
4198 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Combining Progressive Rethinking and
Collaborative Learning: A Deep Framework

for In-Loop Filtering
Dezhao Wang, Student Member, IEEE, Sifeng Xia , Wenhan Yang , Member, IEEE,

and Jiaying Liu , Senior Member, IEEE

Abstract— In this paper, we aim to address issues of (1) joint
spatial-temporal modeling and (2) side information injection
for deep-learning based in-loop filter. For (1), we design a
deep network with both progressive rethinking and collaborative
learning mechanisms to improve quality of the reconstructed
intra-frames and inter-frames, respectively. For intra coding,
a Progressive Rethinking Network (PRN) is designed to simulate
the human decision mechanism for effective spatial modeling.
Our designed block introduces an additional inter-block con-
nection to bypass a high-dimensional informative feature before
the bottleneck module across blocks to review the complete
past memorized experiences and rethinks progressively. For inter
coding, the current reconstructed frame interacts with reference
frames (peak quality frame and the nearest adjacent frame)
collaboratively at the feature level. For (2), we extract both
intra-frame and inter-frame side information for better con-
text modeling. A coarse-to-fine partition map based on HEVC
partition trees is built as the intra-frame side information.
Furthermore, the warped features of the reference frames are
offered as the inter-frame side information. Our PRN with
intra-frame side information provides 9.0% BD-rate reduction
on average compared to HEVC baseline under All-intra (AI)
configuration. While under Low-Delay B (LDB), Low-Delay
P (LDP) and Random Access (RA) configuration, our PRN with
inter-frame side information provides 9.0%, 10.6% and 8.0%
BD-rate reduction on average respectively. Our project webpage
is https://dezhao-wang.github.io/PRN-v2/.

Index Terms— High efficient video coding (HEVC), in-loop
filter, deep learning, video coding.

I. INTRODUCTION

LOSSY video compression is widely applied due to its
effectiveness in bit-rate saving and critical visual informa-

tion preservation. However, these two goals are contradictory
and it is non-trivial to optimized them jointly. Modern video
compression standards such as High Efficient Video Coding
(HEVC) [1] still suffer from various kinds of degradation for
the sake of block-wise processing and quantization.

Manuscript received December 7, 2019; revised October 27, 2020 and
January 16, 2021; accepted March 7, 2021. Date of publication April 2,
2021; date of current version April 12, 2021. This work was supported
in part by the National Key Research and Development Program of China
under Grant 2018AAA0102702, in part by the Fundamental Research Funds
for the Central Universities, and in part by the National Natural Science
Foundation of China under Contract 61772043. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Prof. Adrian Munteanu. (Corresponding author: Jiaying Liu.)

The authors are with the Wangxuan Institute of Computer Technology,
Peking University, Beijing 100080, China (e-mail: wangdz@pku.edu.cn;
xsfatpku@pku.edu.cn; yangwenhan@pku.edu.cn; liujiaying@pku.edu.cn).

Digital Object Identifier 10.1109/TIP.2021.3068638

To remove these artifacts, an in-loop filter module con-
sisting of Deblocking Filter (DF) [2] and Sample Adaptive
Offset (SAO) [3] is applied to suppress blocking and ringing
artifacts. The in-loop filter not only effectively enhances
the quality of the reconstructed frames and further ben-
efits the subsequent inter-coding procedure via providing
high quality reference frames. Lots of efforts are put into
this field, improving the quality of the reconstructed frames
in the coding loop, and a series of works are proposed
based on handcrafted filters [4], Markov random filed [5],
nonlocal filters [6], low-rank minimization [7], etc. How-
ever, these methods built on shallow models offer limited
performance.

In recent years, deep learning brings in new progresses
in related fields, firstly image and video restorations for
low-level visions, and leads to impressive performance gains.
A series of milestone network architectures and basic blocks
are proposed, e.g. Super-Resolution Convolutional Neural
Network (SRCNN) [8], Very Deep Super-Resolution net-
work (VDSR) [9], Denoising Convolutional Neural Network
(DnCNN) [10], and Dual-domain Multi-scale Convolutional
Neural Network (DMCNN) [11] for compression artifacts
removal, etc. The latest methods become more advanced, and
usually make use of the power of residual learning, dense
connections, or their combinations, in a cascaded or recurrent
manner. For example, Lim et al. [12] proposed to cascade
multiple residual blocks as Enhanced Deep Super-Resolution
Network (EDSR). Later on, Zhang et al. [13] embedded the
dense connections [14] into a residual network [15]. Inspired
by the recent development of these works, many deep-learning
based in-loop filtering methods and post-processing methods
are proposed [16]–[19], from the simplest cascaded CNN [19]
to the combination of residual learning and dense connec-
tions [17].

Besides the network architecture evolution, video cod-
ing scenario also provides rich context side information to
improve the quality of the reconstructed frames. For example,
the partition structure of the coding process implicitly reveals
the structural complexity of local regions and indicates the
relative quality loss after the compression. For convenience,
based on whether inferred with adjacent frames, we classify
the side informations into intra-frame and inter-frame side
information. Inspired by Kalman Filter, Lu et al. [20] pro-
posed a Deep Kalman Filtering Network (DKFN) to take

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0301-0004
https://orcid.org/0000-0002-1692-0069
https://orcid.org/0000-0002-0468-9576

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4199

the extracted quantized prediction residual image from the
codec as another input. When it comes to the in-loop filter,
there is also useful side information proposed in HEVC
codecs. For example, He et al. [16] proposed a post-processing
network taking the partition mask, inferred based on the
partition tree of HEVC, as the side information. In [21],
an EDSR-like network takes the unfiltered and prediction
frames as side information and is trained with weight nor-
malization. For inter-frame side information, it is intuitive to
make use of temporal redundancy to obtain useful information
from the adjacent frames to benefit the processing of the
current frame. In [18], the reference frames (the nearest
adjacent frames or the peak quality frame) are warped by
optical flow or designed motion compensation modules, and
taken as another input to improve the quality of the current
frame.

Although achieving significant performance improvements
compared to previous works, these methods still have ignored
issues from the perspectives of model design, coding context
perception, and side information utilization.

• At the model design level, the most popular network
architectures [13], [17] for in-loop filtering and the
low-level tasks combine the power of residual learning
and dense connections by stacking several basic blocks.
The channel dimensions of the output features across
blocks are usually compressed to make the output feature
compact to prevent introducing too many parameters.
However, this compression also leads to the information
loss and limits the modeling capacity.

• In the video coding scenarios, the temporal modeling is
quite different from that in video restoration/enhancement
tasks from two aspects. First, the video frames might
be reordered based on different coding configurations.
Second, the quality of the reconstructed frames varies a
lot. Previous works make use of temporal redundancies
by taking the warped frames as input. This way does
not exhaust the potential of modeling capacities, which
is buried in the complex dependencies of video frames in
the coding scenario.

• For side information utilization, some side information
is not considered closely with the coding context and its
potential is not fully explored. For example, the partition
masks used in [16] are only inferred from the leaf nodes
of the partition tree. In fact, the nodes on different
levels of the partition tree can provide regional context
information at different granularity.

