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Abstract— In this paper, we address a rain removal problem
from a single image, even in the presence of large rain streaks
and rain streak accumulation (where individual streaks cannot
be seen and thus are visually similar to mist or fog). For rain
streak removal, the mismatch problem between different streak
sizes in training and testing phases leads to poor performance,
especially when there are large streaks. To mitigate this problem,
we embed a hierarchical representation of wavelet transform
into a recurrent rain removal process: 1) rain removal on the
low-frequency component and 2) recurrent detail recovery on
high-frequency components under the guidance of the recovered
low-frequency component. Benefiting from the recurrent multi-
scale modeling of wavelet transform-like design, the proposed
network trained on streaks with one size can adapt to those with
larger sizes, which significantly favors real rain streak removal.
The dilated residual dense network is used as the basic model of
the recurrent recovery process. The network includes multiple
paths with different receptive fields, thus it can make full use of
multi-scale redundancy and utilize context information in large
regions. Furthermore, to handle heavy rain cases where rain
streak accumulation is presented, we construct a detail appearing
rain accumulation removal to not only improve the visibility but
also enhance the details in dark regions. The evaluation of both
synthetic and real images, particularly on those containing large
rain streaks and heavy accumulation, shows the effectiveness of
our novel models, which significantly outperforms the state-of-
the-art methods.

Index Terms— Single image deraining, recurrent process,
wavelet transform, scale-free, residual dense network.

I. INTRODUCTION

BAD weather conditions lead to a series of visibility
degradations, which alter the content and color of images.

The accompanying detail loss and signal distortion result in the
failure of many outdoor computer vision applications, which
assume that their inputs are high-quality clean video frames.
Rain streaks are one of the most common degradations in rain
frames. They cause severe intensity and light fluctuations in
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small regions, and therefore obstruct and blur the background
scene.

In the past decades, the endeavors of many researchers
have been dedicated to rain image restoration. Previous meth-
ods [1]–[4] regard single image rain removal as a signal sep-
aration problem between rain streaks and background images
(rain-free images), based on their texture appearance patterns.
Different basic models are employed in these works, such as
frequency domain representation [1], sparse representation [4],
Gaussian mixture model [5], which differentiate rain streaks
and background images.

Recently, there are some new approaches using deep net-
works to facilitate rain removal. In [6] and [7], the image detail
layer without background interference is regarded as the input,
which directly reduces the mapping range from input to output
and makes the learning process easier. In [8], a deep network
designed for removing heavy rain from images is proposed.
The network jointly detects and removes rain streaks, and
performs an alternate rain streak and accumulation removal
to enhance the visibility in rain scenes.

These methods achieve good performance in some cases.
However, they still neglect some important issues:

• The degradations of rain scenes in real-world scenarios
are very complex. In existing rain models, the diversity of
rain sizes is often neglected. Specifically, large streaks are
very hard to be synthesized and modeled in the training
phase, thus are hard to be removed in the practical
scenario. Some previous works [9] try to address the
problem by constructing a multi-path network trained
with different sizes of rain streaks. However, a general
scale-free architecture whose testing performance does
not rely on scale patterns of rain streaks in the training
set is missing.

• The multi-scale dependency of background images and
rain streaks is seldom analyzed and modeled. However,
this information provides abundant context clues to infer
details lost in the degradation caused by rain streaks.
Furthermore, the multi-scale signal analysis provides a
convenient access to decomposing the original image into
small scales, which facilitates the creation of scale-free
rain removal architecture.

• Although some previous works [10]–[12] try to include
context information, a general and easily equipped frame-
work for that purpose is absent. Most methods have a
limited receptive field, thus it is hard to obtain the context
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information from large regions. The potential of sharply
increasing the receptive field to obtain more surrounding
information still needs discussion.

• In a rainy day, clouds in the sky take away most of
the light, thus the background layer of the captured rain
image is usually in a dim light. Previous rain streak accu-
mulation (where individual streaks cannot be seen, and
thus visually similar to mist or fog) removal or dehazing
methods do not consider the low light condition, thus the
recovered results maybe over-dark and many details are
invisible.

Considering these limitations of existing works, we explore
possible deep learning architectures that can effectively restore
clean images from inputs containing very large rain streaks
which do not appear in the training set and heavy rain
accumulation, and are flexible to embed multi-scale context
information.

Specifically, we embed a hierarchical representation of
wavelet transform into a recurrent recovery process. The rain
image is decomposed and reconstructed recurrently. After the
decomposition, all bands are processed at small scales. Thus,
the large streaks that do not appear in the training set become
small and at this small scale, their distribution can be covered
and simulated by the training set. Hence, the rain streaks in
the decomposed bands are easier to be removed. The model
trained on streaks with one size can adapt to those with
larger sizes. In this way, the architecture of recurrent wavelet
learning can realize ‘scale-free’ rain removal and successfully
remove large streaks. Then, we use dilated residual dense
networks as the basic model of the two steps of the recurrent
wavelet learning – 1) rain removal on the low-frequency
component; 2) recurrent detail recovery on high-frequency
components. The network has a very large receptive field. Its
dense connection structure makes full use of the multi-scale
redundancy in the image. Thus, more context information is
obtained, which facilitates rain removal. Furthermore, apart
from rain streaks, we consider degradations including rain
streak accumulation under low light conditions. Then, a linear
composition recovery model is proposed and a deep network
is utilized to learn to not only improve the visibility but also
light up the details in dark regions.

