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Controllable Sketch-to-Image Translation
for Robust Face Synthesis
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and Zongming Guo , Member, IEEE

Abstract— In this paper, we propose a novel controllable
sketch-to-image translation framework that allows users to
interactively and robustly synthesize and edit face images with
hand-drawn sketches. Inspired by the coarse-to-fine painting
process of human artists, we propose a novel dilation-based
sketch refinement method to refine sketches at varied coarse
levels without the need for real sketch training data. We further
investigate multi-level refinement that enables users to flexibly
define how “reliable” the input sketch should be considered for
the final output through a refinement level control parameter,
which helps balance between the realism of the output and its
structural consistency with the input sketch. It is realized by
leveraging scale-aware style transfer to model and adjust the style
features of sketches at different coarse levels. Moreover, advanced
user controllability in terms of the editing region control, facial
attribute editing, and spatially non-uniform refinement is further
explored for fine-grained and semantic editing. We demonstrate
the effectiveness of the proposed method in terms of visual
quality and user controllability through extensive experiments
including qualitative and quantitative comparison with state-of-
the-art methods, ablation studies and various applications.

Index Terms— Face synthesis, sketch-to-image translation, user
control, image editing.

I. INTRODUCTION

HAND-DRAWN sketches are highly succinct yet expres-
sive representations for humans to depict real-world

objects. At the same time, sketches are easy to draw and
edit, especially with the popularity of touch screen devices.
Therefore, sketching has become one of the important means
for people to show their ideas. Accordingly, sketch-based
image synthesis has been studied a lot for generating and
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Fig. 1. Our model allows users to synthesize and edit facial images based on
hand-drawn sketches. (a) Our model works robustly on (from top to bottom)
edge map, fine sketch, rough sketch and poor sketch by setting refinement
level � adaptive to the quality of the input, i.e., higher � for poorer sketches.
(b) Our model enables users to select facial attributes such as (from left to
right) race, gender, and hair color. (c) Users can provide masks to specify the
editing regions of an image. (d) Our model supports spatially non-uniform
sketch refinement for more flexible controllability. In this case, the red region
uses a lower refinement level to preserve the hair details.

editing photo-realistic images based on the structural guidance
of sketches. It allows normal users to create novel images
or modify photos by simply drawing several lines as shown
in Fig. 1, without the need to carefully handle the complex
photos themselves.

Since pairs of hand-drawn sketches and photos are expen-
sive and tedious to collect, previous methods [1]–[3] typically
use edge maps directly extracted from the photos as a substi-
tute for real sketches during training, which are referred to as
edge-based models. These methods have achieved unanimous
success in edge-to-image translation. However, due to the huge
structural discrepancy between the sketches and edge maps,
they cannot adapt to sketch inputs and often generate very
poor images (e.g., Fig. 10(b)-(d)), which greatly restricts their
application in practice. To solve this issue, some works study
edge pre-processing [2] or collect real sketch datasets [4], [5]
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Fig. 2. Illustration of the sketch-to-image translation spectrum. Our model differs from existing models in that we allow users to define how “reliable”
the input sketch should be considered for the final output, thus balancing between sketch faithfulness and output realism, which has not been well studied
in previous approaches. In addition, as edge-based models, ContexualGAN [8] and our model realize realism without real sketch data for training, and our
model further achieves controllability and efficiency.

to train sketch-based models [6], [7]. However, sketches of
different users often have significantly varied appearances, far
beyond the scope of the existing datasets, demanding higher
generalizability and robustness of the model. Therefore, it has
a high value to investigate adapting edge-based models to
hand-drawn sketches.

Recently, ContextualGAN [8] provides an intuitive solution.
It learns a joint edge-image manifold and searches the nearest
neighbor to the input sketch within the manifold according to
its edge part. Then, the accompanying retrieved image part has
both photo-realistic properties and structural consistency with
the sketch. Unlike the standard edge-based model that strictly
hinges on the input sketch, ContextualGAN only uses the input
as a weak reference as illustrated in Fig. 2. However, neither
model provides users with the controllability on the sketch
faithfulness, i.e., to what extent we should stick to the given
sketch? Failing to consider such controllability, the searched
result by ContextualGAN can sometimes be too far from the
input as we will show in Fig. 11, leaving little room for users to
calibrate between freedom of sketching and the overall image
realism: a key desirable feature for interactive photo synthesis.

