur kernel (σk) on motion
estimation. The effects are two-fold. A small kernel preserves
low-frequency component, boosts less noises (in H3), and
suppresses less aliasing signals and quantization errors (in H2).
A large kernel lose effective low-frequency component, boosts
noises (in H3), but suppresses more aliasing signals and
quantization errors (in H2). An intermediate size blur kernel
achieves best performance.

V. EXPERIMENTAL RESULTS

A. Implementation Details

200 training images and 200 testing images in
BSDS500 [32] at size 481 × 321 and 321 × 481 are
used for training data generation. Different from [11], which
codes and reconstructs input integer samples with one single
QP value to obtain a specific model for each QP, we utilize
multiple QPs from 0 to 51 for training data generation to
acquire a model that can be applicable for all QPs.

Besides, due to different sub-pixel levels of half-pixel
samples and quarter-pixel samples, we adopt different set-
tings for training data generation for half-pixel and quarter-
pixel position samples, and we train two models for these
two sub-pixel levels (GVCNN-H for half-pixel positions and
GVCNN-Q for quarter-pixel positions). Specific settings are
demonstrated below.

For GVCNN-H, 3 × 3 Gaussian kernels with random stan-
dard deviations in the range [0.4, 0.5] are used for blurring.
By dividing the images into 2×2 patches without overlapping,
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Fig. 5. Three example R-D curves of the sequences (a) BQTerrace, (b) Kimono and (c) BasketballPass under LDP configuration.

pixels at the top-left of the patches in the raw images are sam-
pled to obtain the integer-position sample. And pixels at other
three positions of the patches are separately sampled from the
blurred image to derive the sub-pixel position samples.

As for GVCNN-Q, the inferred samples are at a smaller
sub-pixel level. 3 × 3 Gaussian kernels with random standard
deviations in the range [0.5, 0.6] are utilized. The sampling
is performed based on 4 × 4 patches, where 12 samples are
extracted from pixels at 1/4 or 3/4 positions vertically or hor-
izontally in the patch.

During the integration into HEVC, we interpolate an
entire coded reference frame with our trained GVCNN-H
and GVCNN-Q in advance. Specifically, we take the ref-
erence frame as the integer-position sample and input it
into the trained networks to acquire 3 half-pixel position
samples (I h1

, I h2
, I h3

) and 12 quarter-pixel position samples
(I q1

, I q2
, ..., I q12

). The interpolated sub-pixel position sam-
ples are cached in the system and we can later obtain the
needed blocks during inter prediction. For the sake of better
performance, a CU level RDO is used for the interpolation
method selection. Two passes of encoding that respectively
interpolate the sub-pixel position samples with and without the
deep based method are performed at the encoder side. A flag
is set based on the rate-distortion costs of the two passes to
indicate whether to use the deep based method for sub-pixel
position samples interpolation. The flag is coded with one bit
and integrated at CU level. All the prediction units (PU) in a
CU share the same flag.

B. Experimental Settings

During the training process, the training images are decom-
posed into 32×32 sub-images with a stride of 16. The GVCNN
is trained on Caffe platform [33] via Adam [34] with standard
back-propagation. The learning rate is initially set as a fixed
value 0.0001. The batch size is set as 128. Models after
100, 000 iterations are used for testing. The network is trained
on a single NVIDIA GeForce GTX 1080.

The proposed method is tested on HEVC reference software
HM 16.4 under the low delay P (LDP) configuration. BD-rate
is used to measure the rate-distortion. The QP values are set
to be 22, 27, 32 and 37. As mentioned above, we train one

GVCNN-H and GVCNN-Q for all QPs based on the corre-
sponding training data. A CU level rate-distortion optimization
is also integrated to decide whether to replace our deep based
interpolation method with the interpolation method of HEVC.

C. Experimental Results and Analysis

1) Overall Performance: Performance of the proposed
method for classes A, B, C, D, E and F is shown in Table I.
For the luma component, our method achieves on average
2.2%, 1.2% and 0.9% BD-rate saving respectively under LDP,
LDB and RA conditions. And for the sequence BQTerrace,
the BD-rate saving under LDP can be as high as 5.2%. For
further verification, some example rate-distortion (R-D) curves
are shown in Fig. 5. It can be seen that under most QPs our
method is superior to HEVC.

Besides, the JVET ultra high definition (UHD) sequences
(3840 × 2160) are also tested under the RA configuration.
Results are shown in Table II. The BD-rate reduction is less
significant on high-resolution test sequences compared with
that on other sequences. Our explanation is that, the sampling
precision of the high-resolution test sequences is high enough
and the signals of adjacent pixels are more continuous. Hence,
it is not very beneficial to generate sub-pixel position samples
for motion compensation.

2) Comparison With Existing Methods: We also compare
our method with two existing deep based fractional interpola-
tion methods. Two methods (respectively called CNNIF [11]
and VDIF [12]) only replace the half-pixel interpolation
without rate-distortion optimization in HEVC and is tested on
HM 16.4. For fair comparison, we also integrate our method
into HM 16.7 by only replacing the half-pixel interpolation
algorithm with the GVCNN-H without rate-distortion
optimization. Three methods are all tested under the HEVC
common test conditions. The BD-rate reduction comparison
for Y component between the three methods are shown
in Table III. Our method obtains gain over CNNIF and VDIF
in most cases. And our performance will be further improved
after adding the GVCNN-Q and rate-distortion optimization.