Our contributions are summarized as follows,
• A recurrent wavelet learning is built to achieve a

scale-free rain streak removal. Benefiting from the
recurrent multi-scale modeling of wavelet transform-
like design, the proposed network trained on streaks
with one size can adapt to those with larger sizes.
This can significantly benefit the rain removal on real
rain.

• Dense networks are used as the basic model of the
recurrent wavelet learning. Its network architecture equiv-
alently has multiple paths with different receptive fields,
and thus makes full use of multi-scale redundancy in the
image.

• Dilated convolutions are used to construct some dense
blocks. With the dilated convolutions, the dense blocks
enlarge the receptive field at a faster rate and more context
information is obtained.

• The degradations including rain accumulation under low
light conditions are looked into, and a deep network based
on a linear composition recovery model is developed to
improve the visibility and light up the dark details.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III presents the recur-
rent wavelet learning for scale-free rain streak removal. The
specific network structures – dilated residual dense networks –
to model the two steps of the recurrent wavelet learning are
introduced in Section IV. Section V considers rain streak
accumulation removal in low light conditions. Experimental
results and concluding remarks are presented in Sections VI
and VII, respectively.

II. RELATED WORKS

A. Single Image Rain Removal

Single image deraining is a highly ill-posed problem and is
addressed by a signal separation or texture classification route.
Kang et al. [1] attempted to separate rain streaks from the
high frequency layer by sparse coding. Then, a generalized
low rank model [13] was proposed, where the rain streak
layer is assumed to be low rank. Kim et al. [14] first detected
rain streaks and then removed them with the non-local mean
filter. Luo et al. [4] proposed a discriminative sparse coding
method to separate rain streaks from background images.
Li et al. [5] exploited Gaussian mixture models to separate
the rain streaks. The presence of deep learning promotes
the development of single image deraining. In [6], a deep
network that takes the image detail layer as its input and
predicts the negative residues was constructed. It has a good
capacity to keep texture details. But it cannot handle heavy
rain cases where rain streaks are dense. In [8], a deep joint
rain detection and removal method was proposed to recurrently
remove rain streaks and accumulation, obtaining impressive
results in heavy rain cases. However, rain streaks and textures
of the background are intrinsically overlapped in the feature
space. Thus, the remaining weak streaks or over-smoothed
background textures are usually presented in the results.
In [9], to treat the rain streaks differently, several parallel
sub-networks are trained with different scales of rain streaks.
However, it is not easy to synthesize large rain streaks, and the
testing performance is still bounded by the streak sizes used in
the training phase. Zhang and Patel [15] proposed a joint rain
estimation and removal method. The network automatically
determines the rain-density information and then efficiently
removes the corresponding rain-streaks guided by the esti-
mated rain-density label. In [16], to exploit the directional
characteristic, a transformation is incorporated into the image
decomposition model to facilitate mapping the image signal
and imposing a low rank prior. In [17], the rain streak removal
is designed as an alternating process of removing rain streaks
from a single input image, and removing normal texture details
from the estimated rain streak layer into a rain-free background
layer. Gu et al. [18] proposed a joint convolution analysis and
synthesis sparse representation model, where a single image is
decomposed into two layers which represent large-scale image
structures and fine-scale image textures, respectively. In [19],
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image decomposition and dictionary learning are integrated
and a 3-layer hierarchical scheme is used to remove both
rains and snows. Following [6], [8], [9], and [15], our work
also focuses on deep-learning based single image rain streak
removal. Differently, we construct a scale-free architecture for
rain streak removal. Namely, the testing performance does not
rely on the streak sizes used in the training phase. Compared
with [15], which removes rains with the awareness of different
densities, our work deals with the problem of streak size
mismatch. In [15], the density is injected into the network
as an explicit predictor. In our work, the domain shift in
streak sizes between training and testing phases is implicitly
addressed by a recurrent network inspired by unrolling the
wavelet transform into a recurrent process. Furthermore,
the rain accumulation in low light conditions are looked into
and a deep network is developed for the corresponding inverse
restoration.

B. Deep Learning in Image Processing

In recent years, deep learning-based image processing appli-
cations emerged with promising performance. These appli-
cations include denoising [20], super-resolution [21]–[28],
deblurring [29], and style transfer [30], etc. There are also
some recent works on bad weather restoration or image
enhancement, such as dehazing [31], raindrop and dirt
removal [32], light enhancement [33]–[35] and rain
removal [6], [36], deblocking [37]. Besides, with the
superior modeling capacity than shallow models, deep
learning-based methods begin to solve harder problems, such
as blind image denoising [20], image compression [38],
quality assessment [39], and video coding [40]–[43].