Given all this, we are motivated to study a new problem of
controllable sketch-to-image translation that works robustly on
various hand-drawn sketches without the need for collecting
real sketch training data. The key idea is to refine the sketches
to match the fine structures of the edge maps and to provide
users with a control parameter to freely adjust the refinement
level to realize the aforementioned controllability. Fig. 1(a)
intuitively displays our feature: supporting users to navigate
across different refinement levels and choose the most ideal
one to adapt a single model to extremely diverse sketches.
There are two challenges to this problem. First, without real
sketches, it is quite impossible to directly learn the mapping
between sketches and edge maps. Second, for controllability,
we must build more complicated multi-level mapping, which
makes the problem more difficult.

In this paper, we present a novel robust and controllable
sketch-to-image translation framework to meet these chal-
lenges. As inspired by the coarse-to-fine painting process of
artists, we model the rough sketches as a drawable region
covering the fine edges to specify where the final lines

should lie. Then, the approximate mapping between sketches
and edge maps can be well established by learning a translation
from the drawable region, created by edge dilation, to the
original edge maps. The coarse level of the sketches can be
naturally controlled and adjusted by modifying the dilation
radius. With rough sketches at various coarse levels, the multi-
level mapping is built. Finally, we propose to leverage scale-
aware style transfer to model the style features of coarse-level
sketches and remove such dilation-based styles to obtain the
refined output. Our model only uses color images and their
extracted edge maps for training and can work robustly on
diverse real-world sketches during testing. It can also serve as
a plug-in for other edge-based models, providing refinement
for their inputs to boost the performance. Fig. 1(a) shows the
overall performance of our model on varied sketches.

Compared with our previous work [9], we further explore
more advanced user controllability in terms of facial attribute
editing, and spatially non-uniform refinement. First, we expand
our model with facial attribute control, which supplements
the controllability over features that cannot be captured by
sketch images such as the hair colors as shown in Fig. 1(b).
Then, we introduce a mask into our framework to specify the
editing region as in Fig. 1(c). Moreover, we extend our model
to spatially non-uniform refinement by expanding the scalar
refinement level to a refinement level map and re-design the
corresponding dilation operation and style transfer operation.
It enables users to preserve important structural details while
refining the raw sketches, as shown in Fig. 1(d). In addition,
thorough experiments are conducted to clarify the effectiveness
of the proposed method, including additional comparison
results for both quantitative and qualitative evaluation, and
results for facial attribute control and spatially non-uniform
refinement level control. Our contributions are summarized as
four-folds:

• We explore a new problem of controllable sketch-to-
image translation for face image synthesis, which adapts
edge-based models to real-world hand-drawn sketches,
where the users have the freedom to balance the sketch
faithfulness with the output realism.

• We propose a sketch refinement method using coarse-to-
fine dilations, inspired by the painting process of artists,
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which bridges the gap between coarse-level sketches and
fine-level edges.

• We propose a style-based network architecture, which
successfully learns to refine the input sketches into
diverse and continuous levels.

• We present advanced user controllability with respect to
facial attribute editing, editing region control and spatially
non-uniform refinement.

The rest of this paper is organized as follows. Section II
reviews related works in image-to-image translation, sketch-
based image synthesis and image inpainting. In Section III,
we elaborate on the key idea of dilation-based sketch refine-
ment and the proposed controllable sketch-to-image translation
framework. Section IV presents how we incorporate new
features of editing region control, facial attribute control and
the spatially non-uniform sketch refinement into the proposed
framework. In Section V, we verify the superiority of the
proposed method through comprehensive experiments and
comparisons with the state-of-the-art image-to-image transla-
tion methods. Finally, we conclude our work in Section VI.

II. RELATED WORK

A. Image-to-Image Translation

The goal of image-to-image translation is to transform an
image between a source domain and a target domain. It is first
raised by Isola et al. [1], where a powerful framework pix2pix
is designed to learn mappings between paired data. Subsequent
researches improve pix2pix [1] in terms of the increase in
image resolution [10], multi-modal translation [11] and multi-
domain translation [12], [13]. In [14], spatially-adaptive nor-
malization is proposed to better inject the conditional image
information in a multi-scale manner. Later, Zhu et al. [15] put
forward improved semantic region-adaptive normalization to
introduce styles in a local manner for semantic face editing.
Another important research direction lies in learning mappings
between unpaired data, where the pioneering work of Cycle-
GAN [16] presents a cycle consistency constraint to provide
practical pixel-level loss. Based on this idea, UNIT [17] and
MUNIT [18] assume a shared latent space across different
domains, which diversify the generated images. A contextual
loss [19] is proposed to provide more robust feature-level cycle
consistency.

