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Abstract

In this paper, we address the problem of rain streaks re-

moval in video by developing a self-learned rain streak re-

moval method, which does not require any clean ground-

truth images in the training process. The method is inspired

by fact that the adjacent frames are highly correlated and

can be regarded as different versions of identical scene, and

rain streaks are randomly distributed along the temporal

dimension. With this in mind, we construct a two-stage

Self-Learned Deraining Network (SLDNet) to remove rain

streaks based on both temporal correlation and consistency.

In the first stage, SLDNet utilizes the temporal correlations

and learns to predict the clean version of the current frame

based on its adjacent rain video frames. In the second stage,

SLDNet enforces the temporal consistency among different

frames. It takes both the current rain frame and adjacent

rain video frames to recover the structural details. The first

stage is responsible for reconstructing main structures, and

the second stage is responsible for extracting structural de-

tails. We build our network architecture with two sub-tasks,

i.e. motion estimation and rain region detection, and opti-

mize them jointly. Our extensive experiments demonstrate

the effectiveness of our method, offering better results both

quantitatively and qualitatively.

1. Introduction

Rain is a common bad weather condition that introduces

a series of visibility degradation in captured videos and im-

ages. The presence of rain not only leads to poor visual

quality but also impairs existing computer vision systems

that assume clean video frames as input. Rain streaks are
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(a) Rain Frame (b) FastDeRain [22]

(c) MS-CSC [28] (d) Ours

Figure 1. Visual results of different deraining methods on a real

rain video frame with large motions. Compared to MS-CSC [28]

and FastDeRain [22], our self-learned method does not have ar-

tifacts and is more effective in removing rain streaks. Note that,

SpacCNN is a fully-supervised method, while ours is self-learned,

which does not require any clean ground-truth videos in the train-

ing phase.

the most common type of rain degradation. They can par-

tially occlude a background scene, change image appear-

ance, make the scene blurred, etc. Besides rain streaks, rain

also generates a veiling effect (visually similar to fog) and

raindrops that are attached to a lens or windscreen. In our

paper, we focus on rain streaks removal. Our method learns

from rain videos themselves, without requiring any ground-

truth clean videos in the training process.

A few existing methods [24, 20, 38, 34] focus on sepa-

rating rain-free background images (clean images) and rain

streaks based on spatial redundancies and detail texture ap-

pearances. Several mathematical models extract discrimi-

native features to set part these two layers, e.g. the frequen-

cy domain representation [24], sparse representation [34],

Gaussian mixture models [29] and deep networks [47, 14].

Beyond only exploiting spatial redundancies, video-

based methods [1, 2, 3, 9, 12, 15, 17, 18, 53] further utilize

temporal correlations and contexts to address the problem.

The earliest methods [17, 15, 18] leverage the physical and

photometric properties, i.e. the directional and chromatic
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properties of rain streaks. Later approaches [9, 6, 26, 23]

further make use of the temporal dynamics of videos, i.e.

the continuity of background layers and the randomness of

rain locations along the temporal dimension, to remove rain

streaks from rain videos. The efficiency of deep learning

also leads to the emergence of deep-learning based video

rain streak removal [28, 32, 30, 45, 7]. Convolutional neu-

ral network (CNN) as well as other advanced deep models

are developed to better separate rain streaks and background

scene, e.g. recurrent neural network [32, 30], convolution-

al sparse coding [28]. Many effective priors and features

are designed, e.g. explicit temporal correlations [7], scale

varieties of rain streaks [28] and motion contexts [32, 30].

With the power of learning from data, the CNN-based

methods outperform previous traditional methods. How-

ever, most of these learning methods require ground-truth

images that are free from rain streaks. For this, they em-

ploy synthetic rain images, since to have pairs of real rain

images and ground-truth rain-free images is intractable to

obtain. Hence, the accuracy of these methods depends on

the quality of the synthesized rain.

In this paper, we aim to develop a deep-learning based

method that does not require any clean video ground-truths

in the training process. Thus, unlike most of the learning

methods, we do not use any rain synthetic training data.