The rise of the ResNet and DenseNet further advances
the development of the related tasks. It has been observed
that refining features progressively like ResNet [44] or con-
catenating and fusing features from different levels like
DenseNet [45] leads to better representations of pixels and
their contexts for low-level visions. The related beneficial tasks
include super-resolution [22], [46]–[49], rain removal [8], [15],
dehazing [50], inpainting [51], and compression artifacts
removal [52], deblurring [53], etc. In [22], the connection
between ResNet and traditional band filter recovery is pre-
sented, and edge information is embedded into the ResNet as
the priors for a more accurate high-frequency detail inference.
In [46], [51]–[53], ResNet is used as the generator of genera-
tive adversarial networks. Yang et al. [8] extended the baseline
ResNet to a contextualized dilated network. In each block,
the output features aggregate the representations of the three
convolution paths with different dilated factors, which expands
the receptive fields effectively and well preserve local details.
In [15], a multi-stream densely connected de-raining network
is proposed to efficiently leverage features from different
scales. In [50], a new edge-preserving densely connected
encoder-decoder structure with multi-level pyramid pooling
module is exploited to estimate the transmission map for
further dehazing. In [48], Tai et al. combined recursive units,
gate units and the densely connected structure to simulate
the mechanism of the human persistent memory for image
restoration. Zhang et al. [47] combined the structure of ResNet

Fig. 1. Illustration of discrete wavelet transform (DWT).

and DenseNet. Dense blocks are used to obtain dense local
features. All features in each dense block are connected by
skip connections, and then are fused in the last layer adaptively
in a holistic way. In [49], Zhang et al. utilized residual
in residual to construct deep networks. The network con-
sists of several residual groups, which further contains some
residual blocks. In our work, following [15], [47], and [50],
we also explore to construct a more effective network for
low-level visions. We integrate residual networks, dense con-
nectedly networks and dilated convolutions into a unified
dilated residual dense network, where the information flow
is obtained from different levels and their interdependencies
are maximized to better infer the clean background image.

C. Wavelet Transformation-Based Image Processing

Many wavelet-based methods have already been proposed
for low-level image processing problems. The general flow-
chart of discrete wavelet transform is provided in Fig. 1. Many
works focus on video super-resolution [54]. A sequence of
low-resolution images is utilized to infer the information of a
high-resolution image. There are also lots of works on single-
image super-resolution, including interpolation-based [55] and
statistic-based methods [56]. In [55], a modified version of
classical wavelet-based interpolation method was proposed.
In [57], a hybrid wavelet convolution network was presented.
A set of sparse coding candidates is encoded by wavelet
transform and a convolution network is employed for sparse
coding. In [58], the wavelet transform is adopted for separating
the variations of data at different scales. Some works focus on
wavelet transform-based denoising [59] and deblocking [60].
There is also a work utilizing one-layer wavelet transform [61]
for rain removal. Some recent works borrow from Laplacian
pyramid structures and craft a progressive up-sampling method
for image generation [62] and super-resolution [26], [63]. The
first one cascades several convolutional networks within a
Laplacian pyramid framework to generate images in a coarse-
to-fine fashion, leading to a superior image generation perfor-
mance. The second one reconstructs the sub-band residuals of
high-frequency signals progressively and provides high-quality
super-resolution results with a low computational complexity.
Compared to Laplacian pyramid-based deep learning meth-
ods [26], [63], our approach includes both progressive down-
sampling and up-sampling processes. After the down-sampling
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Fig. 2. The framework of our proposed recurrent wavelet learning for rain streak removal.

operation, the spatial resolution of the features is reduced,
then the successive operations become more light-weighted
and have a higher computational efficiency. Compared to
all previous wavelet / Laplacian transform-based methods,
we adopt a recurrent wavelet learning for scale-free rain streak
removal, and the dilated dense network that makes use of
multi-scale redundancy is constructed. Besides projecting the
signal into a space where learning the mapping from input
and target images more easily, we specially pay attention to
unrolling the wavelet transform into an recurrent network,
which decomposes the rain image into a small scale and
performs the rain removal more effectively.

III. RECURRENT WAVELET LEARNING FOR

SCALE-FREE RAIN STREAK REMOVAL

In this section, we aim to address the problem of the
diversity of rain streaks in sizes and densities, and develop
a scale-free rain streak removal framework. Our over-
all network architecture is shown in Fig. 2. The rain
image (I 0) is first decomposed into different components
(I 1 = {I 1

L H , I 1
H L , I 1

H H }, I 2 = {I 2
L H , I 2

H L , I 2
H H }, . . . , I z =

{I z
L L, I z

L H , I z
H L , I z

H H }) by wavelet transformations. Then,
we perform rain removal (the process F) for the low-
frequency average components, i.e. I z

L L , in which scale rain
streaks can be better recognized and removed by the net-
work. Then, guided by the low-frequency rain removal result,
the residual rain streaks in high-frequency bands are removed
(the process G). After that, the estimated background low-
frequency and high-frequency bands are combined by inverse
wavelet transformation (the process H). The decomposition
and reconstruction processes can be performed recurrently.
After the decomposition, the spatial resolutions of all bands are
shrinked. Therefore, the images are equal to being processed at
small scales. Large streaks in the original rain image become
small and are easier to be removed. Thus, the architecture
of recurrent wavelet learning can realize ‘scale-free’ rain
removal. Here, we only briefly present overall architecture
of recurrent wavelet learning. The specific network struc-
tures and configurations of F and G will be introduced
in Section IV.

Fig. 3. Illustration for 2D-DWT and 2D-IDWT. The four pixels in each 2×2
patch are utilized to calculate coefficient values in four band maps.