B. Sketch-to-Image Translation

Edge-based sketch-to-image translation methods
[1], [20], [21] use edge maps to train the model to avoid
the tedious collection of sketches. These methods can be
further adapted to image editing tasks by introducing a mask
to specify the editing region of a given photo [2], [3], [22].
The main issue for the edge-based models is that they are hard
to generalize to real-world sketches, which have significant
structural discrepancy from the edge maps. Although some
sketch datasets [4], [5] have been collected for the training
of sketch-based models [6], [7], current datasets are far from
meeting the actual diversified research needs.

To solve this issue, Lu et al. [8] propose ContextualGAN
to search the nearest neighbor of the given sketch in an edge

Fig. 3. Rough sketch (left) to fine sketch (middle). Lines in the red boxes are
enlarged and overlayed on the right. Rough sketches form a cyan drawable
region to indicate where the fine sketches should lie. The red arrow points to
the new structures inferred from the sketch. Copyright: Krenz Cushart [33].

manifold learned by GANs, which avoids exactly following
the sketch and generates plausible results. Our method shares
the same goal as ContextualGAN to adapt edge-based models
to sketch inputs but further takes the controllability into
account, allowing users to select the degree of refinement.
Moreover, the iterative optimization-based nearest neighbor
search process is computationally expensive. By comparison,
the proposed feed-forward model provides efficient, flexible
and user-friendly face synthesis and editing tools.

C. Image Inpainting

Image inpainting investigates the content reconstruction
within a region of an image specified by a mask. It provides
a potent tool for image editing such as removing unwanted
objects and modifying image structures or details. Traditional
exemplar-based models [23]–[27] fill the masked region with
the pixels in the known region, which cannot synthesize
unseen content. Recently, data-driven models such as Context
Encoder [28] and DeepFill [29], [30] leverage large-scale
data to train inpainting networks, which achieves intelli-
gent semantic-aware completion. Follow-ups improve Context
Encoder in terms of high-resolution image inpainting [31],
free-form masks [30], and output diversification [32].

III. CONTROLLABLE SKETCH-TO-IMAGE TRANSLATION

The goal of our controllable sketch-to-image translation
problem is to design and train a novel sketch refinement
network G without using sketch data. G revises the inaccurate
structures of the hand-drawn sketches to match those of the
edge maps so that the refined sketches can be smoothly fed
into existing edge-to-image translation models F to generate
photo-realistic images. In other words, G aims to adapt F to
the hand-drawn sketches. To take a step further, we condition
G by a key parameter � ∈ [0, 1] to control the refinement
level: Users can apply stronger refinement by increasing �.

A. Sketch Refinement via Dilation

Our key idea is to model the rough sketch as a dilated
drawable region and to shrink and refine it to get fine sketches,
following the coarse-to-fine painting process of human artists.
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Fig. 4. Framework overview. A novel sketch refinement network G is proposed to refine the rough sketch S� modelled as a dilated drawable region to match
the fine edge Sgt . The refined output Sgen is fed into a pretrained edge-based model F to obtain the final result Iout . A parameter � is introduced to control
the refinement level. It is realized by encoding � into the style codes and performing a style-based adjustment over the feature map fin of the convolutional
layer of G to remove the dilation-based styles.

Fig. 5. Rough sketch generation. (a) Sgt . (b) Deformed edges with lines
discarded. (c) �(Sgt ). (d) Overlay red Sgt above �(Sgt ) with discarded lines
tinted in cyan.

Fig. 3 shows an example of a rough sketch, which contains
redundant lines. These lines are usually drawn at the beginning
of the painting to roughly determine the position and shape of
the object. Then artists gradually merge lines, add details and
fix errors to refine the sketches. If we overlay the fine sketch
on the rough sketch, we can find that the redundant lines form
a drawable region (cyan region in Fig. 3) covering the final
lines. Thus, essentially, the coarse-to-fine painting process is
to progressively shrink and refine the drawable region.