By making full use of temporal correlation and consisten-

cy, a two-stage Self-Learned Deraining Network (SLDNet)

is designed to learn how to remove rain streaks solely from

the input videos and some priors. The first stage of SLDNet

predicts the clean current frame based on its adjacent rain

video frames via video frame interpolation, without any in-

formation of the current rain frame. As the rain streaks dis-

tribute randomly along the temporal dimension, the result

of this stage is almost rain-free. Yet, when large motion-

s are present, some details are blurred due to the intrinsic

difficulty in modeling large/fast motions. To avoid these

artifacts, in the second stage of SLDNet, we include the

information of the current rain frame, bringing in some tex-

ture details while filtering out the rain streaks. Our temporal

consistency constraint forces the generated result (with the

added texture details) to be close to other adjacent aligned

rain video frames. Along the way, some motion prior and

rain-related prior are injected into our method.

In summary, our contributions are as follows.

• We propose a self-learned video rain streak removal

method that can learn solely from input videos. To our

knowledge, this is the first attempt in video-based rain

streak removal literature. Integrated with both tempo-

ral correlation and consistency, the proposed deep net-

work, first, infers the main structures of a clean frame,

and then recovers the details.

• Besides the temporal correlation and consistency con-

straint, we further inject priors of rain videos, i.e. back-

ground motion and rain location information, to bene-

fit rain streaks removal without requiring any paired

rain-free ground-truths in the network training. These

constraints/priors can possibly open up further the ex-

ploration of self-learned video rain streak removal.

• We propose a framework that jointly optimizes the

background motion and rain localization while remov-

ing rain streaks. Extensive experiments demonstrate

the effectiveness of our joint optimization and thus the

effectiveness of our whole method.

2. Related Work

As the rain causes poor visibility, occludes the back-

ground scene and blurs the background, rain removal meth-

ods are proposed to restore the clean image from a rain

one. One branch is the single-image rain streak removal,

which aims to infer the clean image solely based on a sin-

gle rain image. Many models are developed to capture the

intrinsic differences between the rain signal and normal tex-

tures based on the spatial redundancy, e.g. generalized low

rank model [9], sparse coding [24], discriminative sparse

coding [34], nonlocal mean filter [25], Gaussian mixture

model [29], transformed low rank model [4], rain direction

prior [51]. In 2017, single-image deraining steps into the

era of deep-learning and many deep-learning based meth-

ods emerge, including deep detail network [14, 13], joint

rain detection and removal [47, 48], density-aware multi-

stream densely connected CNN [51], perceptual generative

adversarial network [41]. Later works focus on developing

advanced deep networks [27, 42, 35, 49] or utilizing more

effective priors [19, 5, 54, 50, 52, 46].

Compared with single-image rain removal, video rain

streak removal is capable of utilizing temporal correlation

and dynamics to detect and remove rains. Garg and Na-

yar propose the seminal work of video rain modeling [17]

and rain streak removal methods [15, 18, 16]. Later ap-

proaches dig deep to see the intrinsic priors rain streak

and normal background signals, i.e. temporal and chromat-

ic properties of rain [53, 33], the size, shape and orienta-

tion of rain streaks [3, 2], phase congruency features [37],

Fourier domain feature [1], spatio-temporal correlation of

patch groups [9], rain directional prior of rain streaks [23],

Gaussian mixture model [6], Bayes rain detector [39, 40],

two-stage detection and refinement based on SVM [26],

patch-based mixtures of Gaussian[44], matrix decomposi-

tion [36]. Recently, deep-learning based methods bring sig-

nificant changes to video deraining with augmented capac-

ities and flexibilities. In [28], Li et al. apply a multiscale

convolutional sparse coding to remove the rain streaks with

different scales. Chen et al. [8] propose to firstly segmen-

t superpixels from a rain frame and then to estimate rain-

free superpixels with the consistency constraint among the
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aligned super-pixels. After that, compensate lost details,

a CNN is further used to add normal textures to the final

results. In [31], Liu et al. build a recurrent neural net-

work that seamlessly integrates rain degradation classifica-

tion, rain removal and background details reconstruction.