A. Wavelet Decomposition

Our method is built on wavelet transform. The transform
decomposes an image into several sub-images of the same
size containing wavelet coefficients. The Haar wavelet is
employed to depict different-frequency facial information. The
2D fast wavelet transform (FWT) [64] is used to calculate
Haar wavelets. The calculation process is shown in Fig. 1.
Equivalently, as shown in Fig. 3, the Haar wavelet coefficients
at one level are computed as follows,

A = (a + b + c + d)/4,

B = (a − b + c − d)/4,

C = (a + b − c − d)/4,

D = (a − b − c + d)/4,

where a, b, c, d are four pixels in every 2 × 2 block. The
height and width of the decomposed bands are half of the
original image signal. It is observed from Fig. 3 that, the main
structure component of the signal is in A. B , C and D contain
high-frequency details. The wavelet bands at different scales
are calculated by performing the decomposition recurrently
in Fig. 1. We use E to denote the wavelet decomposition
process. Then, the decomposition of the original image and
low-frequency band is formulated as follows,

[I 1
L L, I 1

L H , I 1
H L , I 1

H H ] = E(I 0),

[I 2
L L, I 2

L H , I 2
H L , I 2

H H ] = E(I 1
L L),

. . .

[I j+1
L L , I j+1

L H , I j+1
H L , I j+1

H H ] = E(I j
L L),

. . .

[I z
L L, I z

L H , I z
H L , I z

H H ] = E(I z−1
L L ), (1)

where z is the order number of the decomposition.
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B. Recurrent Wavelet Learning

After the decomposition, a rain image turns to many wavelet
bands. Then, we need to build two mappings F and G, which
will be illustrated as follows, for the restoration of these bands
to get rain-free bands. First, for the top low frequency rain
signal, i.e. I 2

L L in the Fig. 2, a process F is adopted to
map I j

L L into the rain-free one B̂ j
L L , denoted as

B̂z
L L = F(I z

L L). (2)

After performing rain removal on the top low frequency
band, the predicted main structure of rain-free image B̂z

L L is
obtained. Then, under the guidance of B̂z

L L , we perform rain
removal on high-frequency components. We use G to signify
this process,

[
B̂z

L H , B̂z
H L , B̂z

H H

]
= G([B̂z

L L, I z
L H , I z

H L , I z
H H ]). (3)

After recovering the high-frequency components,
the wavelet bands at a small scale can be combined
into the low-frequency band at a larger scale. We use H to
signify this process,

B̂z−1
L L = H ([B̂z

L L, B̂z
L H , B̂z

H L , B̂z
H H ]). (4)

Specifically, H is the 2D-IDWT transform, as shown
in Fig. 3, the inverse Haar wavelet transform at one level is
calculated as follows,

a = A + B + C + D,

b = A − B + C − D,

c = A + B − C − D,

d = A − B − C + D.

The height and width of the reconstructed bands are twice
those of the input signals.

With Eqs. (3) and (4), we obtain the recovery of the whole
rain-free image as follows,

[
B̂z

L H , B̂z
H L , B̂z

H H

]
= G([B̂z

L L, I z
L H , I z

H L , I z
H H ]),

B̂z−1
L L = H ([B̂z

L L, B̂z
L H , B̂z

H L, B̂z
H H ]).[

B̂z−1
L H , B̂z−1

H L , B̂z−1
H H

]
= G([B̂z−1

L L , I z−1
L H , I z−1

H L , I z−1
H H ]),

B̂z−2
L L = H ([B̂z−1

L L , B̂z−1
L H , B̂z−1

H L , B̂z−1
H H ]).

. . .

B̂0 = H ([B̂1
L L, B̂1

L H , B̂1
H L, B̂1

H H ]).

IV. DILATED RESIDUAL DENSE NETWORK

In the last section, we propose a recurrent wavelet learn-
ing for single image rain removal. F and G are used to
signify the process of removing rain streaks from the top
low frequency component and inferring high-frequency details
under the guidance of the recovered low frequency component,
respectively.

Here, we construct dilated residual dense networks to
model F and G. We also use this network as the basic model
of the detail appearing rain accumulation removal method,
which is illustrated in V-B. Our motivation and network design
methodology are briefly presented as follows. First, we aim to

Fig. 4. Network architecture: (a) Dense network (Dense Block). (b)
Dense network with progressive channel compression. (c) Dense network
with progressive channel compression and residual learning. (d) Some Dense
Blocks are composed of dilated convolutions (D-Dense Block), which further
enlarge the receptive field of the network.

model the multi-scale dependency in the image, thus a network
with dense connections, with different receptive fields, is built.
Second, to avoid excessive growth of parameters, a progressive
channel compression scheme is used. Third, after the channel
compression, one dense block is only connected to the succes-
sive one. To make them connect with each other to facilitate
the local redundancy modeling and utilize features across
different levels, residual learning is also utilized in our network
to further improve the network representation capacity. Fourth,
to enlarge the receptive field of the network, parts of the
convolutions in the dense network are dilated convolutions.

