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Abstract— We present a comprehensive study and evaluation
of existing single image compression artifact removal algorithms
using a new 4K resolution benchmark. This benchmark is called
the Large-Scale Ideal Ultra high-definition 4K (LIU4K), and it
includes including diversified foreground objects and background
scenes with rich structures. Compression artifact removal, as a
common post-processing technique, aims at alleviating undesir-
able artifacts, such as blockiness, ringing, and banding caused
by quantization and approximation in the compression process.
In this work, a systematic listing of the reviewed methods is
presented based on their basic models (handcrafted models and
deep networks). The main contributions and novelties of these
methods are highlighted, and the main development directions
are summarized, including architectures, multi-domain sources,
signal structures, and new targeted units. Furthermore, based
on a unified deep learning configuration (i.e. same training
data, loss function, optimization algorithm, etc.), we evaluate
recent deep learning-based methods based on diversified eval-
uation measures. The experimental results show state-of-the-art
performance comparisons of existing methods based on both full-
reference, non-reference, and task-driven metrics. Our survey
gives a comprehensive reference source for future research on
single image compression artifact removal and inspires new
directions in related fields.

Index Terms— Compression artifacts removal, benchmark, side
information, loop filter, deep learning.

I. INTRODUCTION

LOSSY forms of compression, such as JPEG [1], HEVC
(High Efficiency Video Coding) [2], and Advanced Video

Coding (AVC) [3], have been widely used in image and video
codecs to reduce information redundancy in transmission and
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storage processes to save bandwidth and resources. Based on
human visual properties, the codecs make use of redundan-
cies in spatial, temporal, and transform domains to provide
compact approximations of encoded content. They effectively
reduce the bit-rate cost but inevitably lead to unsatisfactory
visual artifacts, e.g. blockiness, ringing, and banding. These
artifacts are derived from the loss of high-frequency details
during the quantization process and the discontinuities caused
by block-wise batch processing. These artifacts not only
degrade user visual experience, but they are also detrimental
for successive image processing and computer vision tasks.

In our work, we focus on the degradation of compressed
images. The degradation configurations of two codecs are con-
sidered: JPEG and HEVC. Most modern codecs first divide the
whole image into blocks, which sometimes have a fixed size,
e.g. JPEG, while others have different sizes, e.g. HEVC. Then,
transformations, e.g. discrete cosine transformation (DCT) and
discrete sine transformation (DST) etc., follow to convert each
block into transformed coefficients with more compact energy
and sparser distributions than those in the spatial domain. After
that, quantization is applied to the transformed coefficients,
based on the pre-defined quantization steps, to remove the
signal components that have less significant influence on the
human visual system. The quantization intervals are usually
much larger in high-frequency components than those in
low-frequency components because the human visual system
is less capable of distinguishing high frequency components.
It is worthy of noting that the quantization step is the main
cause of artifacts. After quantization, the boundaries between
blocks become discontinuous. Thus, blocking artifacts are
generated. Blurring is caused by the loss of high-frequency
components. In regions that contain sharp edges, the ringing
artifacts become visible. When the quantization step becomes
larger, the reconstructed images suffer from severe distortions.
Noticeable banding effects appear in smooth regions over the
image.

Great efforts have been dedicated to the restoration of
compressed images. Early preliminary works [4], [5] perform
filtering along the boundaries to remove simple artifacts. After
that, data-driven methods proposed learning the inverse map-
ping of compression degradations to remove artifacts. These
methods serve two objectives: 1) better inference models,
e.g., sparse coding [6] and deep networks [7]; 2) and better
priors and side information [8], [9]. In recent years, the
emergence of deep learning [7] has greatly improved the
restoration capacity of data-driven methods due to its excellent
nonlinear modeling capacity. More advanced network architec-
tures, e.g. dense residual networks [10], have been put forward
and more strong side information, e.g. partition mask [11],
has been employed for compression artifacts removal. Besides
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these two common factors„ there are other elements that have
sizable effects on final performance, such as learning-based
approaches, training configurations and protocols, training
data, losses, optimization approaches, data generation, and
codec details. Thus, the related changes in these factors also
contribute to performance gains.

Despite promising results, there are several neglected con-
siderations in previous methods. First, there is no unified
framework to understand and sort out all previous methods.
It is necessary to create a survey that compares and sum-
marizes these methods with a simple and integrated view.
Second, inconsistent experimental configurations and proto-
cols have been employed in different works. There is a lack
of benchmarking efforts for state-of-the-art algorithms in a
large-scale public dataset. Finally, previous datasets do not
cover 4K resolution images, which sets a barrier for comparing
the performance of different methods on the recently popular
ultra high-definition display devices.

Our work is directly motivated to address the above issues,
and our paper makes four technical contributions:

• The first contribution of this paper is to provide a compre-
hensive survey of compression artifact removal methods.
Our survey provides a holistic view covering most of the
existing methods. Particular emphasis is placed on deep
learning-based single-image compression artifact removal
methods, as they offer state-of-the-art performance and
exhibit flexibility for further improvements.

• We introduce a new single image compression artifact
removal benchmark, called the Large-scale Ideal Ultra
high-definition 4K (LIU4K) dataset. It is the first dataset
that includes 4K images as training and testing images for
image restoration. It is also more large-scale than other
existing datasets that include high-definition images. Our
LIU4K provides a better foundation to evaluate perfor-
mance of different methods, especially on recent popular
ultra high-resolution display devices.