In [32], a hybrid rain model is proposed to model both rain

streaks and occlusions, and is then injected into a dynamic

routing residue recurrent network with the motion segmen-

tation context information. In [45], a two-stage recurrent

network is built with dual-level flow regularizations to per-

form the inverse recovery process of the rain synthesis mod-

el for video deraining.

Previous works are either model-based, designed with

hand-crafted features, or data-driven ones, relying on syn-

thetic paired data. In our work, we explore the possible

architectures and priors for self-learning and construct a

learnable video deraining network which does not rely on

synthesized paired data.

3. Rain Modeling and Self-Learning Con-

straint

3.1. Rain Video Modeling

We formulate a rain model as:

I = B +R, (1)

where B is the layer without rain streaks, and R is the rain

streak layer. I is the captured image with rain streaks. A

video rain synthesis model is obtained with a temporal in-

dicator t added:

It = Bt +Rt, t = 1, 2, ..., N, (2)

where t and N denote the current time-step and the total

number of video frames, respectively. The rain streak Rt is

assumed to be independent and identically distributed ran-

dom samples. There are also more complicated rain syn-

thesis models, e.g. [45] that take into account the rain ac-

cumulation, flow, etc. In this paper, we only consider the

problem of rain streak removal by exploring the informa-

tion from rain videos.

3.2. Temporal Cyclic Consistency for Self-Learned
Rain Removal

We explore intrinsic constraints and priors that facilitate

video rain streak removal even without paired training data,

specifically our constraints/priors are consisting of three as-

pects: temporal correlation, temporal consistency, and rain-

related priors.

Temporal Correlation. Adjacent clean video frames are

highly correlated. Meaning, the background signal of a rain

frame can be predicted by its adjacent rain video frames, s-

ince rain streaks are likely randomly distributed. Therefore,

if we try to predict a current rain frame based on adjacent

rain video frames (without the current one), the rain signal

will not be predicted and the result will tend to be rain-free.

However, when the frames include large motions, it is al-

so challenging to interpolate a frame based on its adjacent

frames, which can lead to blurred details and artifacts.

Temporal Consistency. Because non-rain background lay-

ers are continuous along the temporal dimension, the video

frames after motion compensation should be well aligned

and lead to small differences. Comparatively, even good

motion estimation and compensation are achieved, the well

aligned rain layers are also very different, due to the ex-

istence of rain streaks. Hence, it is beneficial to remove

rain streaks if we enforce the model to generate the consis-

tent results after motion compensation. However, motion

might not be well estimated if large motions are present,

and there may be content changes among different frames.

In this case, the temporal consistency regularization might

also fail. Therefore, in our work, we also include the motion

estimation as part of our optimization target.

Rain-Related Side Information. Besides the above two

constraints to connect rain video frame and their corre-

sponding rain-free versions, we also intend to embed useful

side information to guide the deraining process. The rain-

dependent features, i.e. rain mask, can be injected as a part

of the loss functions, which control the model to process

rain layers adaptively, namely only applying rain removal in

the rain regions. Another kind of features, i.e. optical flow,

whose estimation is usually extracted from clean frames, are

easy to be contaminated by the appearance of rain. Optical

flow estimation has a complicated and intertwined effect on

the rain streak removal. However, optical flow and rain re-

moval can benefit each other if one of their performance is

improved. Hence, optical flow estimation is regarded as one

part of our whole optimization function.

4. Self-Learned Deraining Network

4.1. Network Architecture

Based on the discussion in the last section, we build a

Self-Learned Deraining Network (SLDNet) as shown in

Fig. 2, which consists of three parts:

• Warping operation (Fig. 2 (a)). This part extracts the

optical flow [11] as the motion information and apply

alignment among frames. This module (particularly

optical flow) is jointly optimized with the whole de-

raining task.

• Prediction Network (PredNet) (Fig. 2 (b)). In the train-

ing phase, the network aims to predict the rain-free

background layer of the current frame, based on its ad-

jacent rain video frames.