Based on the observation, sketch refinement can be naturally
modelled as an image-to-image translation problem between
rough sketches and fine sketches, as illustrated in Fig. 4. For
our edge-based model, we use the edge map Sgt extracted
from the face image Igt as the fine sketch, while its rough
counterpart is defined as a drawable region �(Sgt ) (denoted
as S� in Fig. 4) covering Sgt with � the proposed novel dilation
operation. Next, we will introduce the proposed dilation-based
drawable region generation algorithm, which automatically
synthesizes �(Sgt ) from Sgt to build our training data.

Rough Sketch Data Generation: Fig. 5 illustrates the
pipeline of the proposed drawable region generation. The key
idea is to use a dilation operator in mathematical morphology
for expanding distorted and incomplete edges into drawable
regions. Specifically, we first randomly deform the fine edges
to simulate the structural inaccuracies in hand-drawn sketches.
To ensure that each ground truth edge is completed covered by
its distorted and dilated result, the offset of each pixel after

Fig. 6. Sketch refinement at different �. (a) Dilated Sgt using different r .
(b) Refinement results by pix2pix [1] trained separately for each r . (c) Refine-
ment results by our proposed single model with multi-level control.

deformation is limited to less than r , with r the radius of
dilation. Furthermore, as pointed by the red arrow of Fig. 3,
artists will also infer and add new structures during refinement.
To this end, we further discard partial lines by removing
random patches from the full sketches. Therefore, our net-
work is motivated to learn to complete the missing structures
(e.g., cyan lines in Fig. 5(d)). Finally, dilation is applied
to generate sufficient training data {�(Sgt), Sgt }. Note that
deformation and discard are only applied during the training
phase.

Intuitively, wide drawable regions provide more room
for refinement, corresponding to a higher refinement level.
In Fig. 6(b), we verify this statement via a simple experiment,
where for each dilation radius we train a pix2pix [1] to
map �(Sgt ) to Sgt . The trained model effectively refines an
unseen hand-drawn sketch, and as the radius grows, the degree
of refinement also increases. This property suggests a good
potential for convenient refinement level control. The next
section introduces how we integrate multi-level refinement into
a single model, which achieves both practical controllability
and more robust performance, as illustrated in Fig. 6(c).
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B. Controllable Sketch-to-Image Translation

In our sketch-to-image translation task, we have a hand-
drawn face sketch image S to serve as shape guidance for the
model to infer a corresponding photo-realistic face image I .
Users adjust the refinement level determined by a parameter �,
where a larger � will make the model more intensely revise
the lines in S to generate realistic facial structures.

Our training requires no hand-drawn sketches. Instead,
we use edge maps Sgt of the real-world face photos Igt and
their corresponding drawable region �(Sgt) to train our model.
As analyzed in Sec. III-A, the refinement level is positively
correlated with the dilation radius r . Thus, to incorporate level
control, we introduce � in the drawable region generation as
S� = ��(Sgt ) by using � to determine the value of r , where
r = �R and R is the maximum allowable radius. Then, our
task is simply to train G to map S� to Sgt with conditional
�, as illustrated in Fig. 4. Specifically, G accepts S�, with
middle layers adjusted by �, and produces a four-channel
tensor: the RGB image Igen and the refined one-channel sketch
Sgen , i.e., (Igen, Sgen) = G(S�, �). Here, the additional output
Igen provides perceptual guidance for the edge generation and
serves as the final image output if F is unavailable, meaning
that G can be used independently. Finally, a discriminator D
is used to improve the results via adversarial training.

1) Style-Based Refinement Level Control: To learn robust
mappings from S� at different coarse levels to Sgt using a
single G, our key idea is to regard S� as a stylish version of Sgt

with a style associated with the proposed dilation operation.
Sketches at different coarse levels have different styles. Then
our task becomes to destylize S� back to Sgt . Inspired by
AdaIN-based style transfer [34] and image generation [35],
we propose an effective yet simple style-based module to
accomplish it. AdaIN [34] models the style as style parameters
of the mean μ and standard deviation σ of the feature f and
transfers the style via distribution scaling and shifting:

f′ = AdaIN(f, fs) = σ(fs)
( f − μ(f)

σ (f)