• We conduct a systematic and extensive range of experi-
ments to compare state-of-the-art methods quantitatively
with diversified measures. In our experiments, we contrast
the new LIU4K dataset as well as previous commonly
used datasets with a unified experimental setting, includ-
ing the same training data, optimization method, and
loss function et al. Thorough evaluations and analyses
show the performance and limitations of state-of-the-
art methods. New rich insights inspire novel research
directions.

• We also explore generalizing some constraints and train-
ing strategies from JPEG artifact removal to general
compression artifact removal. Three strategies, including
dense DCT transform constraints, mixed batches with
different patch sizes, and gradually expanding patch sizes
are used in our experimental setting. These strategies also
benefit future compression artifacts removal methods.

II. A NEW DATASET FOR RESTORATION: LIU4K

A. Previous Datasets

We first review existing testing and training datasets:
1) Testing: BSD100, Kodak, DIV2K-test, Set5, Set14,
Classic5, and Twitter; 2) Training: BSD400, DIV2K-train, and
Mini-ImageNet.

TABLE I

THE SUMMARY OF DIFFERENT DATASETS FOR
COMPRESSION ARTIFACT REMOVAL

1) Kodak1: This is a very representative dataset proposed
in 1991, which includes 24 digital color images extracted
from a wide range of films. After Kodak’s creation, many
image processing methods have been proposed, optimized,
and evaluated based on this dataset. The image resolution is
768 × 512 or 512 × 768.

2) BSD400 and BSD100: These two datasets are two parts
of BSD500 [12], which was originally designed for semantic
segmentation. These datasets cover a wide variety of real-life
scenes, with 200 training images, 200 validation images,
and 100 testing images. The image resolution is 321 × 481 or
481×321. For image restoration, we combine the training and
validation sets from BSD500 as the training set for restoration
and use its testing set for the restoration evaluation.

3) DIV2K [13]: This dataset contains 1,000 images with
a resolution of 2K. It includes 800 images for training, 100
images for validation, and 100 images for testing. The sizes
of the images are around 2000 × 1000 or 1000 × 2000.
The max length of the height and width of an image is
2,040, and the other one is greater than 1,000. DIV2K is a
milestone dataset for image super-resolution, and it supports
the NTIRE Challenge,2 which uncovers preludes of challenges
in low-level image enhancement.

4) Set5 [14] and Set14 [15]: These are two effective
small-scale datasets for evaluating image restoration quality,
and they usually provide consistent evaluation results sim-
ilar to large-scale datasets. The resolution of Set5 is less
than 500 × 500. The image size of Set14 is greater than
250 × 250 and less than 500 × 500.

5) Classic5 [16]: The Classic5 dataset includes five repre-
sented images used for evaluating compressed image restora-
tion. Image resolutions are 512 × 512.

6) Twitter [7]: This dataset contains 40 images com-
pressed by the Twitter platform with sizes that vary
from 3,264 × 2,448 to 600 × 450. The included artifacts are
highly complex because the compression process includes a
rescaling operation.

7) Mini-ImageNet [17]: This dataset was used to train
SRGAN in [17], and it includes 300,000 images sampled
from ImageNet. The small-est size is less than 50 × 50, and
the maximum size is larger than 4,000 × 3.000. Although
this dataset might lead to superior performance of restoration
models, it is very time and resource-consuming to train with it.

A summary of all these datasets is provided in Table I.

1http://r0k.us/graphics/kodak/
2http://www.vision.ee.ethz.ch/ntire17/
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Fig. 1. Milestones in the history of compressed image restoration methods, including filter based artifact removal, probabilistic priors-based artifact removal,
deep learning-based artifact removal, and deep learning-based loop filters. The time period up to 2015 was dominated by handcrafted methods, including
filter-based and probabilistic priors-based artifact removal. The emergence of ARCNN [7] changed the development of this domain. A turning point is observed
in 2015. After that, deep learning-based methods played a major role in the next several years. The years 2017 and 2018 welcomed a blossoming in the
development of deep learning-based artifact removal and loop filters.

Fig. 2. Example images sampled from LIU4K. (a) Training set. (b) Testing set.

B. LIU4K Dataset

The main characteristics of the LIU4K dataset and previous
datasets for image restoration are listed in Table II. LIU4K
has several unprecedented superiorities as follows,

• High-resolution definition. Compared to previous
datasets, the resolution of the images in our dataset is
2848 × 4288, which is larger than those in previous
datasets, thereby offering abundant materials for test-
ing and evaluating the performance on 4K/8K display
devices.

• Large-scale. Our dataset is large-scale. Our training,
testing, and validation images include 1,500, 200, and
80 4K images, which is much more than in previous
datasets. Thus, training and evaluation processes based
on LIU4K are more comprehensive and balanced.

• Diversified and complex signals. As shown in Table II,
our dataset achieves the best results in terms of
entropy-driven non-reference metrics, which demon-
strates its signal diversity and complexity.

• High visual quality. LIU4K wins in general purpose
non-reference metrics (except for Kodak and LIVE1, the
training sets for some metrics), as shown in Table II,
thereby confirming its high visual quality.