A. Dense Network (Dense Block)

A preliminary network architecture to model the multi-scale
dependency is the dense network as shown in Fig. 4 (a). The
connections of the network have different receptive fields, thus
making use of the information at different scales. The output
of c-th convolution layer is formulated as

Fc = σ(Wc[F1, F2, . . . , Fc−1]), (5)

where σ is the ReLU activation function. Wc is the weights of
the c-th convolution layer. [F1, F2, . . . , Fc−1] is the concatena-
tion of output feature maps of preceding (c − 1) convolutions,
generating a (c − 1) × G channel feature maps. G is the
increasing channel number of each convolution. Note that,
the outputs of the preceding layers have direct connections to
all subsequent layers. These outputs are from the layers having
different receptive fields, thus extract useful dense features at
different scales.

B. Progressive Channel Compression

The network in Fig. 4 (a) may face the problem of parameter
explosion. The c-th convolution layer will generate (c−1)×G
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channel feature maps. To make the generated feature maps
more compact, we add channel compression mechanism in
the network, as shown in Fig. 4 (b). The whole network is
splited into several dense blocks, each of which is fed into
a concatenation layer and a 1 × 1 convolution for channel
compression. Assume the output feature map after the d-th
dense block as well as the the following concatenation and
convolution layer is Fd , then

Fd = σ(W d
c [Fd−1, Fd

1 , Fd
2 , . . . , Fd

c−1]), (6)

where Fd
j is the output feature map of the j -th convolution in

the d-th dense block. Suppose this process is denoted by Xd ,
then the output feature map of the (d + 1)-th dense block is

F (d+1) = X (d+1)(Fd ),

= X (d+1)(Xd (. . . (X0(F0)) . . .)), (7)

where F0 is the feature map extracted by the first convolution
from the input image.

After all N dense blocks, all output features from each dense
block are concatenated and then go through a convolution layer
to generate the final feature R as follow,

R = WR [F0, F1, F2, . . . , F (N−1), F N ]. (8)

C. Residual Dense Block

To alleviate the vanishing-gradient problem in training the
dense network in Fig. 4 (b), we add residual connections
between different dense blocks as shown in Fig. 4 (c). With
the residual connections, Eq. (6) turns to

Fd = σ(W d
c [Fd−1, Fd

1 , Fd
2 , . . . , Fd

c−1]) + Fd−1. (9)

D. Dilated Residual Dense Block (D-Dense Block)

To enlarge the receptive field of the network, we use
dilated convolutions to construct some blocks. The dilated
convolution [65] weights pixels with a step size of a dilated
factor, and thus increases its receptive field without losing
pixel resolution accuracy. The specific network configuration
of the dilated residual dense block is shown in Table I.
In each residual dense block, we use six convolution layers.
In the dilated residual dense block, the dilated factors of
some convolutions are larger than 1, thus the receptive field
of network will expand rapidly. The receptive field of Dense
Block is 13 × 13 and that of D-Dense Block is 25 × 25. The
enlarged receptive field makes network capable of obtaining
more context information, which facilitates rain removal.

E. Implementation Details

In the recurrent wavelet learning, the order of wavelet trans-
form is set to 2. F and G are modeled by two dilated residual
dense networks. Four blocks (including two Dense Blocks and
D-Dense Blocks) are used in each network. Their arrange order
is Dense Block, D-Dense Block, Dense Block and D-Dense
Block sequentially. The channel of the output feature map of
the first convolution and that of each compression convolution
are set to 64, and the kernel size of them is 1 × 1. The kernel
size of other convolutions is 3 × 3. The convolution layer

TABLE I

THE RECEPTIVE FIELD ANALYSIS OF DENSE
BLOCK AND D-DENSE BLOCK

number in each block is set to 6. And the output number G
of these convolutions is set to 32. The specific setting of the
D-Dense Block is provided in Table I.

F. Training Loss

Suppose we have a collection of paired rain and
rain-free images {yi , xi }i=1,...,N , where N is the total
number of training samples. Then, we decompose them
using wavelet transformation and obtain the first order
decomposition results

{
y L L

i , y L H
i , y H L

i , y H H
i

}
i=1,...,N and{

x L L
i , x L H

i , x H L
i , x H H

i

}
i=1,...,N . y L L

i , y L H
i , y H L

i , y H H
i are

sub-bands containing wavelet coefficients for average, ver-
tical, horizontal and diagonal details of the rain image.
x L L

i , x L H
i , x H L

i , x H H
i are sub-bands containing wavelet coef-

ficients for average, vertical, horizontal and diagonal details
of the rain-free image.

F is directly trained based on the rain and rain-free image
{yi , xi }i=1,...,N . Let �F collect all parameters in F . We adopt
mean squared error to train F :

L(�F ) = 1

2N

N∑
i=1

�F(yi ; �F ) + yi − xi�2 . (10)

After training F , we then train G based on the decomposi-
tion results. Let �G collect all parameters in G. The predicted
rain-free average low frequency component by F is denoted
as x̂ L L

i . The input and output vector are represented as

yi =
{

x̂ L L
i , y L H

i , y H L
i , y H H

i

}
,

xi =
{

x L L
i , x L H

i , x H L
i , x H H

i

}
.