) + μ(fs), (1)

where f is first instancely normalized using its channel-wise
mean μ(f) and standard deviation σ(f), and then denormalized
by matching these style parameters to those of the style
reference fs . Note that the same operation can also be used for
its reverse process, i.e., destylization. Specifically, to obtain
the original f, f′ should also be first normalized and then
denormalized to match the style of f. In our problem, the style
parameters are related to the condition �. Therefore, as shown
in Fig. 4, � is first encoded into a global style code via a multi-
layer perceptron, which is then mapped to local style mean
μ� and variance σ� via two affiliated linear layers within each
middle convolution layer of G for AdaIN-based destylization:

fout = σ�

( fin − μ(fin)

σ (fin)

) + μ�, (2)

where fin and fout are input and output features, respectively.
2) Loss Function: G is tasked to approach the ground truth

photo and sketch:
Lrec = EIgt ,�[‖Igen − Igt‖1 + ‖Sgen − Sgt‖1

+ ‖Iout − Igt‖1], (3)

where Iout = F(Sgen) is the final output in our prob-
lem. By additionally consider the quality of Iout , G can be
well adapted to F in an end-to-end manner. Perceptual loss
Lperc [36] to measure the semantical similarity of photos is
further used:
Lperc = EIgt ,�[

∑

i

λi (‖�i (Igen) − �i (Igt )‖2
2

+ ‖�i (Iout ) − �i (Igt )‖2
2)], (4)

where �i (x) is the feature of x in the i -th layer of VGG19 [37]
and λi is the layer weight. Finally, we use hinge loss as our
adversarial objective function:

LG = −EIgt ,�[D(Igen, Sgen)], (5)

LD = EIgt ,�[ReLU(τ + D(Igen, Sgen))]
+ EIgt [ReLU(τ − D(Igt , Sgt ))], (6)

where τ is a margin parameter.

IV. ATTRIBUTE AND SPATIAL CONTROL

A. Editing Region Control for Sketch-Based Image Editing

In this section, we introduce a mask into our framework
to specify the editing region. As shown in Fig. 1(c), it allows
users to further refine the local regions of a synthesized image,
or to edit the specified region of a given real-world photo, such
as adding sunglasses and removing bangs.

In the image editing task, a mask M to indicate the editing
region and an image Iin = Igt � (1 − M) to be edited
are given as additional inputs, where � is the element-wise
multiplication operator. A hand-drawn sketch S serves as soft
structural guidance in the masked region, which will be refined
by the model according to the refinement level �.

Similar to the sketch-to-image translation task, a masked
drawable region S� = ��(Sgt ) � M is used for training with
no real sketches required. G is tasked to map S� back to Sgt

based on the contextual condition Iin , the spatial condition M
and the level condition �. As illustrated in Fig. 7, Iin , S� and
M are concatenated and fed into G, which outputs Igen and
Sgen , i.e., (Igen, Sgen) = G(Iin , S�, M, �). Finally, F yields
the final image output Iout based on Iin , Sgen and M .

In terms of the loss function, Lrec and Lperc take the same
form as in Sec. III-B. The only adaptation is that D takes M
as an additional input to pay more attention to the realism of
the masked region:

LG = −EIgt ,M,�[D(Igen, Sgen, M)], (7)

LD = EIgt ,M,�[ReLU(τ + D(Igen, Sgen, M))]
+ EIgt ,M [ReLU(τ − D(Igt , Sgt , M))]. (8)

B. Attribute Control

Although sketches are highly expressive, they cannot pro-
vide information other than structural cues, such as the impor-
tant color cues. Some sketches can even be too abstract to
provide accurate structural cues, such as the gender in the
poor sketch in Fig. 1(a). To tackle this problem, in this section,
we expand our framework with facial attribute control.
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Fig. 7. Illustration of editing region control and facial attribute control. Editing region control: An additional mask M is provided to specify the area to
modify. G is fed with M and the masked photo Iin to infer the information in the masked area. D learns to distinguish between real and fake images/sketches
in the masked area. Facial attribute control: Our model allows users to control the facial attribute via a class label c. c is concatenated to � and is encoded
into the style code to adjust the output of G . An additional classifier C learns to minimize the classification error for the label c.