Training and validation data is downloaded from Pexels
website.3 The testing images come from two sources;

3https://www.pexels.com/

(1) 25 images in the testing data are captured by our-
selves. The cameras used to capture the 25 images include
Canon EOS 5D Mark IV, Sony ILCE-6000, Canon EOS
6D, and NIKON D810. The lenses include EF 16-35mm
f/4, EF 70-200mm f/2.8, EF 50mm f/1.8, Sigma 30mm
F1.4 DC DN, Sony E 55-210 F4.5-6.3, EF 16-35mm f/4,
Nikon 18-36mm f/3.5-4.5, and Nikon 35mm f/4. (2) The
other 175 images in the testing data come from the RAISE
dataset.4 These 175 images are captured by Nikon D90, Nikon
D7000, and Nikon D40 with lens VR 18-105mm f/3.5-5.6G,
35mm f/1.8G, 18-55mm f/3.5-5.6G, and 35mm f/1.8G. All
images are shot in RAW format and processed by Adobe
Photoshop Lightroom. The exported images are stored in
lossless PNG format, and cropped to 3840 × 2160.

We perform statistical comparisons to demonstrate the supe-
riority of the LIU4K dataset. Entropy, BPP (Bits Per Pixel),
and PPI (Pixels Per Image) are used to indicate the amount
of information included in each dataset. Three non-reference
image quality assessment metrics are utilized to assess the
perceptual image quality, including Entropy, Natural Image
Quality Evaluator (NIQE) [55], Blind/Referenceless Image
Spatial Quality Evaluator (BRISQE) [56], and ENtropy-based
Image Quality Assessment (ENIQA) [57]. Entropy is esti-
mated following the most primitive calculation based on
per-pixel independent distribution [70]. The bits used to cal-
culate BPP values are estimated by compressing the gray

4http://loki.disi.unitn.it/RAISE/
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TABLE II

THE STATISTICAL COMPARISONS OF DIFFERENT TESTING SETS. NUMBERS IN BRACKETS DENOTE VARIANCE.
SUPERIOR RESULTS ARE DENOTED IN BOLD

TABLE III

AN OVERVIEW OF EXISTING WORKS ON NON-DEEP JPEG ARTIFACTS REMOVAL

version of an image into a PNG image. The work in [58]
has shown that, the non-reference image quality assessment
metrics are highly correlated to human perception and are
superior to some full-referenced measures in terms of visual
quality. In our work, we calculate values for NIQE, BRISQE,
and ENIQA with the codes provided by their authors using
the default settings. For NIQE, BRISQE, and ENIQA, small
values indicate better image quality.

As seen in Table II, LIU4K has a larger scale than pre-
vious datasets. From the perspective of information theory,
the images in LIU4K are more informative; its mean BPP
and entropy values are greater, which means that the dataset
contains more information. For perceptual image quality
assessment, LIU4K also achieves very competitive scores
in BRISQUE, ENIQA, and NIQE. Note that the values of
BRISQUE and ENIQA in LIU4K are worse than those of
Kodak and LIVE1, since BRISQUE and ENIQA are trained
on the TID [76] and LIVE1 [75] datasets, respectively. The
three datasets, TID, LIVE1, and Kodak, share many of the
same images, which naturally leads to the undistorted images
in Kodak and LIVE1 having very good scores that benefit the
overall dataset scores. In general, these assessments indicate
that images in LIU4K are of relatively high perceptual quality
and suitable for image restoration tasks.

III. ALGORITHM SURVEY

Approaches designed for compression artifact removal,
namely loop filters in codecs, have been proposed in the

body of literature. There are four categories in our review:
filter-based methods, probabilistic prior-based methods, deep
learning-based JPEG artifacts removal methods, and deep
learning-based loop filter methods. The first and last two
categories are summarized in Table III and IV, respectively.
We review the four categories and then briefly summarize their
technical improvements. Note that, the technologies discussed
in our work can be applied without changing the existing codec
pipeline.

JPEG is now the most widely used standard for natural
image compression, but its compression efficiency is not
state-of-the-art. HEVC and its variants (BPG and HEIF) rep-
resent the highest standards of natural image/video compres-
sion. Both coding standards employ block-wise compression
schemes, which are the primary causes of blockings. Most
previous works are based on these two standards and their
related implementations, such as focusing on JPEG artifact
reduction [7], [8], [27], [28] (the upper half of Table IV)
and loop filters [36]–[40] (the bottom part of Table IV).
Therefore, in our benchmark paper, we hope to summarize
previous developments and compare different methods in a
comprehensive and fair manner. Therefore, JPEG and HEVC
are considered in our paper.

A. Filtering-Based Methods

The earliest methods [46], [47] perform filtering operations
to remove compression artifacts. Later approaches [2], [18]
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TABLE IV

AN OVERVIEW OF EXISTING WORKS ON DEEP COMPRESSION ARTIFACT REMOVAL

attempt to infer the parameters of filtering operations adap-
tively. Minami and Zakhor [18] observed that quantizing
the DCT coefficients of two neighboring blocks increases
the expected value of the mean squared difference of
slope (MSDS) between the slopes across two adjacent blocks,
and the average value of the boundary slopes from each of
the two blocks. Thus, a constrained quadratic programming
problem is built to reduce the expected value of this MSDS
to decrease the blocking effects while preserving texture
details. In HEVC, an in-loop deblocking filter is specially
designed [69] to reduce the blocking artifacts between coding

units. The picture is divided into 8×8 blocks, and boundaries
on the 8×8 grid are classified by a series of metrics. Different
levels of deblocking operations are later performed on the
boundaries according to their types.