We also adopt mean squared error to train G:

L(�G) = 1

2N

N∑
i=1

�G(yi ; �G) + yi − xi�2 . (11)

V. DETAIL APPEARING RAIN ACCUMULATION REMOVAL

To handle heavy rain cases including rain streak accumu-
lation, in this section, the degradation model including rain
streak accumulation under low light conditions is illustrated.
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Then, a linear composition recovery model is developed, and
the related training loss is presented.

A. Rain Streak Accumulation in Low Light Conditions

The widely used rain model [4], [5], [10] considers a rain
image as a linear combination of the background image and
rain streak, which is expressed as:

O = B + S, (12)

where B is the background layer, and S is the rain streak layer.
O is the input image with rain streaks.

In the real world, rain appearance is not only formed
by individual rain streaks, but also by accumulation of rain
streaks. When rain accumulation is dense, the individual
streaks cannot be observed clearly. This rain streak accumula-
tion, whose visual effect is similar to mist or fog, causes the
atmospheric veiling effect as well as blur, especially for distant
scenes. Besides, in a rainy day, clouds in the sky takes away
most of the light, thus the background layer of the captured
rain image is usually in a dim light.

To accommodate these two phenomena (i.e., rain streak
accumulation and low light degradation), a new rain model
is proposed. The model comprises of a background or rain
streak contaminated layer that goes through a Gamma transfor-
mation. It also includes the appearance of rain accumulation,
by relying on the Koschmieder model that is approximately
applicable to many turbid media, including mist, fog
(e.g. [66]) and underwater (e.g. [67], [68]). The new rain model
is expressed as:

R = α � Iγ + (1 − α) � A, (13)

where I is the rain-free background layer B or a rain streak
contaminated layer O. A ∈ [0, 1] is the global atmospheric
light, and α ∈ [0, 1] is the atmospheric transmission. γ > 1
is an decoding Gamma, and Iγ is the gamma expansion of I.

B. Solution: A Linear Composition Recovery Model

Based on Eq. (13), the inverse recovery is to obtain I
given R. This process jointly considers the recovery of the
degradation with rain streak accumulation and low light con-
dition. Thus, it can not only improve the visibility but also
make details in dark regions visible.

The main difficulty of the task is the complex nonlinearity
in the degradation. Directly solving Eq. (13) leads to the
following solution:

I =
[

(R − (1 − α) � A)

α

] 1
γ

. (14)

The division and exponential functions in Eq. (14) cause two
problems: 1) the nonlinearity changes the form of solutions,
thus the good estimations of α and γ cannot guarantee a good
estimator of I; 2) α and γ in some intervals will have a great
influence on I, thus the inaccurate estimations of α and γ may
cause artifacts in the visual results.

To address these issues, we generalize Eq. (13) into a linear
composition model as follows,

R = α � Iγ + (1 − α) � A,

= α � (I − �I(γ )) + (1 − α) � A, (15)

where �I(γ ) is the change of I due to Gamma transformation.
Then, Eq. (15) can be transformed into

I = (R − x) � y + z, (16)

where x = (1 − α) � A, y = 1/α and z = �I(γ ). Then,
the estimation Î can be obtained by first estimating x, y and z
based on R, then followed by linear operations. This change
makes estimating x, y and z consistent with estimating I, thus
the above-mentioned two issues are mitigated. In our work,
we use the proposed dilated residual dense network (illustrated
in Section IV) to learn the mappings between R and x, y, z.

C. Training Loss

Suppose we have a collection of paired patches
{hi , fi }i=1,...,M with and without rain streak accumulation,
where M is the total number of training patches. These
patches can be synthesized by the degradation model
of Eq. (13). We follow two assumptions [31] to synthesize the
training pair: 1) image content is uncorrelated with medium
transmission and Gamma; 2) medium transmission and
Gamma is locally constant. Thus, an arbitrary transmission
α and Gamma γ can be employ on an individual image
patch. The transmission and Gamma is sampled uniformly
from [0, 1] and [1, 1.5], respectively. The atmospheric light A
is set to 1. Then, based on the sampled transmission, Gamma
and atmospheric light, we can convert {hi , fi }i=1,...,M to
{hi , xxi , yyi , zzi }i=1,...,M based on Eq. (16), where hi , fi ,
xxi , yyi and zzi are the training instances that correspond to
R, I, x , y and z in Eq. (16). Let Hx , Hy and Hz denote the
processes of estimating x , y and z based on R, respectively.
Let �Hx , �Hy and �Hz collect all parameters in Hx , Hy and
Hz, respectively. We adopt mean squared error to train them:

L(�H ) = 1

2M

M∑
i=1

(∥∥Hx(hi ; �Hx ) − xxi
∥∥2

+ ∥∥Hy(hi ; �Hy ) − yyi

∥∥2

+ ∥∥Hz(hi ; �Hz ) − zzi
∥∥2

)
. (17)

VI. EXPERIMENTS

A. Dataset

We compare our method with state-of-the-art methods on
a few benchmark datasets: (1) Rain121 [5], which includes
12 synthesized rain images with only one type of rain streaks;
(2) Rain100L2 [8], which is the synthesized data set with
only one type of rain streaks; (3) Rain100H, which is our
synthesized data set with five streak directions; (4) Rain20H,
a random subset of Rain100H, used for ablation analysis.