In this paper, we aim to address the three issues mentioned
above. Specifically, we develop a deep network with both
progressive rethinking and collaborative learning mechanisms
to improve quality of the reconstructed intra-frames and inter-
frames, respectively. The progressive rethinking mechanism
improves the modeling capacity of the in-loop filtering base-
line network for both intra-frames and inter-frames. Inspired
by the human decision mechanism, a Progressive Rethinking
Block (PRB) and its stacked Progressive Rethinking Net-
work (PRN) are designed. They are different from typical
cascaded deep networks, where at the end of each basic

block, the dimension size of the feature is reduced to generate
the summarization of the past experiences. Our PRN takes
a Progressive Rethinking manner. The PRB introduces an
additional inter-block connection to bypass a high-dimensional
informative feature across blocks to review the complete past
memorized experiences. The Collaborative Learning Mecha-
nism tries to fully explore the potential of temporal modeling
in the video coding scenario. It acts like the collaboration
of human being, where information is exchanged and refined
progressively. The current reconstructed frame interacts with
the reference frames (peak quality frame and the nearest
adjacent frame) progressively at the feature level. Therefore,
they complement for each other’s information deeply. Fur-
thermore, novel intra-frame and inter-frame side informations
are designed for a better context modeling. A coarse-to-fine
partition map based on HEVC partition trees is built as the
intra-frame side information. Besides, the warped features
of the reference frames are offered as the inter-frame side
information.

This paper is an extension of our conference paper [22].
Beyond single frame in-loop filtering, we further develop
a Progressive Rethinking Recurrent Neural Network which
utilizes temporal information to guide the restoration. To effi-
ciently filter the current frame, we pick up two reference
frames as an aid and share the information among these
frames by a Collaborative Learning Mechanism, which further
improves the coding performance. Moreover, we add extensive
experiments and model analysis in this paper to show the
effectiveness of our method and rationality of our model
design.

In summary, our contributions are three-fold:
1) We design a Progressive Rethinking Block based on

residual learning and dense connection. An additional
inter-block connection is proposed to compensate for
the lost information caused by dimension compression,
which improves the modeling capacity for in-loop filters
of both intra-frames and inter-frames.

2) We propose a Progressive Rethinking Recurrent Neural
Network (PR-RNN) for collaborative learning to effec-
tively utilize temporal redundancies in the video coding
scenario. Motivated by the collaboration among human
beings, we update the states of the current frame as
well as reference frames synchronously by information
sharing progressiveness.

3) We exploit context side informations from HEVC codecs
to better adapt to the coding scenario. We extract
Multi-scale Mean value of CU (MM-CU) maps from the
partition tree to guide the network restoration. By fusing
MM-CUs to the baseline network we establish our Pro-
gressive Rethinking Convolutional Neural Network (PR-
CNN) as an effective single frame filter under All-Intra
(AI) configuration.

The remainder of the paper is organized as follows.
In Section II, we provide a brief review of related works.
In Section III, we introduce the methodology of our Pro-
gressive Rethinking Networks (PRN). Section IV provides the
implementation. Experimental results are shown in Section V.
Finally we will make a conclusion in Section VI.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4200 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

II. RELATED WORKS

A. Deep Learning Based Video Coding

Modern video coding standards like HEVC consist of mul-
tiple modules working together to compress the given videos.
With the development of deep learning, researchers begin to
utilize the strong non-linear mapping capability to substitute
or enhance the original module in the codecs.

In [23], Li et al. developed a fully-connected neural network
for intra prediction (IPFCN). The IPFCN takes the neighbour-
ing pixels as input to predict the current block pixel values.
Hu et al. proposed a Progressive Spatial Recurrent Neural
Network (PS-RNN) [24] to progressively pass information
along from preceding contents to the blocks to be encoded.

Methods benefiting inter prediction were also proposed from
many aspects. Yan et al. proposed a Fractional Pixel Reference
generation CNN (FRCNN) [25] to predict the fractional pixels
inside the frame by adopting a three-layer CNN. Further,
Liu et al. proposed a Group Variation CNN (GVCNN) [26]
which can tackle multiple quantization parameters and
sub-pixel positions in one model. Zhao et al. proposed a
method [27] to enhance the inter-prediction quality by utilizing
a CNN to combine two prediction blocks rather than a linear
combination. Beyond PU-level combination, [28] and [29]
directly exploited the learning capability of neural network to
generate a new reference frame so that the residue of motion
compensation can be greatly decreased.

Many efforts have also been made to in-loop filtering or
post-processing. Park et al. trained a shallow CNN for in-loop
filtering firstly [30]. The network is inserted into HEVC codecs
after DF with SAO off. Since then, many attempts have
been made to enhance the representative capability of in-loop
filtering networks. Dai et al. proposed a Variable-Filter-Size
Residual-Learning CNN (VRCNN) [19] as the post-processing
component with variable convolutional kernels to perceive
multi-scale feature information. In [16], He et al. proposed
a CNN adopting residual blocks for post-processing. In [18],
Li et al. proposed a Multi-frame In-loop Filter Network (MIF-
Net) based on Dense Block [14]. Wang et al. proposed a
Dense Residual CNN (DRN) [17] taking advantage of both
dense shortcuts and residual learning. Also, many methods
take intra-frame or inter-frame side information into consider-
ation. In [16], not only the decoded frames are sent into the
network but also correspondent block partition side informa-
tion. In [31], Jia et al. proposed a Spatial-Temporal Residue
Network (STResNet) which aggregates temporal information
by concatenating the feature maps of the co-located block and
the current block together. In [18], a delicate reference frame
selector was designed and the reference frames are warped by
motion vectors predicted by neural network.

B. Deep Learning Based Video Restoration

With the surge of deep learning, video restoration also
ushers in an outbreak. Many methods were first proposed to
tackle image restoration such as denoising [10], [32], [33],
deraining [34], [35], low-light enhancement [36], [37],
super-resolution [8], [9], [12], [13], [38], deblocking [11],
[39], [40] and so on. And these methods can be treated

as single-frame restoration algorithms which don’t utilize
temporal redundancy of videos. To better fit the video scenario,
many methods are proposed to utilize temporal information to
help video restoration.

Incipient deep learning based video restoration works sim-
ply fuse frames together or concatenate feature maps together
without motion compensation [31], [41].

Most common way to utilize temporal redundancy now
is to warp reference frames to the current one by optical
flow [18], [42]–[44]. After that, the aligned frames will be
send to neural networks to further reconstruct the current
frame. While in [45], Haris et al. proposed a framework based
on back-projection algorithm. Rather than aligning frames by
flow, [45] directly sends the flow along with the reference
frame together into the network without explicit alignment.

Another popular way to process temporal information is to
pass hidden states frame by frame through a RNN module like
LSTM [46] or ConvLSTM [47]. In [48], Tao et al. proposed a
sub-pixel motion compensation layer to provide finer motion
compensation. Further, they proposed a ConvLSTM layer
inside their network to pass temporal information. Beyond
that, many variants from classic structures are proposed.
In [49], the RNN cell is an Auto-Encoder structure which
consists of multiple residual blocks. The hidden state is
represented by the transformed feature maps extracted from
the bottleneck in each RNN cell.

Besides the mentioned methods, there exist other ways to
handle temporal information. For example, in [50], Jo et al.
utilized multi-frames to generate a dynamic upsampling filters
to upsample low resolution frames. Lu et al. used deep
modules to substitute the original ones in Kalman Filter [20]
to process video sequences.