B. Probabilistic-Prior Methods

Some successive approaches are based on probability esti-
mations of image-prior models. Based on their basic mod-
els, these methods can be further categorized into Markov
random fields [20], non-local similarities [21], [22], low-rank
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Fig. 3. The technical improvement pathway for deep learning-based compression artifacts removal and codec loop filters.

minimizations [22], [23], sparse codings [6], [24], [25], and
adaptive DCT transformations [16]. In [20], the distortion term
is modeled as additive, spatially correlated Gaussian noise,
and the original image is depicted as a high order Markov
random field based on the fields-of-experts framework. Non-
local based methods [21], [22] consider similar blocks to be
potentially correlated, estimate the overlapped-block transform
coefficients, and remove compression noise from non-local
similar blocks. For low-rank based methods, Ren et al. [23]
performed patch clustering and low-rank minimization simul-
taneously to make use of both local sparsity and non-local
similarity. A later work [22] selects thresholds adaptively for
each group of similar patches based on compression noise
levels and decomposed singular values. In [16], a new shape
adaptive DCT transform is proposed for image compression
artifact reduction.

C. Deep Learning-Based JPEG Artifacts Removal

Deep learning-based methods largely improve the restora-
tion capacity of data-driven methods. ARCNN [7] is a semi-
nal work and adopts the architecture of a three-layer CNN.
Deep Dual-Domain (D3) [8] is the first work to introduce
the DCT-domain priors to facilitate JPEG artifacts removal.
It combines both the strong learning capacity of deep net-
works, as well as the problem-specific knowledge of JPEG
artifact removal.

Successive works fall into two main streams: better network
architectures [28], [30], [32] and better utilization of DCT
domain information [9], [33]. Many advanced networks are
constructed to model the rich dependencies of deep features.
The Residual Encoder-Decoder Network (RED-Net) [29] and
Compression Artifact Suppression CNN (CAS-CNN) [30]
utilize deep encoding-decoding frameworks with symmetric
convolutional-deconvolutional layers. Tai et al. [32] con-
structed a deep persistent memory network. Memory blocks
consist of a recursive unit and a gate unit to retain memories.
The former extracts multi-level representations from the last
input feature while the latter learns to control the ratio between
the memory and current input. Dual-Domain Multi-Scale CNN
(DMCNN) [33] integrates the dual domain and auto-encoder
style networks with dilated convolutions to create extensive
receptive fields and eliminate banding effects. In [34], wavelet
transforms were introduced into CNN architectures for a
better trade-off between receptive field size and computational
efficiency. In [35], a two-branch CNN handles the restoration
in the pixel and discrete wavelet domains.

Besides network improvement, some works try to embed
traditional priors or constraints into deep networks, e.g. spar-
sity [8], nonlinear diffusion [27], multi-scale constraints [30],
[33], and wavelet signal structures [34], [35]. In one-to-many
networks [31], adversarial learning is introduced to facilitate
visually pleasing restoration results. A performance compar-
ison of typical deep learning-based JPEG artifact removal
processes featured in the aforementioned research works is
presented in Fig. 5.

D. Deep Learning-Based Loop Filters

Besides JPEG, deep learning techniques have also been
applied to the latest codecs, e.g. HVEC, as a post-processor.
Beyond the improvements embodied in JPEG artifact removal,
deep-learning based loop filters focus more on handling
the degradation caused by variable-size partitions and uti-
lizing side information from codecs. Variable-Filter-Size
Residue-Learning CNN (VRCNN) [36] is a pioneering work.
The designed CNN owns variable filter sizes to learn the resid-
ual between input and target frames. Successive works also fall
into two classes: those with better networks and those with
better side information. Zhang et al. [38] proposed a residual
highway convolutional neural network (RHCNN) for in-loop
filters of HEVC. In [43], Wang et al. proposed a multi-scale
LSTM to fuse multi-frame redundancies along a temporal
dimension to acquire fused features. Meng et al. [39] pro-
posed a multi-channel long-short term dependency residual
network to simulate the mechanism of human memory updat-
ing and introduced an update cell, which learns to store
and select long-term and short-term dependencies adaptively.
Li et al. [52] presented a dynamic classification mechanism.
An up-to-one byte flag indicates the complexity of video
content and the quality of each frame. In [41], Yang et al.
designed a scalable deep CNN to reduce distortion of both I
and B/P frames in HEVC. It has two branches and a group of
switches to control whether a DS-CNN-B branch is activated
based on the resource state. In [42], Song et al. developed a
CNN that can enhance compressed videos of different qualities
with low redundancy. In [44], Yang et al. enhanced com-
pressed video frames using neighboring high-quality frames.
A novel multi-frame convolutional neural network is built for
compressed video enhancement. In [45], Hashimoto et al. pro-
posed a CNN with squeeze and excitation blocks and spatial
separable convolution for deblocking. In [10], Wang et al. pro-
posed a dense residual convolutional neural network (DRN).
In this network, dense shortcuts and residual learning are com-
bined. Bottleneck layers are injected into each DRN to save
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Fig. 4. The network improvement routes for compression artifacts removal
and loop filters of codecs, where the multiplication sign in the circle in
(c) denotes the element-wise multiplication operation.

computational resources while adaptively fusing hierarchical
features.