• EnHancement Network (EHNet) (Fig. 2 (c)). Guided
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Figure 2. The framework of our proposed Self-Learning Deraining Network (SLDNet). 1) Warping module aligns the the neighboring

frames to the central one. Successive modules make full use of temporal correlations and consistency to create the mapping from rain

video frames to the clean ones. 2) Prediction Network (PredNet) predicts the clean version of the current frame with the neighboring rain

video frames, taking the rain version of the current one as the ground truth. 3) EnHancement Network (EHNet) compensates for the detail

of the predicted clean layers with both the neighboring and current rain video frames, taking the aligned version of the neighboring rain

video frames as the ground truth. The red arrows denotes the direction of the information flow and the blue arrows denote main related

constraints and losses.

by the rain-free estimation produced by PredNet, we

then improve the details via an enhancement network.

The network takes the current rain frame and the ad-

jacent rain video frames as input, and generates the

residual details under the inter-frame consistency con-

straint. A rain mask is incorporated into the loss func-

tion to reduce the impact of rain streaks in the ground

truth on the deraining process, and make the network

only focus on the useful information in non-rain re-

gions.

In the subsequent sections, we discuss each part of the

network in details.

4.2. Proposed Networks

1) Optical Flow Estimation and Warping (Fig. 2 (a)). We

first estimate the optical flow and warp the input rain video

frames. G(·) is introduced to denote the processes to extract

optical flow from the given image pair as follows,

CI
i→j = G(Ii, Ij), (3)

CB
i→j = G(B̂i, B̂j), (4)

where the subscript i → j denotes the flow from the i-th
frame to the j-th one, and superscript I and B denote the

flow is estimated from the rain image or the estimated back-

ground image. Then, we can warp the image to the j-th

time-step based on the estimated flow:

ĨIi→j = W (Ii, C
I
i→j), (5)

B̃B
i→j = W (B̂i, C

B
i→j). (6)

For simplicity, in Fig. 2, we use ĨIi to denote ĨIi→j as j is

set to t for the whole process. To improve flow estimation

accuracy, in the training phase, we finetune the pretrained

optical flow network with the rain video frames and the es-

timated background layers. After the warping, these frames

should be well aligned to the current ones, expressed as:

LFlow =
t−1∑

i=t−s

∥∥∥ĨIi→t − It

∥∥∥
2

2
+

t+s∑

i=t+1

∥∥∥ĨIi→t − It

∥∥∥
2

2

+
t−1∑

i=t−s

∥∥∥B̃I
i→t − B̂R

t

∥∥∥
2

2
+

t+s∑

i=t+1

∥∥∥B̃I
i→t − B̂R

t

∥∥∥
2

2
. (7)

When the background layers are recovered, they provide

more accurate information to learn better estimation of op-

tical flow.

2) PredNet (Fig. 2 (b)). We use FInterp (·) to denote the rain

frame interpolation process, where the current rain frame It
is not involved in the input. The model is trained based on

temporal correlation, where the information is flowed from

adjacent rain video frames to the current rain one. Then, the

initial rain-free result B̂1
t is predicted as follows,

B̂1
t = FInterp

(
Φ̃I

t,s/{It}
)
, (8)

Φ̃I
t,s =

{
ĨI(t−s)→t, ..., Ĩ

I
(t−1)→t, I

I
t , Ĩ

I
(t+1)→t, ..., Ĩ

I
(t+s)→t

}
.

The loss function is defined as follows,

LFid-TCor =
∥∥∥B̂1

t − It

∥∥∥
2

2
. (9)
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3) EHNet (Fig. 2 (c)). We use FEnhance (·) to denote the

detail enhancement process, where the current rain frame

and adjacent frames Φ̃I
t,s are all taken as the input. The

model is trained based on temporal consistency, requiring

the estimated frame to be consistent to all of the aligned

adjacent rain rain video frames.

B̂2
t = FEnhance

(
Φ̃I

t,s

)
+ B̂1

t . (10)

The loss function is defined as follows,

LFid-TCon =
∑

i={t−s,...,t+s}/t

1

2s

∥∥∥MNA
i

(
B̃2

i − Ii

)∥∥∥
2

2
,

(11)

B̃2
i = W

(
B̂2

t , C
I
t→i

)
, (12)

where MNA
i is the estimated mask of the non-rain region of

the adjacent rain frame Ii, which will be further discussed

in the following paragraphs.