III. PROGRESSIVE RETHINKING NETWORKS

FOR IN-LOOP FILTER

In this section, we at first present the motivation and
design methodology of our proposed Progressive Rethinking
Networks, i.e. PR-CNN and PR-RNN. Then, we discuss their
detailed architectures step by step.

A. Motivations

In this paper, we aim to address the three issues of deep
learning-based in-loop filters: 1) Effective network design for
feature learning; 2) Side information extraction and injection;
3) Joint spatial and temporal modeling in the coding context.
Our motivations to address these issues are three-fold:

• Representative Feature Refinement via Progressive
Review: The basic blocks in previous advanced networks,
e.g. residue dense network (RDN) [13], perform the
progressive feature refinement. However, at the end of
each basic block, the feature dimension is compressed to
avoid excessive growth of the model parameters, which
at the same time inevitably brings about the information
loss across blocks. However, this information is also
important. Intuitively, the high-dimensional feature is
more informative (a record of total past experiences).
After the compression, only most critical information
(knowledge and principle) is preserved. When learning

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4201

from new information, it will be helpful if the total past
experiences are available. To this end, we introduce an
inter-block connection that bypasses more information
across blocks, which enables the model to learn by
reviewing a compact representation of the complete past
memorized experiences, namely “rethinking”.

• Hierarchical Side Information in the Coding Context: The
coding process is performed block by block as the coding
tree unfolds. Thus, the guidance side information should
contain the partition-related side information to better
represent the coding context, and guide the network to
perform restoration from coarse to fine. In this work,
we extract MM-CU as side information to boost the
proposed network for better in-loop filtering.

• Collaborative Learning Mechanism: Previous works
make use of the temporal redundancy at the frame level
(the aligned reference frame) unidirectionally. That is,
they only make the information flow from the refer-
ence frames to the current one to improve its quality
without updating the state and feature of the reference
frames. In this paper, we propose a collaborative learning
mechanism and maintain three learning paths to absorb
useful information from reference frames (the nearest
adjacent frame and peak quality frame) progressively
and collaboratively. This design benefits acquiring use-
ful information from the three kinds of resource and
leads to a better restoration of the current reconstructed
frame.

B. Methodology Overview

In modern video codecs, frames can be roughly divided
into two categories according to whether temporal information
is used. Similarly, our PRNs also include two versions, i.e.
PR-CNN and PR-RNN, to process two kinds of reconstructed
frames. We will first introduce the pipeline of our method and
then model these two versions step by step to develop the
model more clearly.

1) Pipeline: We first classify all frames into two categories,
high-quality frame (H-frame) and low-quality frame (L-frame):

• H-frame: These frames include all I-frames, and each
P-frame or B-frame whose POCs are multiples of 4.
Based on the configuration of the codecs, these frames
are usually compressed by lower quantization parame-
ters (QP) and own higher quality.

• L-frame: Other frames that do not belong to the first
category, i.e. P-frames and B-frames whose POCs are not
multiples of 4, fall into L-frames as they are usually coded
with fewer bits than H-frames.

Our network uses PR-CNN and PR-RNN to filter H-frames
and L-frames, respectively. Our pipeline under LD configu-
ration is shown in Fig. 1. The reason to process two kinds
of frames differently is that, for H-frames, reference frames
often have lower quality and may consequently mislead its
restoration. Therefore, we only take intra-frame information,
i.e. MM-CU, as side information to help filtering. In Fig. 1,
PR-CNN takes x0 and its MM-CU maps as input and outputs
the filtered result x̂0. After that, x̂0 is taken as the refer-

Fig. 1. The pipeline of PRN. Under LD configuration, we filter the H frame,
i.e x0, by PR-CNN with the guidance of its MM-CU side information maps.
For the following frames, the filtered x̂0 is taken as a reference frame while
the other reference frame is the nearest restored frame in temporal domain
which is simply the previous frame under LD configuration. Therefore, for
x0, it selects x̂n−1 and x̂0 as its reference frames.

ence frame of the successive L-frames. Besides x̂0, for each
L-frame, PR-RNN also takes the filtered neighboring frame
x̂n−1 as another input because the neighboring frame contains
most shared content information. Therefore, we in all take
3 frames as the input of PR-RNN, i.e. the current frame,
the neighboring frame and an H-frame. When n − 1 is the
multiple of 4, i.e. x̂n−1 is also an H-frame, we simply take
this frame as the neighboring frame without exceptional opera-
tions. Under the RA configuration, the pipeline is quite similar
except that the coding order of frames is different. To be
specific, H-frames are still filtered by PR-CNN and L-frames
are filtered by PR-RNN. The neighboring reference frame is
not exactly the previous frame in temporal domain. We select
the most neighboring frame from the decoded frames buffer as
the neighboring reference frame. Under the AI configuration,
all frames are filtered by PR-CNN as no inter-frame correlation
is guaranteed.

2) Modeling PRN Step by Step: To provide a better under-
standing on our model design, we construct our deep network
step by step.

• Residual Dense Network: We take a previous excellent
work residual dense network (RDN) [13] as the starting
point of our model. As shown in Fig. 2(a), a series of
residual dense blocks (RDB) are stacked. There is an
additional bypass connection to link the first and later
layers to better trade-off between the local and global
signal modeling.

• PR-CNN: As shown in Fig. 2(b), different from
RDN [13], inter-block connections (red line) are added to
bypass richer information across blocks. These connec-
tions are non-trivial, as they make the successive blocks
“rethink”, namely, learning to extract more representa-
tive features guided by the previous information without
dimension compression. Furthermore, we inject the side

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4202 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 2. Modeling PR-CNN and PR-RNN step by step. (a) The simplified
architecture of RDN [13] which consists of RDBs. (b) By adding inter-block
connection and side information maps, we establish the PR-CNN. (c) The most
common way to utilize temporal information: warping the reference frame to
the current one and then concatenating them together as the input of the
network. (d) The architecture of PR-RNN with only two states. Collaborative
learning mechanism is built with feature sharing and synchronous state
updating.

information into the network to facilitate in-loop filter.
MM-CU maps are extracted and used as another input to
guide the restoration process.

• Frame-Level Temporal Fusion: To exploit the temporal
redundancy of video frames, the commonly used way in
previous methods is shown in Fig. 2(c). The network
takes the warped reference frame as the input. How-
ever, this way might not make full use of the temporal
dependencies.

• PR-RNN (Feature-Level Aggregation and Collaborative
Learning): Beyond taking the aligned reference frame
as the input, we further develop a collaborative
learning mechanism to exploit temporal dependencies
bidirectionally at the feature level. Specifically, the fea-
ture map is also feed-forwarded from the reference
frame to the current one as shown in Fig. 2(d). It
is noted that, in our implementation, we use recur-
rent neural modules to update the feature maps and

Fig. 2(d) is a simplified unfolding version of our proposed
PR-RNN.

In the following, we will present our PRN in details,
including its basic module PRB, and PR-CNN as well
as PR-RNN.

C. Progressive Rethinking Block

To fully utilize the past memory for current restoration,
we design a Progressive Rethinking Block (PRB), which has
an additional inter-block connection to forward more informa-
tive feature representations across blocks. The structure of our
proposed PRB is shown in Fig. 3(b).