Various kinds of side information have been designed
for more effective post-processing of compression artifact
reduction. This side information includes: compression para-
meters from coding tree units (CTU) [51], partition masks
of CTU [11], QP parameters [38], block boundaries [39],

Fig. 5. Recent evolution of deep learning-based JPEG artifacts removal.
We can observe significant performance (PSNR) improvements since deep
learning entered the scene in 2015. The performances shown here are directly
quoted from the published papers.

complexities [52], peak quality frames and optical flow [44],
and normalized Y/U/V and normalized QP [45], etc.

E. Technical Improvement Summary

The typical improvement pathway for deep learning-based
compression artifact reduction is summarized in Fig. 3.
Three aspects of improvements are included: side information
utilization, e.g. injecting a partition mask from CTU [11]
as input; network improvement, e.g. a dense residual net-
work [10]; and novel loss function, e.g. adversarial loss [31].
For network improvement, all methods are improved in four
facets: 1) network architecture improvement (summarized
more specifically in Fig. 4); 2) multi-domain networks, e.g.
DMCNN [33]; 3) signal structure embedding, e.g. D3 [8];
4) new unit designs, e.g. TNRD [27]. In the next section,
we benchmark these methods using unified protocols.

IV. ALGORITHM BENCHMARKING

With the rich resources provided by LIU4K, we eval-
uate nine representative state-of-the-art algorithms: Shape-
Adaptive DCT (SA-DCT) [16], Artifacts Removal CNN
(ARCNN) [7], Trainable Nonlinear Reaction Diffusion
(TNRD) [27], Denoising CNN (DnCNN) [28], Persistent
Memory Network (MemNet) [32], Dual-Domain Convolution
Network (DDCN) [9], One-To-Many Network (OTM) [31],
Dual-domain Multi-scale CNN (DMCNN) [33], Multi-
Level Wavelet-CNN (MWCNN) [34], Variable-filter-size
Residue-learning CNN (VRCNN) [36], and Progressive
Rethinking Network (PRN) [3]. Our selected baselines cover
most of the representative methods. SA-DCT is a tradi-
tional non-deep method. The successive six methods are deep
learning-based JPEG artifact reduction methods. The last two
are deep learning-based loop filter methods. We apply most
learning-based methods to restore the images compressed by
JPEG and HEVC. For JPEG artifact reduction, we train the
models on the training of LIU4K. For loop filters, the models
are trained on the training sets of both BSD500 and LIU4K.
During our training phase, we use 80 additional 4K images
as our LIU4K validation set. Note that, the source codes of
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TABLE V

SPECIFIC SETTINGS OF OUR IMPLEMENTED ARCNN

SA-DCT and TNRD provided by the authors only support
removing JPEG artifacts with quality factors of 10, 20, 30,
40 and 10, 20, 30, respectively. Thus, for these two methods,
we only compare their performances in these cases.

We also add residual learning in our implemented ARCNN
for fast training and comparison. The network consists of four
convolutional layers. In the first convolutional layer, the chan-
nel number of the output feature is 64, and the convolutional
kernel size is 9 with a padding number of 4. In the second
convolutional layer, the channel number of the output feature is
32, the convolutional kernel size is 7, and the padding number
is set to 3. In the third convolutional layer, the channel number
of the output feature is 16, and the convolutional kernel size
is 1. The last convolution’s output channel number is 1, and
the kernel size is 5 with a padding number of 2. PReLU [74]
is used as the activation function. The network aims to predict
the residue, which is the difference between the compressed
and original images. The settings and configurations are briefly
summarized in Table V. For other configurations, we follow
ARCNN’s original settings [7].

A. Advanced Training Strategies

In our benchmarking, we also make efforts to extend some
constraints and methods of JPEG artifact reduction to the
general compression artifacts reduction.

1) Variable Block-Size DCT Domain Constraints: The
JPEG codec always partitions an image into 8 × 8 blocks
and then performs transformation and quantization block by
block. For some codecs, e.g. HEVC, the partitioned block sizes
are not the same. Thus, the original DCT branch constraint
that regularizes reconstruction of fixed-sized 8 × 8 blocks in
JPEG artifacts removal might not be reasonable. With this
in mind, we change the DCT constraint design to adapt to
variable block-size partition structures used in HEVC codecs.
We extend the DCT branch into two branches, as shown in
Fig. 6. Given a compressed image Ic, one of the DCT branches
transforms Ic with the 8 × 8 DCT transform, refines the
transformed signal in the DCT domain with the auto-encoder
and then projects the signals back to the image domain via an
inverse 8×8 DCT layer (iDCT layer) to obtain Ĩ 8

DCT. The other
DCT branch does the same thing but with the 16×16 DCT and
iDCT layers to obtain Ĩ 16

DCT. Therefore, each DCT branch is
responsible for constructing DCT domain constraints at certain
spatial patch sizes. After that, the compressed image and
two outputs of the DCT branches are concatenated together[
Ic, Ĩ 8

DCT, Ĩ 16
DCT

]
as the input of the pixel-domain auto-encoder

to generate the residual image Ir. Finally, the restored image is
obtained via: Is = Ir + Ic. In this way, the restoration process
makes full use of the signal characteristics of different spatial
patch sizes in the DCT domains to better infer restored images.