4) Rain Region Estimation. Having gone through enough

training time, B̂2
t will be accurate enough. Then, we can

infer the non-rain region MNC
t of the current frame, a

soft mask denoting whether pixels are not covered by rain

streaks, and the non-rain regions MNA
t of the adjacent rain

video frames, also soft masks denoting whether a pixel is

free of rain streaks. MNC
t is calculated as follows,

MNC
t = exp

⎧
⎪⎨
⎪⎩
−

(
gReLU

(
It − B̂2

t

))2

ω

⎫
⎪⎬
⎪⎭

, (13)

where ω controls the shape of the exponential function in

Eq. (13). gReLU(·) is the rectified linear unit function that

gets only the positive values passed, which is decided by

the common observation of positive rain streaks.

As for Eq. (11), we find that, if there is no mask involved,

the effectiveness of the loss largely depends on accuracy of

the motion estimation, and the degree of the true intrinsic

inter-frame correspondence. When the reliable rain masks

can be acquired, the guidance of the loss can be augmented

in two ways. First, as denoted in Eq. (11), it makes the

model learn useful information only from non-rain regions

of adjacent frames. Second, we can also guide the model

to learn more from the non-rain regions of the current rain

frame. With this in mind, we augment the whole fidelity

loss in the enhancement stage as follows,

LFid-T = LFid-TCon + LFid-TCor,

LFid-B = MNC
t

∥∥∥B̂2
t − It

∥∥∥
2

2
. (14)

The injection of the rain masks regularizes the model to

process different regions adaptively. For rain regions, the

output tends to be consistent to the corresponding regions

of the aligned rain video frames. For non-rain regions, the

output preserves the information of the input rain frame.

5) Overall Loss Function. The whole loss function is the

summation of the above mentioned losses:

LAll = LFlow + λTLFid-T + λBLFid-B, (15)

where λT and λB are two weighting parameters that balance

the importance of each term. This loss will guide the net-

work to learn to remove rain streaks from input rain videos.

6) Discussion on Joint Optimization of Rain-Related Pri-

ors. Our framework considers to inject rain-related priors

into our framework from the following aspects:

• Optical flow finetuning. Optical flow estimates the

pixel-level motion for frame alignment and warping.

When it is estimated more accurately, the performance

of rain removal and rain region estimation will signifi-

cantly improve. Inversely, when more accurate derain-

ing results are achieved, the optical flow estimation can

also improve through Eq. (7).

• Rain region estimation. More accurate deraining re-

sults and optical flow estimation lead to better rain re-

gion estimation via Eq. (13). Also, better estimated

rain regions bring in more accurate deraining results

through Eq. (14).

5. Experimental Results

Datasets. We compare our model with state-of-the-arts on

NTURain [8], which has two sub-groups: one taken from a

panning and unstable camera with slow movements, and the

other from a fast moving car-mount camera. There are also

other video rain datasets, e.g. RainSynLight25 and Rain-

SynComplex25 [31]. However, the frame length of videos

in these datasets is too short (only 7-15 frames) to perform

self-training. Thus, we do not compare different methods

on these datasets. We also compare several real rain videos

generally used in the previous methods and those from Y-

outube as well as our own rain data. More visual results,

e.g. optical flow, rain mask estimation, and video results

are provided in the supplementary material.

Implementation Details. We use NTURain and our col-

lected real rain videos for evaluation. NTURain includes 25

paired videos for training and 8 for testing. However, for

the quantitative evaluation, we do not use NTURain’s train-

ing set at all, and use only its testing set (as our method

can self-learn). For our qualitative evaluation, we use the

collected real rain videos that do not have the paired clean

version. Our deraining networks (PredNet and EHNet) are

trained using Adam optimizer with the learning rate 1e−4.
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(a) Rain Frame (b) UMRL (c) DIP (d) SE

(e) FastDeRain (f) MS-CSC (g) SpacCNN (h) Ours

Figure 3. Visual comparison of different deraining methods on rb3 in NTURain. The remaining rain streaks and artifacts are denoted with

blue and red boxes, respectively.

