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ABSTRACT

Along with the fast development of image style transfer, large

amounts of style transfer algorithms were proposed. How-

ever, not enough attention has been paid to assess the qual-

ity of stylized images, which is of great value in allowing

users to efficiently search for high quality images as well as

guiding the designing of style transfer algorithms. In this pa-

per, we focus on artistic text stylization and build a novel

deep neural network equipped with multitask learning and at-

tention mechanism for text effects quality assessment. We

first select stylized images from TE141K [1] dataset and then

collect the corresponding visual scores from users. Then

through multitask learning, the network learns to extract fea-

tures related to both style and content information. Further-

more, we employ an attention module to simulate the process

of human high-level visual judgement. Experimental results

demonstrate the superiority of our network in achieving a high

judgement accuracy over the state-of-the-art methods. Our

project website is available at https://ykq98.github.
io/projects/TEA/.

Index Terms— Image quality assessment, multitask, at-

tention, text effects, style transfer

1. INTRODUCTION

With the fast development of image style transfer [2], a se-

ries of algorithms [2–11] were proposed, followed by an in-

creasing number of stylized pictures on the Internet. While

offering more diverse options, users are also faced with the

problem of spending much time filtering high quality images.

To tackle this problem, researches have been devoted to Im-

age Quality Assessment (IQA) [12–21], which aims to auto-

matically predict the perceptual quality of an image. With

the help of a network that can characterize the perceptions of

human beings, images of high visual quality can be quickly

and easily found, eliminating the trouble of manual selecting.

However, existing IQA networks are mostly designed for nat-

ural images with degradations such as noises, compression

artifacts and blurring [17, 22, 23], which fail to characterize

the stylish images, and consequently has poor performance
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on stylized image assessment. Besides, human eyes are es-

pecially sensitive to semantic structure of glyphs. Therefore,

compared with ordinary image stylization, the task of assess-

ing text effect transfer images is more challenging.

In this work, we focus on the style of text effects, and

present a novel network for text effects quality assessment.

The challenges of predicting the perceptual quality of text

effects transfer results lie in three aspects: 1) Text effects

transfer has only recently begun to be studied and therefore,

there is a lack of large-scale corresponding datasets with user

mean opinion scores (MOS). 2) Different from the conven-

tional evaluation standard of IQA systems, the matching in

style and content should also be taken into account. More-

over, style, as a high-level concept of human subjective cog-

nition, is difficult to quantitatively evaluate. 3) The focus of

human visual assessment may vary a lot for different text ef-

fects images. For example, when the background is relatively

simple, users will pay more attention to the foreground text

effects. Therefore, visual attention should be considered.

IQA has been studied a lot, which can be categorized

into classic methods [18, 22] and deep-based methods [12–

14, 19, 24]. The main idea of classic methods is to manually

design some features as evaluating indicators based on the do-

main knowledge. The values of these features are first calcu-

lated and organized as feature vectors, which are then used to

fit the ground truth MOS in subjective evaluation. However,

the artificial features are hard to design, especially for stylish

images. Meanwhile, deep-based methods directly train neu-

ral networks to fit the ground truth MOS and can be further

divided into non-reference and reference. The former uses

the target image as input while the latter additionally requires

a reference ground truth image. However, neither of these is

suitable for our problem, since they fail to consider the match-

ing of style and content images.

In this paper, we propose a multitask attentive network

for text effects quality assessment. To train a network for

accurate prediction of perceptual quality of text effects, we

first select images from TE141K dataset [1], where 151, 224
text effects images are produced by 16 different style transfer

models, and then we collect 28, 001 aesthetic opinion scores

from invited users. Based on TE141K dataset, we train our

network to accomplish multiple tasks of style autoencoding,

content autoencoding, stylization and destylization, through

which our network learns to characterize the robust style fea-

tures and content features. These features empower our pre-
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Fig. 1: Framework of the proposed multitask attentive network for text effects quality assessment.

diction network to find the relationship between the input

stylized image and its corresponding reference style/content

images, which helps to prevent over-fitting problems. Fur-

thermore, we incorporate visual attention modules into our

prediction network to adaptively localize the most important

regions in the target image. By giving high weights to the

feature maps in these regions, the network can learn to focus

on key positions and details, thus better simulating the human

visual decision process.

In summary, the contributions of this work are threefold:

• We explore a new issue of text effect assessment for

estimating the quality of images generated by text ef-

fect transfer models. To address this problem, we select

images from TE141K dataset and collect 28k aesthetic

opinion scores.