1http://yu-li.github.io/
2http://www.icst.pku.edu.cn/struct/Projects/joint_rain _removal.html
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Fig. 5. Visual comparison of our RWL with state-of-the-art rain removal algorithms on synthetic rain images. It is observed that, our RWL is better at
removing rain streaks and restoring details. The top panel: testing images from Rain100H. Others: testing images from Rain800. (a) Ground Truth. (b) Input.
(c) UGSM. (d) DetailNet. (e) DID-MDN. (f) JORDER. (g) RWL.

(5) Rain100H-S2 and Rain100-S3, synthesized with s rain
streaks (s ∈ {2, 3, 4, 5}) with different shapes and directions.
The streak sizes are twice and three times as large as those in
Rain100H, used for evaluating the performance when training
and testing streaks have different sizes.

B. Baseline Methods

We compare our rain streak removal method with seven
state-of-the-art methods: image decomposition (ID) [1],
CNN-based rain drop removal (CNN) [32], discrimina-
tive sparse coding (DSC) [4], layer priors (LP) [5],
deep detail network (DetailNet) [6], joint rain detec-
tion and removal (JORDER) [8], directional global sparse
model (DGSM) [69], joint convolutional analysis and syn-
thesis (JCAS) [18], density-aware multi-stream dense net-
work (DID-MDN) [15], image de-raining using a conditional
generative adversarial network (ID-CGAN) [70], and a
common CNN baseline for image processing – SRCNN [21],
trained for deraining. DetailNet and JORDER are retrained
with the online available codes. Other methods are directly
evaluated with the online available codes.

For rain accumulation removal, three state-of-the-art meth-
ods are compared: DehazeNet [31], nonlocal image dehazing
(Nonlocal) [71], gated fusion network (GFN) [72]. The codes
of the three methods are kindly provided by the authors.

TABLE II

PSNR RESULTS AMONG DIFFERENT METHODS

For the experiments on synthesized data, two metrics Peak
Signal-to-Noise Ratio (PSNR) [73] and Structure Similarity
Index (SSIM) [74] are used as comparison criteria. We eval-
uate the results only in the luminance channel, which has a
significant impact on the human visual system to perceive the
image quality.

C. Quantitative Evaluation

Tables II and III show the results of different methods on
Rain12, Rain100L and Rain100H. As observed, our method
considerably outperforms other methods in terms of both
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Fig. 6. Visual comparison of our RWL with state-of-the-art rain removal algorithms on real rain images including large rain streaks. It is observed that, our
RWL successfully removes most large rain streaks. Zooming-in the figure will provide a better look at the restoration quality. (a) Input. (b) LP. (c) DetailNet.
(d) JORDER. (e) DID-MDN. (f) RWL.

TABLE III

SSIM RESULTS AMONG DIFFERENT METHODS

PSNR and SSIM. The PSNR of recurrent wavelet learning
gains over JORDER more than 1dB. Such a large gain
demonstrates the effectiveness of proposed recurrent wavelet
learning and dilated residual dense network on synthesized
heavy rain images.

D. Qualitative Evaluation

Fig. 5 shows the results of synthetic images. Figs. 6 shows
the results of real images including large rain streaks. Fig. 7
presents the results of real images with rain streak accu-
mulation. As observed, our method significantly outperforms

previous state-of-the-art methods and successfully removes
most of rain streaks, enhances the visibility and lights up
details in dark regions.

E. Ablation Study for Recurrent Wavelet Learning

To evaluate the effectiveness of recurrent wavelet learning,
we perform an ablation analysis in Fig. 8. It is observed that,
the recurrent wavelet learning (d) outperforms both directly
processing the rain input (b) and only processing the low-
frequency average component (c).

F. Ablation Study for Dilated Residual Dense Network

We compare four versions of our network: the version with-
out residual learning and dilated convolutions (V0), the version
without dilated convolutions (V1), the version without residual
learning (V2), the full version (V3). In this comparison, only
one dense block is adopted in four networks. The evaluation is
performed on Rain20H, a random sampled 20 testing images
from Rain100H. The evaluation PSNR and SSIM result during
the training is shown in Figs. 10 and 11. It is observed that,
the dilated convolution significantly boosts the performance
(from V0 to V2 and V1 to V3). The added residue also leads
to a superior performance (from V0 to V1 and V2 to V3).
We also compare the visual results of different versions of
our method in Fig. 9. The DenseNet without residual learning
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Fig. 7. Visual comparison of our method with state-of-the-art rain removal algorithms on real rain images with rain streak accumulation. Our method is the
combination of RWL and our detail appearing rain accumulation removal method. Other methods are conducted with DehazeNet [31]. It is observed that, our
method is better at removing rain streak accumulation (denoted by red arrows) and lighting up the details in dark regions (denoted by blue arrows). (a) Input.
(b) DSC. (c) LP. (d) DetailNet. (e) JORDER. (f) Proposed.

Fig. 8. Ablation study for recurrent wavelet learning. F1 directly adopts rain removal on the input image. F performs rain removal on the low-frequency
component of the input image. F+G performs the whole recurrent wavelet learning. Zooming-in the figure will provide a better look at the restoration quality.
(a) Input. (b) F1. (c) F . (d) F + G .

is also compared. It is observed that, the usage of dilated
convolutions and residual learning jointly leads to cleaner rain
removal and finer detail recovery.