(a) Rain Frame (b) UMRL (c) DIP (d) SE

(e) FastDeRain (f) MS-CSC (g) SpacCNN (h) Ours

Figure 4. Visual comparison of different deraining methods on a real rain video sequence. The remaining rain streaks and artifacts are

denoted with blue and red boxes, respectively.

The optical flow module comes with its existing pretrained

model and is finetuned to our input with the learning rate

1e−7. All training videos are sampled and cropped into

64×64×5 cubics with a batch size of 8. The PSNR and

SSIM results are the average results of all frames of the in-

put sequence. As for the comparison settings, the results of

all compared methods are generated using the authors’ pro-

vided codes and settings: MS-CSC and J4RNet are trained

with their own datasets, URML and PReNet are trained

with Rain100H, and other methods are traditional method-

s, which do not rely on the training data. We consider not

training these networks using NTURain’s training set is fair,

since: (1) practically, in the deployment stage, most of the

time we do not know the domain of the videos, (2) our net-

work is also not trained using NTURain’s training set.

Baselines. We compare the proposed network with

state-of-the-art methods: Uncertainty guided Multi-scale

Residual Learning (UMRL) [50], Directional Glob-

al Sparse Model (UGSM) [10], Progressive Recurren-

t Network (PReNet) [35], Discriminatively Intrinsic Pri-

ors (DIP) [23], FastDeRain [22], Stochastic Encoding

(SE) [44], Multi-Scale Convolutional Sparse Coding (MS-

CSC) [28], Joint Recurrent Rain Removal and Recon-

struction Network (J4RNet) [31], SuperPixel Alignmen-

t and Compensation CNN (SpacCNN) [8]. UMRL, UGSM,

and PReNet are single frame deraining methods offering

state-of-the-art performance in single-image rain removal.

SE, DIP, FastDerain, J4RNet, MS-CSC, and SpacCNN are

multi-frame derainig methods. UMRL, PReNet, J4RNet

and SpacCNN are deep-learning based methods. All meth-

ods are tested with the codes kindly released by the authors.

For the experiments on synthesized data, Peak Signal-to-

Noise Ratio (PSNR) [21] and Structure Similarity Index (S-

SIM) [43] are used as comparison criteria. Following pre-

vious works, we evaluate the results only in the luminance

channel, since human visual system is more sensitive to lu-
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(a) Rain Frame (b) UMRL (c) DIP (d) SE

(e) FastDeRain (f) J4R (g) SpacCNN (h) Ours

Figure 5. Visual comparison of different deraining methods on a real rain video sequence. The remaining rain streaks and artifacts are

denoted with blue and red boxes, respectively.

(a) Rain Frame (b) UMRL (c) PReNet (d) SE

(e) MS-CSC (f) FastDerain (g) SpacCNN (h) Ours

Figure 6. Visual comparison of different deraining methods on a real rain video sequence. The remaining rain streaks and artifacts are

denoted with blue and red boxes, respectively.

minance than chrominance information.

Quantitative Evaluation. We first compare the perfor-

mance of different methods quantitatively in Table 1. Com-

paring different methods, including both single-image de-

raining methods and multi-frame rain removal method-

s, several observations are obtained. First, our result-

s are consistently better than previous methods, either

data-driven approaches or low-rank based methods, which

further shows the subtle of our model design. Second,

compared with the state-of-the-art single-image deraining

method, URML, PReNet and UGSM, our method achieves

at least 3dB and 0.01 gain in PSNR and SSIM, respectively,

which show the importance of temporal modeling beyond

the big data knowledge. Third, our method significant-

ly outperforms SpacCNN, the state-of-the-art deep-learning

video deraining method, with a gain of 1.6 dB 0.0065 in P-

SNR and SSIM, respectively.