2) Gradually Expanding Patch Sizes: DCT branches are not
stable during training. To make our training more effective,

Fig. 6. Variable block-size DCT domain constraint. One DCT branch
transforms 8 × 8 patches into the DCT domain. While the other DCT branch
does the same thing to 16 × 16 patches.

we first utilize small patches to train our network and then
enlarge the patch size gradually. We use PJPEG and PHEVC to
denote the patch sizes for training artifact reduction models for
JPEG and HEVC, respectively. e denotes the epoch number.
The sizes of the training patches used to train models to
alleviate JPEG artifacts are set as follows,

PJPEG =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

56, e ∈ [1, 6],
112, e ∈ [7, 9],
168, e ∈ [10, 12],
224, e ∈ [13, 15],
256, e ∈ [16, 60].

(1)

For HEVC post-processing, all interval bounds for e are
multiplied by 5. Therefore, we have:

PHEVC =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

56, e ∈ [1, 34],
112, e ∈ [35, 49],
168, e ∈ [50, 64],
224, e ∈ [65, 79],
256, e ∈ [80, 300].

(2)

This strategy leads to a better constraint in the DCT branch
and also leads to better performance.

3) Learning With Mixed Batches: For methods with high
complexities, it is impossible to train a model with both
large patch sizes and large batch sizes at the same time.
However, both sides are important for training a good artifact
reduction model. A large patch enables a model to make use
of information from a large context. A large batch size is
capable of providing a diverse context and reasonable gradient
descend directions during the training phase. To achieve both
goals, we propose applying training with mixed-batches, i.e.
combination of large patch, small batch and small patch, large
batch.

In our implementation, given a batch size of 30, one sub-
batch’s batch size is set to 2, with a patch size based on
Eqn. (1) and (2). The other’s batch size is set to 28, with a
patch size set to 32 constantly. In this way, with limited GPU
memory resources, network training is stabilized by using a
large batch size, and at the same time, the model also learns
information from a large context with large patch size. In our
benchmark, we train MemNet and PRN in this way.
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Fig. 7. Examples of restored results for a compressed image utilizing HM from LIU4K (QF = 10).

B. Evaluation Protocols

Four full-reference metrics, including PSNR, PSNR-B [59],
SSIM [60], MS-SSIM [61], and two non-reference metrics,
including NIQE [55], and BRISQUE [62], are used to evaluate
the effectiveness of the proposed method. In our implementa-
tion, we use the Adam [63] optimizer to pre-train our network
and finetune it with stochastic gradient descend (SGD) [64]
and cosine decay. In the first stage, the learning rate is set
to 0.001. For PRN and MemNet, the learning rate is set to
0.0001. After training 16 epochs, SGD is used for fine-tuning.
The initial learning rate is set to 0.0001 at the second-stage
of training with cosine decay. We allow at most 60 epochs
for JPEG artifact removal and 300 epochs for restoration of
compressed images by HEVC. For all methods, the models
used for restoring images compressed by JPEG with a quality
factor of 40 and HEVC with a quantization parameter of 22 are
trained from scratch. Other models are initialized by these two
models during the training.

C. Objective Comparisons

The objective results are presented in Table VI. DMCNN
is the obvious winner for full-reference metrics, followed by
MWCNN for JPEG artifact removal, and PRN for loop filters.

On the whole, deep learning-based methods perform signif-
icantly better than earlier methods. In no-reference metrics,
TNRD achieves a superior performance for JPEG artifact
removal and almost all methods generate results that are
worse than the original compressed images. We also provide
more objective results using different methods on other testing
sets in the supplementary materials. These results have high
consensus levels among different testing sets.

D. Subjective Evaluations

We also compare the subjective qualities of different meth-
ods in Fig. 7 and 8. It is observed that DMCNN achieves
the overall best visual quality; most artifacts are removed and
texture details are preserved due to the superior modeling
capacity. As shown in Fig. 7, JPEG, ARCNN, VRCNN, and
DnCNN generate obvious banding effects in large and smooth
regions. MemNet and PRN achieve better results. However,
one may still discover gentle bands when taking a close
look. Benefiting from a large receptive field, MWCNN and
DMCNN successfully restore artifacts in the smooth regions
and remove banding artifacts. For water wave textures, after
compression, some regions are quantized into small smooth
blocks. Overall, the methods fail to restore visually pleasing
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Fig. 8. Examples of restored results on a compressed image by JPEG from LIU4K (QF = 10).

Fig. 9. Visualization of all paired comparisons. The horizontal axis denotes
the comparison group ID, while the vertical axis indicates the winning time
in the comparison.

textures. ARCNN, VRCNN, and DnCNN only remove block-
iness boundaries. MemNet and PRN restore water wave tex-
tures in stochastic directions. MWCNN and DMCNN generate
water wave textures that are consistent with the surrounding
waves. Fig. 8 provides the results of edges and regular textures.
It is observed that, the results of ARCNN, VRCNN, and
DnCNN contain many artifacts. MWCNN, MemNet, and PRN

Fig. 10. Visual results of performance and complexity (i.e. parameters) of
different methods. (a) JPEG artifacts removal (QF = 10). (b) Restoration of
compressed images by HEVC (QP = 37).

generate better results. DMCNN generates most shape edges
and regular brick textures.