In an RDB, the input feature map Fd−1 is first
feed-forwarded to a series of convolutional layers to extract
rich hierarchical features, and the ReLU activation layers are
injected between convolutional layers to model nonlinearity.
The procedure is formulated as follows,

Gd = Hd(Fd−1), (1)

where Hd (·) is the corresponding nonlinear transform pro-
cedure. The concatenated hierarchical feature (accumulated
in the way of dense connections from Hd) is denoted as
Gd . As the channel dimension of Gd is greatly larger than
the input Fd−1, we compress the channel dimension via a
1 × 1 convolutional layer, and the residual connection can be
utilized to accelerate convergence. However, the dimension
compression inevitably causes information loss.

To compensate for this loss, we introduce another path to
send the feature map of the previous block Md−1 to that of
the current block simply by concatenating it with Gd denoted
by red lines in Fig. 3(b). This connection is nontrivial as
with it, all modules, i.e. PRBs, are connected with a feature
path that keeps the high-dimensional informative features from
bottom to top. Therefore, the generation of the features at
one PRB is guided by both the compressed feature at the
last PRB and the previous forwarded high-dimensional feature,
which critically provides more abundant low-level features to
facilitate more powerful feature learning in the current PRB.
Besides, with the inter-block connection, all PRBs will have a
higher dimensional feature representation space, where better
features are easy to be obtained throughout a thorough training
process. We generate Md by a 1 × 1 convolutional layer as
follows,

Md = PM (
[
Gd , Md−1

]
), (2)

where PM (·) is the corresponding process, and [·] denotes
the concatenation operation. Similarly, we can generate
Fd and add a local residual learning for better gradient
back-propagation as follows,

Fd = PF ([Gd , Md − 1]) + Fd−1, (3)

where PF (·) is also a 1 × 1 convolutional function.
As a summary, we can conclude the process of PRB as

PPRB (·) and for the k-th PRB, there exists

[Fk , Mk] = PPRB(Fk−1, Mk−1). (4)

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4203

Fig. 3. (a) The architecture of the Progressive Rethinking Convolutional Neural Network. The network takes the unfiltered frame as the input and it generates
the filtered output frame. The feature maps extracted from the side information by SIFE are added to data flow during the processing. (b) The structure of
Progressive Rethinking Block. (c) The architecture of Side Information Feature Extractor.

D. Progressive Rethinking Convolutional Neural Network

To process H-frames, which are usually with high quality,
we only make use of spatial redundancy and the related
side information for in-loop filter of the corresponding recon-
structed frames. The overall architecture of our PR-CNN is
shown in Fig. 3(a). It has two branches: the main brunch, i.e.
the PR-CNN baseline network without MM-CU maps, and
side information feature extractor (SIFE). We will illustrate
their architectures in details.

1) Architecture of Main Branch of PR-CNN: PR-CNN takes
the unfiltered frame x and MM-CU maps as its input. x is
fed to the main brunch, and MM-CU maps are first fed into
SIFE and then fused to the main brunch. PR-CNN can be
roughly divided into 3 parts: Low-Level Feature Extractor
(LFE), High-Level Feature Extractor (HFE) with MM-CU
Fusion and Reconstruction Sub-Network.

Low-Level Feature Extractor: The input frame is first
fed into a Low-level Feature Extractor for low-level feature
extraction. The LFE consists of two convolutional layers. The
corresponding process is formulated denoted as PLFE(·):

F0 = PLFE(x), (5)

where F0 is the generated feature maps.
High-Level Feature Extractor With MM-CU Fusion: F0

is further feed-forwarded into D sequential PRBs, namely
High-level Feature Extractor. It is noted that, each PRB indeed
needs two inputs: Mk and Fk as shown in Eqn. (4). We initially
set M0 = F0. After a certain number of PRBs, we fuse
the feature maps of a Mean value of CU (M-CU) into the
main brunch by element-wise addition. We use SFk to denote
feature map of the k-th M-CU, and it is inserted to the main
branch after the nk-th PRB. The process is denoted as follows,

Fnk = Fnk + SFk . (6)

Reconstruction Sub-Network: After D PRBs, we concate-
nate all feature maps {F1, F2, . . . , FD} together and use a 1×1
convolutional layer denoted as PCompress(·) to compress them
as follows:

FC = PCompress ([F1, F2, F3 . . . , FD]) . (7)

We then append a global residual connection from the first
convolutional layer FG to the last one as follows,

F �
C = FC + FG . (8)

Finally, we construct the output x̂ by a 3 × 3 convolutional
layer denoted as PRec(·):

x̂ = PRec(F �
C). (9)

2) MM-CU Generation and Fusion
In addition to only utilizing the frame information, we fur-

ther fuse intra-frame side information extracted from the
HEVC codec into our network. As HEVC encodes a frame at
the CU level independently with different coding parameters,
the partition information contains a lot of extra important side
information which is beneficial for in-loop filter.

MM-CU Generation: Different from only generating M-CU
at the bottom layer (leaf node of the partition tree) of the
quadtree [16], we also extract M-CU in the intermediate
layers (every node of the partition tree). Namely, we calculate
the mean value of a CU every time a partition happens.
Consequently, the side information includes the information
related to the entire coding partition architecture, and therefore
guides the network to remove the coding artifacts from coarse
to fine.

We calculate the mean value of each CU at different
levels from coarse to fine to derive the corresponding side
information maps. As shown in Fig. 4(b), blocks in the yellow
dotted box are four CTUs and their corresponding M-CU side
information maps, and the coarsest ones are surrounded by
a yellow border. Then, every time the CUs are divided into
four smaller CUs, we recursively calculate the mean value
of each partitioned CU. If the CU is not divided, we keep
its side information value the same as that at the upper
level, namely that the side information value of that CU is
unchanged. The recursive process stops when the CU cannot
be partitioned anymore. Finally, the multi-scale M-CU side
information maps, MM-CUs, are obtained.

MM-CU Fusion: The information of MM-CU is first trans-
formed into the feature map, and then injected into differ-
ent layers of the main branch. The feature of each M-CU

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4204 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 4. (a) A partition tree generated by the codec. We calculate the mean
value of each CU at different levels as the side information maps. (b) The
visualized results of side information maps of different scales.

is extracted by a simple shallow CNN named side infor-
mation Feature Extractor (SIFE), whose structure is shown
in Fig. 3(c). The M-CU first goes through a convolutional layer
and two stacked PRBs. After that, a residual connection is
added. At last, a convolutional layer generates the final output
feature map of the M-CU. It is intuitive that, the information
of finer M-CU maps reflects local details of the coding
architecture more while that of coarser ones contain more
global coding structure information. Thus, we inject coarser
M-CU maps to the main branch in deeper layers so that the
global information can play a more important role in guiding
the network training when larger areas are perceived in deeper
layers. We choose the element-wise addition as the fusion
operation.

E. Progressive Rethinking Recurrent Neural Network

Besides exploiting the current frame information, we further
develop a Progressive Rethinking Recurrent Neural Network
(PR-RNN) to effectively utilize inter-frame side information
with a collaborative learning. We will first provide the network
architecture of PR-RNN and then introduce the collaborative
learning in detail.