• We propose a novel multitask network for no reference

text effect assessment. The tasks of text effect recon-

struction, destylization and stylization make the net-

work better in extracting image features.

• We propose an attentive network to simulate the pro-

cess of human high-level visual judgement, paying

more attention to interested areas, which shows excel-

lent performance on the task of Text Effects Quality

Assessment.

2. MULTITASK ATTENTIVE NETWORK FOR TEXT
EFFECT ASSESSMENT

In this section, we describe our multitask attentive network

to predict the perceptual quality y of text effects transfer re-

sult x based on its content image c and style image s. As

shown in Figure 1, we first pretrain encoder-decoder-based

networks on the tasks of style autoencoding, content autoen-

coding, stylization and destylization (Section 2.1), in the aim

of making our encoders learn to extract robust style and con-

tent features. We then train our attentive prediction network

where the encoders are further finetuned to predict the mean

opinion scores (MOS) (Section 2.2). Detailed network archi-

tecture can be found in the supplementary material.

2.1. Multitask Feature Extraction

For multitask feature extraction, we build multitask network

composed of the style encoder ES , the content encoder EC ,

the style decoder DAE
S , the content decoder DAE

C , the styl-

ization decoder Dsty and the destylization decoder Ddes. ES
and EC extract the style features and content features from the

stylish images (i.e., style images and stylization results) and

content images, respectively. To ensure the features extracted

well characterize the key information for the perceptual as-

sessment, we train the multitask network to accomplish the

following tasks.

First of all, given a set of content text images {ci|i =
1, 2, ...,M}, the encoded content feature of ci is required to

preserve the core information of the glyph in ci. Therefore,

we impose a reconstruction constraint that forces the content

feature to fully reconstruct the input content image, leading to

the standard L2 loss on the autoencoder DAE
C ◦ EC :

LAE
C = Ei

[‖DAE
C (EC(ci))− ci‖2

]
. (1)

Similar to the content autoencoder, we sample stylish

images containing results of the style transfer methods and

ground truth style transfer reference images from the dataset

and impose L2 loss on the style autoencoder DAE
S ◦ES . Given

N different kinds of text effects styles and K style transfer

models, let sij (i = 1, 2, ...,M and j = 1, 2, ..., N ) be the

ground truth style image with the style j and the glyph of ci.
Let xk

ij denote the style transfer result of model k conditioned

on the content image ci and the style j. Then, the loss for the

2
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Fig. 2: Representative examples of different MOS in TE141K

dataset. From top to bottom: reference style image and con-

tent image, text effects transfer results with their average qual-

ity scores in the bottom left.

style autoencoder can be written as,

LAE
S = Ei,j

[‖DAE
S (ES(sij))− sij‖2

]

+λ1Ei,j,k

[‖DAE
S (ES(xk

ij))− xk
ij‖2

]
,

(2)

where λ1 is a weight that compromises between the recon-

struction error of s and that of x.

Considering the matching of the glyph is an important fac-

tor in determining the perceptual quality of text effects trans-

fer results, we force the style encoder to pay attention to the

glyph in the stylish image. To this end, ES is accomplished

with Ddes to form a destylization network to obtain the glyph

information from the stylization result by removing its style

elements,

Ldes = Ei,j,k

[‖Ddes
S (ES(xk

ij))− ci‖2
]
. (3)

For the same reason, the matching of the glyph is taken

into account throught a stylization network DSTY ◦(EC , ES),
where the content and style features are extracted and com-

bined to yield a new style transfer result,

Lsty = Ei �=l,j

[‖Dsty(EC(ci), ES(slj))− sij‖2
]
. (4)

Finally, the objective function of our multitask feature ex-

traction can be defined as

Lmulti = λAE
C LAE

C +λAE
S LAE

S +λdesLdes+λstyLsty, (5)

where the losses of four tasks are weighted by λAE
C , λAE

S ,

λdes and λsty , respectively.

2.2. Attentive Quality Prediction

Visual attention models have been applied to localizing inter-

ested regions in an image to capture its features. The idea is

naturally consistent with human’s behavior of assessing im-

age quality. People tend to give evaluations based on some

key regions such as a region with evident checkerboard arti-

facts or color deviation rather than the whole images. It is

especially evident for image stylization since the style tends

to be completely differently rendered in different regions of

an image, making the regions that have a significant impact

on ratings unevenly distributed. Therefore we consider visual

attention to be important for text effects quality assessment,

which allows the prediction network to know where the criti-

cal regions should be focused on.