Qualitative Evaluation. We also compare results of differ-
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Table 1. PSNR and SSIM results among different rain streak removal methods on NTURain. Best results are denoted in red and the second

best results are denoted in blue.
Metric Rain URML PReNet UGSM MS-CSC DIP SE FastDeRain J4RNet SpacCNN Ours

PSNR 30.41 31.33 30.36 31.29 26.64 30.79 26.04 30.54 30.73 33.11 34.89

SSIM 0.9108 0.9477 0.9437 0.9253 0.7661 0.9370 0.7571 0.9255 0.9407 0.9475 0.9540

Table 2. Ablation study for the two-stage network architecture on

NTURain. Best results are denoted in bold.
Metric PredNet EHNet PredNet+EHNet

PSNR 33.61 33.62 34.89

SSIM 0.9436 0.9465 0.9537

(a) Input (b) PredNet

(c) PredNet + EHNet (d) Difference Map

Figure 7. Visualization of stage-wise results of our method. The

difference map shows how EHNet compensates for the details

based on the result of PredNet.

(a) Rain Frame (b) DIP (c) SpacCNN (d) Ours

Figure 8. Limitations of existing methods.

Table 3. Ablation study for rain-related priors used in our work on

a sub-set of NTURain (b1-b4). SLDNet-v1: without optical flow

finetuning (OFF), rain region guidance (RRG). SLDNet-v2: with

OFF but without RRG. SLDNet-full: with OFF, RRG. Best results

are denoted in bold.
Metric SLDNet-v1 SLDNet-v2 SLDNet-full

PSNR 34.35 35.48 35.78

SSIM 0.9546 0.9577 0.9588

ent methods qualitatively. Three groups of results on real

videos and one group of results on NTURain are provided

in Figs. 3-6. The testing videos include diversified kinds of

rain streaks in scale, density and intensity. Our results pro-

vide more effective results, with less remaining rain streaks,

abundant details, and less blurring and artifacts. More visu-

al results will be provided in the supplements.

Ablation Study of Two-Stage Network Architecture. To

demonstrate the effectiveness of our two-stage network de-

sign, we perform an ablation study on the network architec-

ture in Table 2. It is observed that, the combination of Pred-

Net and EHNet achieves more effective performance to any

single one, which confirms necessity of utilizing temporal

correlation and consistency jointly. We also provide visual

results in Fig. 7. It is clearly shown that, EHNet effective-

ly further suppresses residual rain streaks and enhances the

details.

Ablation Study of Rain-Related Priors. We also compare

different versions of our deraining network with and with-

out rain priors. The involved priors include optical flow and

rain region mask. The results are shown in Table. 3. Com-

paring SLDNet-v1, and SLDNet-v2, it is observed that, op-

tical flow finetuning contributes to a large performance gain.

Furthermore, comparing SLDNet-v2 and SLDNet-full, it is

showed that, it is also beneficial to inject the rain region

mask, which tells the network which ground truths are more

reliable.

Limitation and Future Direction. Although achieving im-

pressive results in many cases, when the video includes

large and irregular motions, our method might generate

blurred results. One example is shown in Fig. 8. Our re-

sults might be more effective than the results of DIP and

SpacCNN. However, our result is still not promising. In the

future, it might be expected to adopt adversarial learning to

model natural background layers to better preserve normal

textures of the results.

6. Conclusion

In this paper, we make the first attempt to address the

problem of the video rain streak removal with only the in-

formation of rain video frames. A Self-Learned Deraining

Network (SLDNet) is built to make full use of both temporal

correlation and consistency to obtain the mapping between

the rain video frames and clean ones. The network is a two-

stage architecture. In the first stage, the model learns to pre-

dict the clean current frame based on its adjacent rain video

frames (without the current rain frame), taking the curren-

t rain frame as the ground truth. The second stage takes

both the current rain video frame and adjacent rain video

frames for detail compensation, where the result is con-

strained to be close to aligned adjacent rain video frames.

The first stage reconstructs main structures and the second

stage compensates for structural details. The effective rain-

related priors are injected to the model. The extensive ex-

periments demonstrate the effectiveness of our method, its

each component, and the related rain priors.
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