1) Architecture of PR-RNN: The architecture of our
PR-RNN is shown in Fig. 5(a). To clearly show the relation-
ship of PR-RNN with PR-CNN, we show an unfolding version
of PR-RNN. Different from PR-CNN, PR-RNN generates a
filtered frame with the information of both current frame and
reference frames (nearest adjacent frame and peak quality
frame) to further improve frame quality when inter-prediction
is available. Specifically, PR-RNN takes three kinds of frames
as its input:

• Current Frame xn.
• Neighboring Frame. We select the nearest filtered frame

in the temporal domain as another input of the network
as it is often the most similar frame in all reconstructed
frames to the current frame. Under the LD configuration,
it will be the last filtered frame x̂n−1 as shown in Fig. 5.
Under RA configuration, it is a little more complex
because the frames are not coded in a sequential order.
We just still choose the nearest filtered frame as one of
the reference frame.

• Peak Quality Frame. We also choose the nearest filtered
H-frame as another reference frame. More high-frequency
information is preserved in this frame, which benefits the
restoration of the current frame. It is denoted as x̂G(n)

in Fig. 5 and G(n) is denoted as follows,

G(n) = n − (n mod GO P_SI Z E). (10)

To apply the in-loop filtering frame-by-frame along the tem-
poral dimension, the three input frames at different temporal
steps make up three queues, which we abstract into three
states: State C, State N and State Q to denote the Current
frame, Neighbouring frame, peak Quality frame respectively.
Therefore, we can also use xC , xN and xQ to represent the
three frames in these state queues, respectively.

PR-RNN can be divided into four parts: Flow Estimation,
Low-Level Feature Extractor, Recurrent Module with Collabo-
rative Learning Mechanism, and Reconstruction Sub-Network.

Flow Estimation: Because the three frames are not aligned,
we estimate their optical flow results and apply warping
operations. We adopt SpyNet [51] to generate the optical flow
maps. We use i and j to represent any two states and we can
get:

flowi→ j = PSpyNet(x j , xi), (11)

where the first parameter of the function PSpyNet (·) is the target
frame and the second one is the source frame.

Low-Level Feature Extractor: Instead of just warping all
frames to the current frame, we need to extract the low-level
feature maps of the three inputs and further warping them in
our recurrent module by a collaborative learning mechanism.
The extraction of low-level feature is same as the one in
PR-CNN. However, we name the corresponding process as
PRLFE(·) to highlight that it belongs to PR-RNN. Therefore,
we can get:

F0
i = PRLFE(xi), (12)

where F j
i denotes the feature map of State i ∈

{State C, State N, State Q} after j times unfolding. xi is
the frame that corresponds to State i .

Recurrent Module With Collaborative Learning: After the
flow estimation and low-level feature extraction, the feature
maps of these three states and their flow maps are fed into the
recurrent module for collaborative learning. Namely, the input
feature maps are processed by the Collaborative Learning
Module (CLM) and then pass sequential PRBs to further
update the state. The detailed process of this collaborative
learning will be introduced in the next subsection. It should
be mentioned that the feature map of State C is temporarily
kept at each time-step and they are concatenated together and
fed into the successive layers as follows,

FC =
[

F0
C , F1

C , . . . , FT
C

]
, (13)

where T is the total unfolding times of our PR-RNN.
Reconstruction Sub-Network: At last, we reconstruct the

frame through two convolutional layers. The first convolutional
layer is 1 ×1 to compress the channel number. Then, a global

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4205

Fig. 5. (a) The architecture of the Progressive Rethinking Recurrent Neural Network under LD configuration. (b) The structure of Collaborative Learning
Module.

residual connection is used to connect the first convolutional
layer FG and the last layer as follows,

F �
C = FC + FG . (14)

The final output result is reconstructed by a 3 × 3 con-
volutional layer. The process of the overall reconstruction
sub-network can be denoted as follows,

x̂C = PRRec(F �
C), (15)

where PRRec(·) stands for the convolutional function.
2) Collaborative Learning: We will illustrate the collab-

orative learning in detail. We apply the collaborative learn-
ing mechanism through a Collaborative Learning Module as
Fig. 5(a) shows. The detailed structure of CLM is shown
in Fig. 5(b). At time-step t , the feature maps that correspond
to the three states are updated as follows,

[Ft
C , Ft

N , Ft
Q] = PRM(Ft−1

C , Ft−1
N , Ft−1

Q , flow), (16)

where Ft
C denotes the feature maps of State C at time-step t .

Similarly, Ft
N and Ft

Q stand for the feature maps of State N
and State Q at time-step t , respectively. PRM (·) is the mapping
of our recurrent module.

To be specific, the three states are first warped with the
estimated flow maps as follows,

Ft−1
i2 j = warp(Ft−1

i , flowi→ j), (17)

where i and j represent two arbitrary states, respectively.
Then, the warped feature maps are concatenated to interact

and share information with each other as follows,

F̃ t−1
C = [Ft−1

C , Ft−1
N2C , Ft−1

Q2C],
F̃ t−1

N = [Ft−1
C2N , Ft−1

N , Ft−1
Q2N], (18)

F̃ t−1
Q = [Ft−1

C2Q, Ft−1
N2Q , Ft−1

Q].

After collaborative information sharing, the features of the
three states are first compressed by a 1 × 1 convolutional
layer and further refined by several PRBs. We denote the
corresponding process as PTr (·). Therefore, the procedure can
be formulated as follows,

Ft
i = PTr(F̃ t−1

i). (19)

Till now, three states are all updated. Ft
i is further fed

into the next recurrence to improve the restoration quality
progressively.

IV. IMPLEMENTATION DETAILS

A. Network Implementation

The PR-CNN is made up of 10 PRBs. As our anchor HEVC
codec is HM 16.15, which only provides us a 4 layer partition
tree, our MM-CU maps consist of 4 different scale M-CUs.
We insert the feature maps of the M-CUs after 2-nd, 4-th, 6-th,
8-th PRB respectively from fine to coarse.

The PR-RNN has three states as we have mentioned above.
For each state, the respective recurrent module is made up
of 3 PRBs. Therefore, there are 9 PRBs in PR-RNN in all.
The folding time T is set to 2.

All activation functions in our PRNs are ReLU. The kernel
of each convolution layer is 3×3 except that the kernel of the
emphasized channel compression module after concatenation
layer is 1 × 1.

B. Training

We train PR-CNN and PR-RNN on DIV2K [52] and
Vimeo-90K [42], respectively. The DIV2K dataset contains
800 diverse high-resolution images while Vimeo-90K contains
89,800 clips with 7 frames. We randomly extract 18,345 clips
from Vimeo-90K with 4 frames in each clip.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4206 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE I

OVERALL EXPERIMENTAL RESULTS ON CLASS A TO CLASS E. ONLY BD-RATE OF Y CHANNEL IS SHOWN

We crop the image into 64 × 64 and 128 × 128 patches
for the training of PR-CNN and PR-RNN. We apply random
flipping both vertically and horizontally for augmentation.

The network is implemented in Pytorch and Adam is used as
the optimizer with β1 = 0.9, β2 = 0.999. The learning rate is
first set to 0.0001 and adaptively decreased until convergence.
We train one model for each QP. We first train PR-CNN and
PR-RNN suffering the worst degradation (QP 37) for 75 and
40 epochs respectively and then finetune other models from
them for 20 epochs.