G. Visual Results of Models With / Without Residual
Learning

We also compare the visual results of our models with
and without residual learning in Fig. 12. It is observed that,
residual learning slightly improves the performance in visual
quality (from V0 to V1 and from V2 to V3).

H. Evaluation on Streak Size Mismatch

To prove the effectiveness of RWL to handle streak
size mismatch problem between training and testing phases,
we construct two testing sets, Rain100H-S2 and Rain100H-S3.

The streak sizes of these two sets are twice and three times
of those in Rain100H, respectively. The testing results are
provided in Table IV. It is observed that, F + G achieves
superior performance than F1. The gain is almost 2 dB on
Rain100H-S2 and 1.8 dB on Rain100H-S3. Some visual results
are provided in Fig. 13.

I. Wavelet Reconstruction Results

The wavelet decomposition and reconstruction results are
presented in Fig. 14. It is clearly shown that, the streaks appear
on average and vertical components. After deraining, most
streaks in these two components are removed.

J. Comparing With State-of-the-Art Dehazing Methods

To demonstrate the superiority of our detail appear-
ing rain accumulation removal method, we compare the
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Fig. 9. Ablation study for dilated residual dense network in visual quality.
(a) Input. (b) DenseNet. (c) V0. (d) V1. (e) V3.

Fig. 10. Ablation study for dilated residual dense network in PSNR.

Fig. 11. Ablation study for dilated residual dense network in SSIM.

Fig. 12. Visual results of our models with and without residual learning.
(a) Input. (b) V0. (c) V1. (d) V2. (e) V3.

proposed method with other state-of-the-art dehazing methods
in Fig. 15. It is observed that, the result of Nonlocal has
color shift. DehazeNet and GFN tend to produce darker results

TABLE IV

PSNR AND SSIM RESULTS WHEN TRAINING AND
TESTING STREAK SIZES ARE DIFFERENT

Fig. 13. Evaluation results when training and testing streak sizes are different.
(a) Input. (b) JORDER. (c) F1. (d) F + G .

Fig. 14. Wavelet reconstruction results. The 1st and 3rd rows: rain images.
The 2nd and 4st rows: rain removal images. (a): the second order wavelet.
(b)-(d): the first order wavelet.

and retains some accumulation. Comparatively, our detail
appearing rain accumulation removal method is successful in
removing most accumulation and lighting up dark details in
the images.

K. Application in Computer Vision

We show two cases of applying our method as pre-
processing for a commercial computer vision system, Clarifai,3

which is an advanced image recognition system based on
a deep convolutional network. The two images are shown
in Fig. 16. Before rain removal, these images are categorized
as ‘Nature’, which is a rough category. After rain removal by
our method, they are labeled accurately as ‘Tree’ and ‘Flower’,
respectively.

3https://www.clarifai.com/.
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Fig. 15. Visual comparison of our detail appearing rain accumulation removal with state-of-the-art dehazing algorithms on real rain images with rain streak
accumulation. All methods take the rain streak removal results produced by our RWL as their inputs. It is observed that, our detail appearing rain accumulation
removal method is successful in removing most accumulation (denoted by red arrows) and lighting up details in dark regions (denoted by blue arrows).
(a) Input. (b) RWL. (c) DehazeNet. (d) Nonlocal. (e) GFN. (f) Proposed.

Fig. 16. Image recognition results on the images before and after rain-
streak removal. Top panel: (a) Before, labeled as ‘Nature’. (b) After, labeled
as ’Tree’. Bottom panel: (a) Before, labeled as ‘Nature’. (b) After, labeled as
‘Flower’.

TABLE V

PSNR AND SSIM RESULTS WITH AND WITHOUT

RECOVERED LOW FREQUENCY GUIDANCE

L. Analysis on Effect of Recovered Low Frequency
Guidance

To verify the effectiveness of low frequency guidance B̂z
L L

in Eq. (3), we compare with the RWL model where the
recovered low frequency guidance is not included in the input
of G. As shown in Table V, the recovered low frequency
guidance in G slightly improves the performance, which
demonstrates the positive effect of the recovered low frequency
guidance on the rain removal of high-frequency components.

M. Analysis on Effect of Inverse Wavelet Transform

We compare our RWL with the one that replaces H in
Eq. (4) with deconvolution layers. As shown in Table VI,

TABLE VI

PSNR AND SSIM RESULTS WITH INVERSE DISCRETE WAVELET

TRANSFORM AND DECONVOLUTION LAYER

the original RWL with H is slightly superior to the model
with deconvolution layers in PSNR and SSIM.

VII. CONCLUSION

In this paper, we construct dilated residual dense net-
works following the recurrent wavelet learning for rain streak
removal. This architecture has two benefits: 1) the recurrent
wavelet learning allows to mitigate the streak size mismatch
problem between training and testing phases; 2) dilated resid-
ual dense networks model the intrinsic dependency among
different scales of an image and effectively expand the recep-
tive field. These properties facilitate the removal of large rain
streaks. We also consider to model rain accumulation and
low light condition. Thus, the developed approach produces
the results with better visibility and brighter details. The
evaluation on both synthetic and real images, particularly on
those containing large rain streaks, shows the effectiveness and
superiority of the proposed method.
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