Our key idea is to regard facial attributes as a kind of face
style and naturally integrate them into our proposed style-
based refinement level control method. Specifically, we first
extract facial attributes from Igt as a one-hot vector c, where
each element corresponds to one attribute with 1 indicating
the image satisfies this attribute and 0 otherwise. As shown
in Fig. 7, the concatenation of c and � is then fed into the
multi-layer perceptron to obtain the global style code for the
AdaIN-based style transfer. Finally, we employ an auxiliary
classifier C [38] to predict the facial attribute of the generated
images, which should approach the input c. Therefore, apart
from the original losses, a new cross-entropy loss is proposed:

Lcls = EIgt ,�,c[−cᵀ log[C(Igt )] − cᵀ log[C(Igen)]], (9)

where Igen is the RGB image output of G(S�, �, c) and cᵀ is
the transposed c. Intuitively, C is trained to predict the ground
truth c from Igt , and G tries to generate Igen with the correct
attributes to make C give the right prediction.

C. Spatially Non-Uniform Refinement

The proposed method provides a global refinement over the
input sketches. However, the accuracy of the structure can
vary within one sketch, which demands spatially non-uniform
sketch refinement for more flexible controllability. Our model
can be easily extended to meet this demand. We expand the
scalar refinement level � to a refinement level map L, which
has the same resolution as the sketches. Then the spatially non-
uniform dilation operation and AdaIN operation are designed
to adapt to L, which can be directly applied during testing
without retraining the network.

To be specific, as shown in Fig. 8, we first enumerate � from
a set N� = {k/R|k = 0, 1, . . . , R} where R is the maximum
allowable dilation radius. Then, for each � ∈ N�, its weighting
map W� is calculated as

W� = max(1 − |� − L|R, 0), (10)

which selects the regions corresponding to the range of
[� − 1/R, � + 1/R] in L. Finally, the spatially non-uniform
dilation operation is defined as:

SL =
∑

�∈N�

W�S�. (11)

Fig. 8. Illustration of spatially non-uniform refinement level control. � is
enumerated (in this simple case, we use three levels �1 < �2 < �3). The
dilated sketches and style codes under �1, �2, �3 are fused by the weighted
average for spatially non-uniform dilation and adaptive instance normalization,
where the weights Ws are derived from the level map L .

Likewise, for spatially non-uniform AdaIN operation,
the style parameters {μ�, σ�} corresponding to � are expanded
to the same spatial resolution as the feature map fin . We denote
them as {μ�, σ �}. And the final style parameters for L are

μL =
∑

�∈N�

W�μ�, σ L =
∑

�∈N�

W�σ �, (12)

which are used for style transfer (Eq. (2)). Note that L is
always resized to match the resolution of fin .

Fig. 9 presents a toy example of the proposed spatially
non-uniform refinement, where a set of L̂ with horizontally
changing refinement levels is given. Our method successfully
optimizes the facial structures in the half designated area,
while leaving the other half area less refined. Note that our
previous conference model [9] can only handle the cases on
the diagonal (when �min = �max ). The proposed extension
provides more flexible controllability.
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Fig. 9. Results of spatially non-uniform refinement level control. (a) Input sketch and level map. (b) Spatially non-uniform dilation results using the level
map L̂ = (�max − �min)L + �min. (c) Sketch refinement results using L̂ . (d) Facial synthesis results using L̂ .

Fig. 10. Comparison with state-of-the-art methods on facial synthesis. (a) Input hand-drawn sketches. (b) BicycleGAN [11]. (c) pix2pixHD [10].
(d) pix2pix [1]. (e) Our results with � = 1. (f) pix2pixHD using our refined sketches as input. (g) Our results with facial attribute control and spatially non-
uniform refinement level control. Note that results in (g) requires additional attribute supervision. We only use it to demonstrate the improved controllability
over (e).

V. EXPERIMENTAL RESULTS

A. Implementation Details

1) Dataset: We use CelebA-HQ dataset [39] with edge
maps extracted by HED edge detector [40] to train our model.
The masks are generated as randomly rotated rectangular
regions following [2]. To make a fair comparison with Contex-
tualGAN [8], we also train our model on CelebA dataset [41].

2) Rough Sketch Generation: We implement dilation opera-
tions as convolutional layers with all-ones kernels of different
radii r , followed by data clipping into the range [0, 1]. Dilation
results using the fractional radii are obtained by interpolating
the results under the integer radii. We use the sampling
layer [42] to deform lines. We generate random offset maps
via Gaussian noises and resample the input sketch based on

the offset maps via the sampling layer. We randomly erase
0 ∼ 3 rectangular regions with height and width in [8, 24] to
discard lines, which can improve the robustness.