C. Integration

We insert our PR-CNN and PR-RNN between DF and SAO
modules. Only luma component is filtered by our method.

We also adopt CTU level RDO under LDP, LDB and RA
configurations to choose whether to use filtered results or
unfiltered results. While under AI configuration, we simply
substitute our filtered frame for the unfiltered frame without
RDO.

V. EXPERIMENTAL RESULTS

In this section, we will show the experimental results of
our models. As mentioned in the previous section, we utilize
PR-CNN to filter H-frames and PR-RNN to filter L-frames.
The testing QPs belong to {22,27,32,37}.

A. Overall Performance

Table I shows the overall performance of our proposed
method on classes A, B, C, D and E. Our method has

TABLE II

COMPARING OUR PR-CNN WITH OTHER EXISTING

METHODS UNDER AI CONFIGURATION

obtained on average 9.0%, 9.0%, 10.6%, 8.0% BD-rate sav-
ings, respectively under AI, LDB, LDP and RA configurations.
For the test sequence Johnny, up to 17.6% BD-rate saving
is obtained for the luma component under LDP configura-
tion. For further verification, we provide rate-distortion (R-D)
curves under four configurations as shown in Fig. 6. It can
be seen that our method is superior to HEVC at all QPs.
More significant superiorities are observed especially at higher
QP points.

B. Comparison With Existing Methods

Furthermore, we compare our method with some state-of-
the-art methods under AI, LDP and RA configurations. The
tested sequences are from Class B to Class E. The results
are shown in Table II, III and IV respectively to validate the
superiority of our PRNs.

Under AI configuration, we choose VRCNN [19] and
DCAD [53] targeting at post-processing instead of in-loop

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4207

Fig. 6. R-D curves of the test sequences under AI, LDP, LDB and RA configuration.

TABLE III

COMPARING OUR PR-RNN WITH OTHER EXISTING

METHODS UNDER LDP CONFIGURATION

TABLE IV

COMPARING OUR PR-RNN WITH OTHER EXISTING
METHODS UNDER RA CONFIGURATION

filtering for comparison. However, as all frames are encoded
with no reference frames available during the coding process,
the comparison is quite fair. DRN [17] and RRCNN [54] are
recently proposed in-loop filtering methods for intra frames.
DRN consists of Dense Residue Units (DRU) while RRCNN
is a recursive residual convolutional neural network. It can be
observed that, our PR-CNN outperforms all three compared
methods.

When the inter prediction is available, PR-RNN is used
to collaborate with PR-CNN to exploit temporal redundancy.
Here, we choose Non-local [55], RHCNN [56] and MIF [18]
as the compared methods. In [18], Li et al. implemented all
three methods on HM 16.5. To make it fair, we also implement
our networks based on HM 16.5 and test on class B to class E
to show the superiority of our method. It is noted that the
compared anchor is HM 16.5 without DF and SAO. It can
be observed that our PR-RNN outperforms all three methods
under LDP and RA configurations in all tested classes. When it
comes to the LDB configuration, the condition is quite similar
to the LDP configuration. Here, to make the experiment more
complete, we also compare our method with MIF [18] under
the LDB configuration. Our method outperforms MIF by 2.5%,
5.9%, 4.9% and 5.1% on Class B to E, respectively. To make

TABLE V

THE BD-RATE RESULTS AND ENCODING TIME OF RDN [13],
PR-CNN-B UNDER AI CONFIGURATION

TABLE VI

BD-RATE RESULTS OF PR-CNN BASELINE, PR-CNN

W/SM-CU AND PR-CNN W/ MM-CU. SEPARATE

AND NON-SEPARATE DENOTE TWO FUSION WAYS

the comparison fair, the model we use is trained by sequences
compressed under LDP configuration, which is same as MIF.

C. Ablation Study

We also conduct some ablation study to verify the necessi-
ties and rationality of our design.

1) Verification of Inter-Block Connection: To verify the
superiority of our PRB, we train an RDN [13] and a PR-CNN
Baseline model (denoted as PR-CNN-B) which only takes
the unfiltered frame as input without side information. They
are trained by the same training procedure as we mentioned
before. We test the BD-rate under AI configuration. As shown
in Table V, original RDN provides a 8.7% performance gain.
An additional inter-block connection can further enhance the
coding performance by a margin of 0.4%. Further, in Table V,
encoding time comparison is also provided. The time is
calculated based on HM 16.15 anchor. The result shows that,
almost no additional time cost is paid to improve the overall
performance by introducing the inter-block connection.

2) Verification of MM-CU Maps: To verify the effective-
ness of our proposed MM-CU Maps, we conduct an exper-
iment to compare the performance of PR-CNN full model

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4208 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 7. Some subjective results of our proposed method compared to HEVC anchor.

(i.e. with MM-CU as input) to PR-CNN Baseline (PR-CNN-
B) model and PR-CNN-B with Single scale M-CU map
(SM-CU) guidance. Besides, we compare two fusion ways:
(1) concatenating all MM-CU maps together to extract fea-
tures and then fuse it into the baseline network, which is
denoted as Non-Separate in Table VI; (2) our proposed fusion
mechanism inserting different maps into different depths,
denoted as Separate. As it is shown in Table VI, compared
to PR-CNN-B and SM-CU, the performance of PR-CNN with
MM-CU maps guidance further increases by 0.5% and 0.3%
under AI configuration. In addition, the fusion way plays a
role in the overall performance which improves the BD-rate
by 0.2%.

3) Verification of Collaborative Learning Mechanism: Our
PR-RNN applies a collaborative learning mechanism to trans-
fer information between states. To verify the effectiveness of
collaborative learning mechanism, we train a model which
simply aligns the neighbouring frames to current frame by
optical flow and concatenates them as the input of a CNN with
same PRBs as PR-RNN. The comparison between PRN-Warp
and PR-RNN-N can validate the effectiveness collaborative
learning mechanism. The result is also shown in Table VII.
From the last two columns, we can find that, PR-RNN-N
performs better than PRN + WarpN, which demonstrates

TABLE VII

ABLATION STUDY TO VERIFY THE EFFECTIVENESS OF THE

COLLABORATIVE MECHANISM. THE EXPERIMENT IS

IMPLEMENTED UNDER LDP CONFIGURATION

that our collaborative mechanism method indeed benefits the
restoration.

D. Further Analysis on Integration

1) Generalization Capacity on QP: As we mentioned
before, we train models at 4 QP points, i.e. 22, 27, 32, 37. If we

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4209

TABLE VIII

EVALUATION ON GENERALIZATION CAPACITY ON QP

need to test other QPs, we can simply reuse the model trained
under the closest QP which can avoid the space overcommit.
We test the PR-CNN at 21, 26, 31, 36 and 23, 28, 33, 38 with
models trained at 22, 27, 32, 37 under AI configuration. We set
the coding time to 1 second for each sequence. The results are
shown in Table VIII. According to the results, we can find that,
the results vary slightly with respect to QP jittering.

2) Necessity of DF and SAO: In our integration, we insert
our model between DF and SAO with both filters on. However,
one may wonder that DF and SAO could degrade the overall
performance as they would waste bit-stream and improve little
quality. To verify the necessity of turning on DF and SAO,
we conduct the experiment to compare the performance of
PR-CNN with DF and SAO off. We first turn DF and SAO
off, then only turn on DF and at last turn both of them on.
The experimental results are shown in Table IX. From the
table, we can find that DF and SAO can brings about 1%
performance gain. Here, the coding time is also set to 1 second
for each sequence to accelerate the experiment.