Specifically, we employ the Convolutional Block Atten-

tion Module (CBAM) [25] into our prediction network. Our

prediction network is composed by the proposed content and

style encoders EC and ES , and a three-layer convolutional

score regression network R, with CBAM between its first and

second convolutional layers. For a stylization result xk
ij , its

corresponding reference ci and sj , and its ground truth MOS

ykij in our dataset, EC first extracts the content feature from

ci. Meanwhile ES extracts the style features of xk
ij and sj .

These three features are concatenated and fed into R. Within

R, the intermediate feature f are weighted by the attention

map calculated by the CBAM as

f ′ = Mc(f)⊗ f ,

f ′′ = Ms(f
′)⊗ f ′,

(6)

where Mc and Ms are 1D channel and 2D channel atten-

tion maps inferred by CBAM, respectively, and ⊗ denotes

element-wise multiplication. f ′′ is the final refined feature,

which is used to predict the final scores:

LR = Ei,j,k

[(
R(EC(ci), ES(sij), ES(xk

ij))− ykij
)2]

. (7)

3. DATA COLLECTION

To train our multitask attentive network, we use TE141K

dataset which contains stylized images of 16 stylization meth-

ods and collect the corresponding MOS from the invited

users. In this paper, we label these 16 methods as #1 - #16.

For the details of these 16 methods and their MOS scores,

please refer to the supplementary material. In this section, we

will introduce the details of our data collection.

For user evaluation, we select 20 styles, which is the sub-

set named TE141K-S of the TE141K dataset. For each model,

we sample four stylization results of different content refer-

ences from each style, adding up to 1,280 images. Then we

conduct user studies where 135 invited observers were shown

these 1,280 images with their corresponding content and style

reference images, and were asked to score 1 to 5 on the image

visual quality by taking both content consistency and style

conformity into consideration. We first gave the users a tuto-

rial about the score labeling, and then show them the query

images with corresponding content and style references. As

shown in Fig. 2, user score of 1 is of lowest quality and 5
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Table 1: Performance evaluation on the TEA dataset in terms of SRCC.

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 All

NIMA [21] -0.06 0.49 -0.12 -0.16 0.79 0.39 0.02 -0.15 0.02 0.12 0.38 0.02 0.13 0.24 0.27 0.49 0.38

CNNIQA [12] 0.64 0.07 0.26 -0.02 0.41 0.29 0.14 0.52 0.12 -0.14 -0.03 0.67 -0.37 0.42 0.52 0.54 0.61

DeepBIQ [26] 0.22 0.59 0.22 0.53 0.53 0.33 0.14 0.19 0.43 0.30 -0.05 0.53 0.12 0.62 0.53 0.61 0.64

Ours 0.55 0.57 0.28 0.41 0.67 0.59 0.17 0.14 0.26 0.34 0.61 0.31 0.42 0.34 0.67 0.47 0.68

Table 2: Performance evaluation on the TEA dataset in terms of PLCC.

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 All

NIMA [21] -0.13 0.42 -0.09 0.02 0.74 0.28 0.08 -0.11 0.05 0.14 0.35 0.12 0.12 0.25 0.57 0.58 0.39

CNNIQA [12] 0.66 -0.04 0.22 0.15 0.38 0.35 0.06 0.44 0.16 -0.14 0.12 0.61 -0.24 0.26 0.47 0.41 0.63

DeepBIQ [26] 0.26 0.57 0.25 0.60 0.47 0.40 0.10 -0.10 0.45 0.32 -0.08 0.63 0.16 0.61 0.49 0.60 0.65

Ours 0.54 0.55 0.38 0.50 0.69 0.54 0.14 0.19 0.23 0.30 0.55 0.49 0.38 0.50 0.38 0.48 0.67

Table 3: Ablation study in terms of SRCC, PLCC and accu-

racy (%).

Method SRCC PLCC Accuracy

Baseline 0.67 0.67 72.02

Baseline + AT 0.66 0.65 73.39

Baseline + MT 0.68 0.67 72.94

Full model 0.68 0.67 75.23

is of highest quality. Image with lower score suffers from

mismatching of reference content image and reference style

image. And even if the image is visualy pleasing, the users

tend to give a low score of 2 because of the mismathing of the

content as shown in Fig. 2. We end up with 28,001 opinion

scores, where each image has around 22 scores in average.

The final ground truth MOS of each image is calculated as

the mean of the scores obtained.

4. EXPERIMENTAL RESULTS

4.1. Implementation Details

We adapt our multitask network from the basic encoder-

decoder architecture, which contains three convolutional lay-

ers. After each convolutional layer we utilize batch normal-

ization layer [27] except the first layer. The architecture of

our attentive quality prediction model contains two blocks.