3) Verification of the Grouped Variation Network: With the
grouped variation network, only two networks corresponding
to half-pixel and quarter-pixel position samples need
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TABLE I

BD-RATE REDUCTION OF THE PROPOSED METHOD COMPARED TO HEVC

TABLE II

BD-RATE REDUCTION OF THE PROPOSED METHOD FOR UHD SEQUENCES
UNDER RA CONFIGURATION COMPARED TO HEVC

to be trained, which is convenient and meaningful for real
application. In order to further identify the effectiveness of our
grouped variation method, we additionally train 15 networks
for each sub-pixel position to identify that the convenience
is achieved without the loss of coding performance.
We define the method that trains networks separately
as GVCNN-Separate and the proposed uniform method as
GVCNN-Uniform. The average BD-rate reduction comparison
for some testing classes are shown in Table IV. Note that in

this comparison only the quarter-pixel interpolation method is
selected by RDO. As can be observed, results of training the
networks uniformly are comparable to the results obtained by
training networks separately.

Besides the coding performance, we additionally compare
the implementation time of the two methods. The overall
encoding time complexity in CPU mode for GVCNN-Separate
is 1495% and for GVCNN-Uniform is 629%. It can be seen
that the time complexity of GVCNN-Separate is much larger
than GVCNN-Uniform since GVCNN-Separate needs more
passes of network forwarding.

4) Analysis of Blurring in Training Data Generation: The
effect of the blurring process in training data generation is
also further tested and analyzed. Table V has shown the results
which are derived by the models trained without blurring. The
proposed model obtains obvious gain over the model without
blurring.

We define the half-pixel interpolation model trained with
Gaussian blurring kernels whose standard deviations are
in range [x, x + 0.1] as GVCNN-H(x) and similarly the
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TABLE III

BD-RATE REDUCTION COMPARISON FOR CLASSES C, D AND E
UNDER LDP CONFIGURATION

TABLE IV

AVERAGE BD-RATE REDUCTION ACHIEVED BY TRAINING

THE NETWORKS SEPARATELY AND UNIFORMLY

TABLE V

BD-RATE REDUCTION OF GVCNN WITH AND

WITHOUT BLURRING FOR CLASS D

quarter-pixel interpolation model as GVCNN-Q(x). For
further analysis, we have trained models with different
blurring levels and tested them on class D. By fixing the
blurring level of one model (GVCNN-H or GVCNN-Q) and
changing the others’, two line charts are derived as shown
in Fig. 6 and Fig. 7. It is obvious that the models of median
blurring levels obtain the largest gain, which accords with the
theory proposed in Sec. IV-B. Note that, in this analysis, only
the quarter-pixel interpolation method is selected by RDO.

5) Implementation Time: Experiments shown in this paper
are all run in CPU mode. We additionally test the class D in
GPU mode for tesing. The Intel i7 7700 CPU and NVIDIA
GeForce GTX 1070 GPU are used for testing. In GPU mode,

Fig. 6. BD-rate reduction obtained with fixed GVCNN-H model (x = 0.4)
and various GVCNN-Q models (x = 0.3, 0.4, 0.5, 0.6).

Fig. 7. BD-rate reduction obtained with fixed GVCNN-Q model (x = 0.5)
and various GVCNN-H models (x = 0.3, 0.4, 0.5, 0.6).

the GPU is alternatively used for the forward operation of
CNN and other operations are still performed by CPU. The
overall encoding time complexity in CPU mode is 629% and
in GPU mode is 282%. And the decoding time complexity in
CPU mode is 154858% and in GPU mode is 11922%. It can
be seen that the coding efficiency is well improved by GPU
acceleration. There are advanced techniques to accelerate our
method, such as a fixed point implementation of our model.
Based on recent progresses of deep model quantization [35],
all 32-bit float point multiplications can be replaced by 8-bit
fixed point operations. After the optimization, the running time
of our neural network model in theory can reduce to 1/4 of
that before optimization. The deduced encoding time of our
method in GPU mode can reduce from about 280% to 145%.
Moreover, the complexity of our work can be further reduced
by hardware acceleration when being integrated into the chip
in real applications.

6) Rate Distortion Optimization Results: During the inte-
gration, a CU level RDO is performed to select the method
for interpolating sub-pixel position samples. PUs with sub-
pixel level motion vectors in one CU will choose the same
interpolation method. Some example RDO results of the
sequences in class D are shown for verification.

Fig. 8 shows the visualization results of the interpolation
method selection for a frame in RaceHorses. In the figure,
the marked blocks are the CUs of inter mode. Color red
indicates that PUs in the CU choose GVCNN for interpolation
and color blue indicates that PUs choose the interpolation
method DCTIF of HEVC.
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Fig. 8. Visualization of RDO results of a frame in RaceHorses. The test
condition is LDP, QP32, POC8. Red Blocks indicate that the CU chooses
GVCNN for interpolation and the blue ones represent CUs that choose DCTIF.

TABLE VI

RDO RESULTS FOR SUB-PIXEL POSITION SAMPLES INTERPOLATION

We also count the total numbers of the two kinds of CUs
for the sequences in class D. We test the sequences for 2s
with QPs 22, 27, 32 and 37. The number of CUs that choose
GVCNN and DCTIF for interpolation during the encoding
process are calculated and shown in Table VI. The choosing
ratio is calculated for each sequence to indicate the ratio of
the CUs that choose GVCNN for interpolation. It can be
seen that the choosing ratio is highly related with the coding
performance of our method over the sequence.

VI. CONCLUSION

In this paper, we propose a one-for-all grouped variation
convolutional neural network for fractional interpolation in
motion compensation of video coding. The network first
uniformly extracts a feature map from the input integer-
position sample, and then variations at different sub-pixel
positions are inferred sharing the same feature map. Training
data generation of the proposed network is also carefully
analyzed and designed. Experimental results show that our
method has obtained on average a 2.2% BD-rate saving on
the test sequences compared with HEVC. Effectiveness of the
grouped variation adopted in our network is also well identified
by experiments.
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