3) Complexity Analysis: We integrate our models into HM
with the help of LibTorch. The number of parameters of
our proposed PR-CNN and PR-RNN is 7.24M and 5.03M
respectively, which occupies 29.8M and 22.1M disk space.
The peak running memory of GPU is about 8.5G. We compare
the encoding and decoding time of our approach with HM
anchor under AI and RA configurations. The result is shown
in Table X. In Table X (a), we also test the runtime of RDN and
PR-CNN-B under AI configuration, to show the complexity
increase of additionally using the inter-block connection and
MM-CU maps. It can be found that, the inter-block connection
brings 1.4% and 23.1% additional time consumptions in
encoding and decoding, respectively, while the MM-CU maps
bring 39.3% and 2,501.6% runtime increase in encoding and
decoding, respectively. In Table X (b), beyond HM anchor,
we further compare our complexity and RD performance with
MIF [18] under RA configuration. It is observed that our
method can obtain a 25.4% performance gain over HM in spite
that the encoding time nearly doubles on GPU. Compared to
MIF, our method obtains a 5.7% performance gain with little
increase in encoding and decoding time. Here we also provide
the time complexity of PR-RNN on CPU, where the speed
drops a lot compared to that on GPU.

E. Subjective Results

We compare the subjective quality of HEVC anchor and
our proposed method. Fig. 7 illustrates the some examples
which are compressed under AI, LDP and RA configurations
respectively when QP is 37. For RaceHorses, it can be
observed that the rein is blurry in the results of the HM anchor

TABLE IX

NECESSITY OF DF AND SAO

TABLE X

ENCODING AND DECODING RUNTIME

but becomes more clear after being filtered by our proposed
method. In BasketballPass, the bottom of the gate is missed in
the results of HM anchor but appears in that of our PR-RNN.
For BlowingBubbles, the girl’s face is degraded by multiple
artifacts and our filtered result shows better visual quality. All
these examples show that, our approach is superior to HEVC
in subjective visual qualities.

VI. CONCLUSION

In this paper, we propose Progressive Rethinking Networks
with Collaborative Learning Mechanism. We design a Pro-
gressive Rethinking Block to introduce inter-block connections
to compensate for possible information lost across blocks.
Furthermore, we extract side information from HEVC codecs
to facilitate restoration. We generate Multi-scale Mean value
of Coding Unit maps by calculating the mean value of the
CU each time a partition happens and replacing the original
pixel value with the mean value. The MM-CU maps are
fused to a convolutional neural network consisting of PRBs
called Progressive Rethinking Convolutional Neural Network.
Beyond that, we develop a Collaborative Learning Mechanism
to effectively utilize temporal side information. In our col-
laborative learning mechanism, not only the state of current
frame but also the states of reference frames are updated.
We implement our collaborative learning mechanism through
a Recurrent Neural Network called PR-RNN. Experimental
results show that our PR-CNN outperforms HEVC baseline
by 9.0% and PR-RNN outperforms HEVC baseline by 9.0%,
10.6% and 8.0% under LDB, LDP and RA configurations.

REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

4210 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

[2] A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1746–1754, Dec. 2012.

[3] C.-M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755–1764,
Dec. 2012.

[4] S. Minami and A. Zakhor, “An optimization approach for removing
blocking effects in transform coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 5, no. 2, pp. 74–82, Apr. 1995.

[5] D. Sun and W.-K. Cham, “Postprocessing of low bit-rate block DCT
coded images based on a fields of experts prior,” IEEE Trans. Image
Process., vol. 16, no. 11, pp. 2743–2751, Nov. 2007.

[6] X. Zhang, R. Xiong, S. Ma, and W. Gao, “Reducing blocking artifacts in
compressed images via transform-domain non-local coefficients estima-
tion,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2012, pp. 836–841.

[7] J. Ren, J. Liu, M. Li, W. Bai, and Z. Guo, “Image blocking artifacts
reduction via patch clustering and low-rank minimization,” in Proc. Data
Compress. Conf., Mar. 2013, p. 516.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[9] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 1646–1654.

[10] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[11] X. Zhang, W. Yang, Y. Hu, and J. Liu, “DMCNN: Dual-domain multi-
scale convolutional neural network for compression artifacts removal,”
in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 390–394.

[12] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017.

[13] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2472–2481.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700–4708.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[16] X. He, Q. Hu, X. Zhang, C. Zhang, W. Lin, and X. Han, “Enhancing
HEVC compressed videos with a partition-masked convolutional neural
network,” in Proc. 25th IEEE Int. Conf. Image Process., Oct. 2018,
pp. 216–220.

[17] Y. Wang, H. Zhu, Y. Li, Z. Chen, and S. Liu, “Dense residual convo-
lutional neural network based in-loop filter for HEVC,” in Proc. IEEE
Int. Conf. Image Process. (VCIP), Dec. 2018, pp. 1–4.

[18] T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A deep learning
approach for multi-frame in-loop filter of HEVC,” IEEE Trans. Image
Process., vol. 28, no. 11, pp. 5663–5678, Nov. 2019.

[19] Y. Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach
for post-processing in HEVC intra coding,” in Proc. Int. MultiMedia
Modeling Conf., 2017, pp. 28–39.

[20] G. Lu, W. Ouyang, D. Xu, X. Zhang, Z. Gao, and M.-T. Sun, “Deep
Kalman filtering network for video compression artifact reduction,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 568–584.

[21] L. Feng, X. Zhang, S. Wang, Y. Wang, and S. Ma, “Coding prior based
high efficiency restoration for compressed video,” in Proc. IEEE Int.
Conf. Image Process., Sep. 2019, pp. 769–773.

[22] D. Wang, S. Xia, W. Yang, Y. Hu, and J. Liu, “Partition tree guided
progressive rethinking network for in-loop filtering of HEVC,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 2671–2675.

[23] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-
based intra prediction for image coding,” IEEE Trans. Image Process.,
vol. 27, no. 7, pp. 3236–3247, Jul. 2018.

[24] Y. Hu, W. Yang, M. Li, and J. Liu, “Progressive spatial recurrent neural
network for intra prediction,” IEEE Trans. Multimedia, vol. 21, no. 12,
pp. 3024–3037, Dec. 2019.

[25] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional neural
network-based fractional-pixel motion compensation,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 29, no. 3, pp. 840–853, Mar. 2019.

[26] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped
variation network-based fractional interpolation in video coding,” IEEE
Trans. Image Process., vol. 28, no. 5, pp. 2140–2151, May 2019.

[27] Z. Zhao, S. Wang, S. Wang, X. Zhang, S. Ma, and J. Yang, “Enhanced
bi-prediction with convolutional neural network for high-efficiency video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 11,
pp. 3291–3301, Nov. 2019.

[28] L. Zhao, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao, “Enhanced
ctu-level inter prediction with deep frame rate up-conversion for high
efficiency video coding,” in Proc. 25th IEEE Int. Conf. Image Process.
(ICIP), Oct. 2018, pp. 206–210.