Each block has one convolutional layer which downsamples

the feature maps to half of their original size, one batch nor-

malization layer and a leaky relu layer. We first resize the

image to the size of 300×300 and then randomly crop the im-

ages to 256× 256 for training. Data augmentation of random

rotation (± 20 degree) and flip is then performed. The Adam

optimizer is adopted with the fixed learning rate of 0.00005

and batch size of 1. We select 668 images for training and

167 for validation and 436 images for testing. For all exper-

��������� ������� 	
���
����� �����

Fig. 3: Representative visualiztaion examples of the pixel-

wise attention map. The attention maps have been upsampled

to 256× 256 from the original size of 16× 16. The first line

shows our attentive network pays attention to the matching of

the content and notices the dismatching of the style and the

second line shows it can find out the style inconsistency in

the background.

iments, we set λ1 = λAE
C = 0.25, λsty = λAE

S = 1, and

λdes = 1.25.

4.2. Comparison of Previous IQA Methods

Quantitative evaluations. Correlation and accuracy values

of our evaluations on the IQA models on the collected data are

presented in Table 1 and Table 2, respectively. We report the

evaluation performance for 16 style transfer models in Sup-

plementary material and the overall performance on all these

models. As shown in Table 2, NIMA [21], CNNIQA [12] and

DeepBIQ [26] have 0.38 SRCC with 0.39 PLCC, 0.61 SRCC

with 0.63 PLCC and 0.64 SRCC with 0.65 PLCC, respec-

tively. By comparison, our method obtains 0.68 SRCC with

0.67 PLCC, outperforming the state-of-the-art methods.

Visual evaluations. In Fig. 4, we further show examples

of representative MOS for visual evaluation. Fig. 4 suggests

that our network could well characterize key factors such as

4
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Fig. 4: Our predicted scores on examples of representative MOS of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 4.9, respectively. The

quality scores are shown at the bottom right of each image in form of y (μ± σ), where y is our predicted score, μ is the mean

opinion score with its standard error σ.

Fig. 5: Ranking some examples from TE141K without labels using the proposed network. Predicted scores are shown at the

bottom right of each image.

the matching of style, the matching of glyph, bleeding arti-

facts and other artifacts in determining aesthetic qualities. For

more results of our proposed network, readers may refer to

supplementary material.

4.3. Ablation Study

Multitask pretraining. In Table 3, we study the effect of

the multitask pretraining (Section 2.1). For accuracy calcu-

lation, we follow the setting of NIMA [21] to report the ac-

curacy evaluations of two-class quality categorization, where

predicted scores are compared to 3 as cut-off score. Com-

paring to Baseline, Baseline+MT (multitask) brings a gain

of 0.9% in accuracy. Comparing to our full model, with-

out multitask pretraining, the accuracy drops by 1.84%. The

high judgement accuracy with multitask pretraining verifies

that our multitask attentive network effectively extracts ro-

bust style features and content features, which makes it easier

to find the relationship between the input stylized image and

its corresponding reference style/content images.

Attention module. In Table 3, we examine the effects

of our attention module through a comparative experiment.

Comparing to Baseline+AT (attention), the judgement accu-

racy of the baseline without attention module drops by 1.37%,

which means our network do learn to detect and focalize crit-

ical regions of the image as human do and predict more ac-

curate scores. To visualize the effect of attention module, in

Fig 3, we show some examples of the input images and their

corresponding pixel-wise attention maps. By utilizing the at-

tention module, our network tends to pay more attention to

the critical parts of the given image.

4.4. Text Effects Ranking

Predicted scores can be used to rank text effects. Some styl-

ization results from TE141K dataset without ground truth

MOS are ranked in Fig. 5. Although not labelled, our net-

work gives reasonable ranking of these images that matches

human visual judgement, which could potentially benefit the

development of text effects recommendation system.

5. CONCLUSION AND FUTURE WORK

In this paper, we present a multitask attentive network for text

effects quality assessment. The network is trained on multi-

ple tasks of content autoencoding, style autoencoding, styl-

ization and destylization to learn to extract robust content and

style features. An attentive module is exploited to empower

the network to focus on the regions that are critical for the

perceptual assessment. To train out network, we propose a

text effects assessment dataset where more than 28,001 user

scores are collected. We validate the effectiveness and robust-

ness of our method by comparisons with state-of-the-art im-

age quality assessment algorithms. In future work, we would

5
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like to explore and formulate interpretable features that im-

pact the visual text effects quality most, which could possibly

enlighten the extension of our network to more general image

style assessment.
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