We also evaluate the subjective visual quality of different
methods using the Mean Opinion Score (MOS) for subjective
evaluation. Twenty images are selected from LIVE1, BSD500,
Classic5, and LIU4K for the evaluation. These images are
compressed by JPEG and HEVC codecs and then processed
by different restoration methods. Their results are evaluated
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TABLE VI

OBJECTIVE EVALUATIONS OF DIFFERENT METHODS ON LIU4K FOR COMPRESSION ARTIFACT REDUCTION. THE FIRST AND
SECOND BEST RESULTS ARE DENOTED IN BOLD AND WITH UNDERLINE, RESPECTIVELY

TABLE VII

THE MODEL COMPLEXITY ANALYSIS OF DIFFERENT METHODS. J DENOTES THE VERSION USED FOR JPEG ARTIFACTS REMOVAL. H SIGNIFIES THE

VERSION USED FOR THE RESTORATION OF COMPRESSED IMAGES BY HEVC

by human annotators. Forty participants are invited to join the
subjective experiment. Each individual is required to provide
subjective results for 360 image pairs. The comparison results
are illustrated in Fig. 9 and Table VIII. Based on the compared
pairs, we also fit a Bradley-Terry model [77] to estimate the
MOS score for each method so that they can be ranked. The
inferred average MOS score is presented in Table IX. It is
observed that, DMCNN, MemNet, and PRN achieve overall
superior visual quality than other methods.

E. Evaluation of Model Capacity

Table VII reports the parameter number, the storage usage,
and the per-image running time for each method averaged
over images (768 × 512) from LIVE1 on a machine with

Intel(R) Xeon(TM) E5-2650 v4 2.20 GHz CPU, 16G RAM,
and GeForce GTX 1080 Ti. ARCNN, DnCNN, MemNet,
MWCNN, PRN, DMCNN, and VRCNN are implemented in
Pytorch. SA-DCT and TNRD are implemented in MATLAB.
ARCNN, DnCNN, MemNet, MWCNN, PRN, DMCNN, and
VRCNN run on GPU while SA-DCT and TNRD run on
CPU. It is observed that all deep learning-based methods
finish processing an image within one second. ARCNN,
VRCNN and DnCNN achieve the shortest running times and
finish the restoration within ten milliseconds. As for storage,
ARCNN and VRCNN use the least storage space. As for
model complexity, MWCNN uses the most parameters while
TNRD uses the fewest. Note that PRN and DMCNN use
different network architectures to handle JPEG artifact removal
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TABLE VIII

THE RESULTS OF PAIRWISE COMPARISON IN A USER STUDY. EACH VALUE REPRESENTS THE NUMBER OF TIMES THE
METHOD IN EACH ROW HAS OUTPERFORMED THE METHOD IN THE RESPECTIVE COLUMN

TABLE IX

THE MOS SCORE OF DIFFERENT METHODS

and the restoration of compressed images by HEVC. There-
fore, we present the complexities of the different versions
in Table VII, depicted by (J) and (H), respectively. The results
are also depicted in Fig. 10.

F. Performance Evaluations of Computer Vision Tasks

1) Depth Estimation: Table XI shows the results of depth
estimation with accurate object boundaries [67]. This is one
of the state-of-the-art depth estimation method, based on
images with and without compression artifact reduction by
VRCNN on NYUv2 [68] in different measures. Several accu-
racy measures are employed to evaluate the depth estimation
performance: mean squared error (MSE), root mean squared
error (RMS), mean relative error (MRE), mean log 10 error
(log 10), and threshold accuracy, as well as precision (P),
recall (R), and F1 score of estimated edge maps. It is note-
worthy that for MSE, RMS, and MRE, small values signify
better performance. For log 10, threshold accuracy δ, P, R,
and F1 score, large values denote better performance. Judging
from the results, for MSE, RMS, and MRE, it is always
beneficial to perform compression artifact reduction among
all cases (both JPEG and HEVC codecs with all QPs and
QFs); whereas, for other metrics, the results become slightly
controversial. The results of the restored images are sometimes
inferior to those of the compressed ones, e.g., QF = 10 on
log 10, and QF = 30, 40 on P, etc. However, in general,
the results of restored images are successful in more cases
compared to compressed ones. It is also demonstrated that a
reconstruction aiming to restore compressed images with high
visual quality might not always be beneficial for all tasks. The
trend of performance changes taking place before and after
restoration at different QP/QF conditions is also illustrated
in Fig. 12, and visual results are shown in Fig. 11. It is
observed that when QF = 10, the result of a compressed
image degrades extensively, and the enhancement operation
effectively improves the visual quality of depth maps. When
QF = 20, the degradations in the result of a compressed image
are not obvious. Enhancement operations also lead to minor
visual quality gains. Some discontinuous boundary artifacts are
removed, as shown in the red boxes in Fig 11. However, some
details become still blurry, e.g. the details and boundaries in
the white boxes, as shown in Fig 11.

Fig. 11. The visual results of depth estimation on compressed images (JPEG)
with and without compression artifact reduction. (a) Input RGB image.
(b) Depth map of compressed image (QF = 10). (c) Depth map of restored
image (QF = 10). (d) Depth map of original image.