[29] S. Xia, W. Yang, Y. Hu, and J. Liu, “Deep inter prediction via pixel-wise
motion oriented reference generation,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2019, pp. 1710–1774.

[30] W.-S. Park and M. Kim, “CNN-based in-loop filtering for coding
efficiency improvement,” in Proc. IEEE 12th Image, Video, Multidimen-
sional Signal Process. Workshop (IVMSP), Jul. 2016, pp. 1–5.

[31] C. Jia, S. Wang, X. Zhang, S. Wang, and S. Ma, “Spatial-temporal
residue network based in-loop filter for video coding,” in Proc. IEEE
Vis. Commun. Image Process. (VCIP), Dec. 2017, pp. 1–4.

[32] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,” IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[33] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional
blind denoising of real photographs,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 1712–1722.

[34] W. Yang, J. Liu, and J. Feng, “Frame-consistent recurrent video derain-
ing with dual-level flow,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 1661–1670.

[35] W. Yang, R. T. Tan, S. Wang, Y. Fang, and J. Liu, “Single
image deraining: From model-based to data-driven and beyond,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, May 19, 2020, doi:
10.1109/TPAMI.2020.2995190.

[36] W. Yang, W. Wang, H. Huang, S. Wang, and J. Liu, “Sparse gradient
regularized deep retinex network for robust low-light image enhance-
ment,” IEEE Trans. Image Process., vol. 30, pp. 2072–2086, 2021.

[37] W. Yang, S. Wang, Y. Fang, Y. Wang, and J. Liu, “Band representation-
based semi-supervised low-light image enhancement: Bridging the gap
between signal fidelity and perceptual quality,” IEEE Trans. Image
Process., vol. 30, pp. 3461–3473, 2021.

[38] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4681–4690.

[39] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 576–584.

[40] L. Cavigelli, P. Hager, and L. Benini, “CAS-CNN: A deep convolutional
neural network for image compression artifact suppression,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 752–759.

[41] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-
resolution with convolutional neural networks,” IEEE Trans. Comput.
Imag., vol. 2, no. 2, pp. 109–122, Jun. 2016.

[42] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-
ment with task-oriented flow,” Int. J. Comput. Vis., vol. 127, no. 8,
pp. 1106–1125, Aug. 2019.

[43] O. Makansi, E. Ilg, and T. Brox, “End-to-end learning of video super-
resolution with motion compensation,” in Proc. German Conf. Pattern
Recognit. Cham, Switzerland: Springer, 2017, pp. 203–214.

[44] M. S. M. Sajjadi, R. Vemulapalli, and M. Brown, “Frame-recurrent video
super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6626–6634.

[45] M. Haris, G. Shakhnarovich, and N. Ukita, “Recurrent back-projection
network for video super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 3897–3906.

[46] S. Hochreiter and J. J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Dec. 1997.

[47] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo,
“Convolutional LSTM network: A machine learning approach for pre-
cipitation nowcasting,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2015, pp. 802–810.

[48] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, “Detail-revealing
deep video super-resolution,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 4472–4480.

[49] S. Nah, S. Son, and K. M. Lee, “Recurrent neural networks with intra-
frame iterations for video deblurring,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 8102–8111.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2020.2995190

WANG et al.: COMBINING PROGRESSIVE RETHINKING AND COLLABORATIVE LEARNING: DEEP FRAMEWORK FOR IN-LOOP FILTERING 4211

[50] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, “Deep video super-resolution
network using dynamic upsampling filters without explicit motion
compensation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3224–3232.

[51] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 4161–4170.

[52] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, Jul. 2017, pp. 126–135.

[53] T. Wang, M. Chen, and H. Chao, “A novel deep learning-based method
of improving coding efficiency from the decoder-end for HEVC,” in
Proc. Data Compress. Conf. (DCC), Apr. 2017, pp. 410–419.

[54] S. Zhang, Z. Fan, N. Ling, and M. Jiang, “Recursive residual convolu-
tional neural network- based in-loop filtering for intra frames,” IEEE
Trans. Circuits Syst. Video Technol., vol. 30, no. 7, pp. 1888–1900,
Jul. 2020.

[55] X. Zhang et al., “Low-rank-based nonlocal adaptive loop filter for
high-efficiency video compression,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 10, pp. 2177–2188, Oct. 2017.

[56] Y. Zhang, T. Shen, X. Ji, Y. Zhang, R. Xiong, and Q. Dai, “Residual
highway convolutional neural networks for in-loop filtering in HEVC,”
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3827–3841, Aug. 2018.

Dezhao Wang (Student Member, IEEE) received
the B.S. degree in computer science from Peking
University, Beijing, China, in 2020, where he is
currently pursuing the master’s degree with the
Wangxuan Institute of Computer Technology. His
current research interest includes video and image
compression.

Sifeng Xia received the B.S. and master’s degrees
in computer science from Peking University, Beijing,
China, in 2017 and 2020, respectively. His current
research interests include deep learning-based image
processing and video coding.

Wenhan Yang (Member, IEEE) received the B.S.
and Ph.D. (Hons.) degrees in computer science from
Peking University, Beijing, China, in 2012 and 2018,
respectively. He is currently a Postdoctoral Research
Fellow with the Department of Computer Science,
City University of Hong Kong. His current research
interests include image/video processing/restoration,
bad weather restoration, and human–machine collab-
orative coding. He has authored more than 100 tech-
nical articles in refereed journals and proceedings,
and holds nine granted patents. He received the

IEEE ICME-2020 Best Paper Award, the IFTC 2017 Best Paper Award, and
the IEEE CVPR-2018 UG2 Challenge First Runner-Up Award. He was the
Candidate of the CSIG Best Doctoral Dissertation Award in 2019. He has
served as the Area Chair for IEEE ICME-2021 and the Organizer for IEEE
CVPR-2019/2020/2021 UG2+ Challenge and Workshop.

Jiaying Liu (Senior Member, IEEE) received the
Ph.D. degree (Hons.) in computer science from
Peking University, Beijing, China, in 2010.

She was a Visiting Scholar with the Univer-
sity of Southern California, Los Angeles, from
2007 to 2008. She was a Visiting Researcher with
Microsoft Research Asia in 2015 supported by the
Star Track Young Faculties Award. She is currently
an Associate Professor and the Peking University
Boya Young Fellow of the Wangxuan Institute of
Computer Technology, Peking University. She has

authored more than 100 technical articles in refereed journals and proceedings,
and holds 50 granted patents. Her current research interests include multimedia
signal processing, compression, and computer vision. She is a Senior Member
of CSIG and CCF. She has served as a member for Multimedia Systems
and Applications Technical Committee (MSA TC) and the Visual Signal
Processing and Communications Technical Committee (VSPC TC) in IEEE
Circuits and Systems Society. She received the IEEE ICME-2020 Best
Paper Award and the IEEE MMSP-2015 Top10% Paper Award. She has
also served as the Technical Program Chair for IEEE ICME-2021/ACM
ICMR-2021, the Publicity Chair for IEEE ICME-2020/ICIP-2019, the Area
Chair for CVPR-2021/ECCV-2020/ICCV-2019, and an Associate Editor for
IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY and JVCI (Elsevier).
She was the APSIPA Distinguished Lecturer from 2016 to 2017.

Authorized licensed use limited to: Peking University. Downloaded on April 14,2021 at 01:50:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