3) Network Architecture: The generator G takes the
Encoder-ResBlocks-Decoder architecture [36] with skip con-
nections [1] to preserve the low-level information. Each con-
volutional layer is followed by an AdaIN layer [34] except
the first and the last layer. The discriminator D follows the
SN-PatchGAN [30] to stabilize training. The classifier C
shares layers with D expect the last layer. Finally, we use
pix2pix [1] as our edge-based baseline model F .

4) Network Training: Our network is first trained with
� = 1 for 30 epoches, and then trained with uniformly sampled
� ∈ [0, 1] for 200 epoches. The maximum allowable dilation
radius R is 10 and 4 for CelebA-HQ [39] and CelebA [41],
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Fig. 11. Comparison with ContextualGAN [8] on facial synthesis and facial editing.

respectively. For all experiments, the weight for Lrec, Lperc,
LG , LD and Lcls are 100, 1, 1, 1 and 10, respectively.
Conv2_1 and conv3_1 layers of the VGG19 [37] weighted by
1 and 0.5 are used to compute Lperc. For hinge loss, we set
τ to 10.

B. Comparisons With State-of-the-Art Methods

1) Face Synthesis: Fig. 10 presents the visual comparison
on face synthesis with two state-of-the-art image-to-image
translation models: BicycleGAN [11] and pix2pixHD [10].
The two models and the baseline model F (pix2pix [1])
are trained on edge images and strictly follow the distorted
sketch inputs. Therefore, their results are poor and unrealistic.
By comparison, the proposed method only takes the sketch
as useful yet flexible constraints, and successfully revises the
inaccurate facial structures, striking a good balance between
realism and consistency with the sketch inputs. To verify the
effectiveness of our sketch-edge input adaption, we directly
use our refined sketches as the inputs of pix2pix-HD without
fine-tuning on it, and the visual quality of its results is signif-
icantly enhanced as shown in Fig. 10(f). Finally, we include
the results of our extended model with facial attribute control
and non-uniform refinement level control in Fig. 10(g). Such
extra condition information eases the training and inferencing
of the model, leading to more realistic results with less
artifacts.

ContextualGAN [8] is the most related model to ours
that treats sketch inputs as soft guidance. Fig. 11(a) further
presents a comparison with it on CelebA dataset. Although
ContextualGAN synthesizes realistic faces, it fails to preserve
important facial attributes provided by user sketches such as
the beard. The reason is that its learned edge-image manifold
may collapse for infrequent attributes and at the same time,
the search result can sometimes travel too far from the input
during optimization. By comparison, our model achieves bet-
ter structural consistency. Moreover, ContextualGAN requires
costly iterative optimization for the nearest neighbor search,
which is less efficient than the proposed feed-forward method.
Specifically, our implemented ContextualGAN requires about
7.89 s per 64 × 64 image with a GeForce GTX 1080 Ti GPU,
while our model only takes about 12 ms per image.

TABLE I

USER PREFERENCE RATIO ON FACE SYNTHESIS

Fig. 12. Visual comparison with state-of-the-art methods on simulated poor
CelebA-HQ sketches. Top row, from left to right: The original CelebA-HQ
facial image and its edge map, the simulated poor sketch by deforming the
edge map, facial synthesis results by BicycleGAN [11] and pix2pixHD [10].
Bottom row, from left to right, our facial synthesis results with � = 0.0, 0.2,
0.4, 0.6, 0.8, 1.0, respectively.

To better understand the performance of the compared
methods, we conduct quantitative evaluations on both hand-
drawn sketches and synthetic data. First, a user study is
conducted on real data, where we collected a total of 38 hand-
drawn sketches and asked participants to choose the best result
to balance the output realism and the sketch faithfulness.
Finally, a total of 20 subjects participate in this study and a
total of 760 selections are tallied. The preference ratio is used
as the evaluation metrics. It measures the percentage of times
a method is selected in all its related selections. According
to the definition, if a method performs significantly better
than all other methods, its mean preference ratio can reach
1.0. Table I demonstrates the preference scores, where the
proposed method receives notable preference for both sketch
detail preservation and output naturalness.