Fig. 12. Visual results of performance changes before and after restorations
at different QP/QF conditions for depth estimation. JC: Compressed by JPEG.
HC: Compressed by HEVC. JR: Restored from images compressed by JPEG.
HR: Restored from images compressed images by HEVC.

2) Semantic Segmentation: We integrate two baselines
for evaluations: ResNet50Dilated + PPM_Deepsup and
ResNet50 + UperNet [65]. Evaluations are performed on
ADE20K [65]. Results are reported in two metrics com-
monly used for semantic segmentation [66]: Pixel accuracy
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TABLE X

COMPARISONS OF SENET ON THE NYU-DEPTH V2 DATASET. INPUT TESTING IMAGES IN THE “COMPRESSED” CATEGORY ARE COMPRESSED WITH
DIFFERENT QUANTIZATION PARAMETERS. INPUT TESTING IMAGES IN THE “RESTORED” CATEGORY ARE PROCESSED WITH VRCNN. “QF”

DENOTES THE QUALITY FACTOR. “QP” SIGNIFIES THE QUANTIZATION PARAMETER

TABLE XI

COMPARISONS OF SENET ON THE NYU-DEPTH V2 DATASET. INPUT TESTING IMAGES IN THE “COMPRESSED” CATEGORY ARE COMPRESSED WITH

DIFFERENT QUANTIZATION PARAMETERS. INPUT TESTING IMAGES IN THE “PREDICTED” CATEGORY ARE PROCESSED WITH VRCNN. “QF”
DENOTES THE QUALITY FACTOR. “QP” SIGNIFIES THE QUANTIZATION PARAMETER

indicates the proportion of correctly classified pixels. Mean
IoU indicates the intersection-over-union between the pre-
dicted and groundtruth pixel, averaged over all the classes.
It is observed from Table XI that compression artifact
reduction (i.e. VRCNN) may not benefit the inference
of semantic segmentation all the time. In many cases,
e.g. for JPEG artifacts, the performance of the baseline
ResNet50Dilated + PPM_Deepsup for restored images is
worse than with compressed images when QF = 40. The
trend of performance changes occurring before and after the
restorations at different QP/QF conditions is also depicted in
Fig. 14. The main reason for the performance drop might be
the consensus of the effects of MSE used in training and the
semantic segmentation purposes. When training with MSE, the
restoration results for compressed images with gender artifacts
tend to be smooth, and some critical details are lost causing
low accuracy. For visual results, it is observed from Fig. 13
that, compression artifact removal slightly corrects some false
boundaries.

V. TRENDS AND CHALLENGES

Although deep learning techniques for compression artifact
reduction have developed rapidly, several important challenges

Fig. 13. The visual results of semantic segmentation on compressed
images (HEVC) with and without compression artifact reduction. (a) Input
RGB image. (b) Semantic map of compressed image (QP = 37). (c) Semantic
map of restored image (QP = 37). (d) Semantic map of original image.

and inherent patterns remain. First, recent researchers have
obtained higher and higher accuracy by using advanced deep
models with a huge amount of parameters; however, it is still
hard to apply these methods in real scenarios. It is interesting
to re-design compact deep network architectures and compress
or adjust the existing models into small ones for real-time
compression artifact reduction. Second, with the latest codecs,
i.e. versatile video coding (VVC), more integrated tools are

Authorized licensed use limited to: Peking University. Downloaded on July 28,2020 at 11:58:38 UTC from IEEE Xplore.  Restrictions apply. 



7858 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 14. Visual results of performance changes before and after the restoration
at different QP/QF conditions for semantic segmentation. JC: Compressed by
JPEG. HC: Compressed by HEVC. JR: Restored from images compressed
by JPEG. HR: Restored from images compressed images by HEVC. M1:
ResNet50Dilated + PPM Deepsup. M2: ResNet50 + UperNet.

employed, thus the distribution of compression artifacts is
more complex. It is challenging to apply the existing methods
to the next generation of codecs. With more powerful tools
for deep learning, e.g. capsule networks, and reinforcement
learning etc., we believe that, the future technique improvement
on restoration of more complex degradations will yield new
surprises. Third, for compression artifacts reduction, there are
few works on the internal mechanism of feature learning
and related interpretable factors. Beyond obtaining superior
performance, one future direction is to give comprehensive
explanations of what factors lead to a more effective network
and a more specific mechanism. Finally, for various low-level
image processing tasks, it is critical to design and apply
proper metrics to constrain model training and evaluate a
model’s effectiveness. Thus, it is an important future goal to
develop more effective and rational measures that balance both
signal fidelity and visual perception for compression artifact
reduction.

VI. CONCLUSION

This paper presents a systematic review of compres-
sion artifact reduction methods, including both traditional
and deep-learning based methods. These methods have
evolved from several perspectives, including model architec-
ture improvement and continuing exploration of side infor-
mation embedding, etc. We summarize milestones and typi-
cal methods and highlight their contributions, strengths, and
weaknesses. We also create a thorough benchmark for state-of-
the-art compression artifact reduction methods. In our bench-
marking experiments, some constraints and training skills
targeted for JPEG artifact removal are generalized to handle
general compression artifacts reduction methods. Based on
our evaluation and analysis, overall remarks, challenges, and
trends are given. Although our attempts are preliminary, they
build a bridge from the existing world to a new one, where
more researchers are expected to come.
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