In addition to the real data, we also generated 100 distorted
CelebA-HQ edge maps as pseudo sketches for quantitative
evaluation. Table II reports the perceptual loss and Fréchet
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TABLE II

RECONSTRUCTION QUALITY OF THE COMPARISON METHODS ON SIMULATED POOR CELEBA-HQ SKETCHES

Fig. 13. Comparison with state-of-the-art methods on facial editing. (a) Input photos, masks and sketches. (b) DeepFillv2 [30]. (c) SC-FEGAN [3]. (d) Our
results with � = 0. (e) Our results with � = 1. (f) SC-FEGAN using our refined sketches as input.

inception distance (FID) [43] between the synthesized images
and the original photos, which measure how well a method
revises the inaccurate structures and the output realism, respec-
tively. Our method achieves the best scores in both metrics.
Moreover, an evident improvement is observed as the refine-
ment level � starts to increase. Then, very large dilation radii
will eliminate important details, thus the performance slightly
drops when � > 0.6. The visual result in Fig. 12 confirms this
conclusion. Our method is quite robust to flawed structures
than the compared methods. Excessive refinement will remove
some details in the original image, such as the degree of smile.

2) Face Editing: In Sec. IV-A, we extend our method to face
editing. Fig. 13 presents the visual comparison on face editing
with two state-of-the-art inpainting models: DeepFillv2 [30]
and SC-FEGAN [3]. The released DeepFillv2 uses no sketch
guidance, which means the reliability of the input sketch is
set to zero (� = ∞). Despite being one of the most advanced
image inpainting models, DeepFillv2 fails to restore facial
structures well, indicating the necessity of user guidance.
Meanwhile, SC-FEGAN is a representative face editing model
with edge guidance. However, it strictly synthesizes facial
structures following rough sketches and generates unrealistic
details. Similarly, the poor results of the base model F
in Fig. 13(d) also suggest the need for sketch refinement.
By comparison, our method successfully revises the inaccurate
structures and generates more natural face details. Finally, as in
the face synthesis task, we also test our refined sketches on the
other edge-based model SC-FEGAN, and observe an obvious
improvement without any fine-tuning.

We have also adapted ContextualGAN to the face edit-
ing task through additionally considering the similarity with
the known region of the photo when searching the nearest
neighbor. Fig. 11(b) compares the proposed method with
ContextualGAN. It can be seen that ContextualGAN generates
abrupt inpainting boundaries. The reason might be that its
learned manifold fails to cover the real facial distribution and
thus it cannot search for a good solution to match the known
region. As a comparison, the proposed method synthesizes
more natural faces.

C. Ablation Study

To analyze the effect of each module of the proposed
method on sketch refinement, we perform ablation studies in
this section.

1) Rough Sketch Modelling: First of all, we study our
key dilation-based rough sketch generation, including three
operations of line deformation, discard and dilation. Fig. 14
compares the effect of each operation. Dilation operation
makes the network infer local facial details such as eyes,
but it is not enough to force the network to revise structure
errors. Line deformation helps the network learn to refine
facial structures. Together with line discard, the network starts
to repair missing structures. Finally, compared with learning a
single-level refinement, training a single model on multi-level
sketch refinement further enhances the overall performance,
likely due to the fact that coarse-level refinement can benefit
from the learned more robust fine-level features.
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Fig. 14. Effect of rough sketch models. (a) Input sketch and generated
image without refinement. (b)-(d) Refinement results using different rough
sketch models. (b) Baseline: edge dilation with a fixed single dilation
radius. (c) Baseline + line deformation. (d) Baseline + line deformation
and discarding. (e) Edge dilation with multiple radii + line deformation and
discarding.

Fig. 15. Effect of adaptation to F .

2) Adaptation to F: In Eqs. (3)(4), we adapt G to F by
considering the reconstruction quality of the final output Iout .
To examine the effect of such adaptation, we compare the
results with and without the loss terms related to Iout in our
loss function in Fig. 15. Without adaptation, the network is still
able to refine the sketches, but the refined lines are obscure and
light-colored, which cannot be recognized by F to generate the
corresponding facial structures. It is likely because, without
adaptation, the sketch output is only constrained by a pixel-
level reconstruction loss, which is not robust since the black
pixels only cover an extremely low proportion of the sketch
image. The proposed adaptation serves as a kind of perceptual
loss [36] for sketches, which guides G to yield lines that are
fully perceivable by F . Therefore, our full model produces
distinct sketches and clear facial photos.

3) Refinement Level Control: In Fig. 16, we present a com-
parison with three label conditioning strategies for refinement
level control: label concatenation, controllable resblock [44]
and the proposed style-based control. Label concatenation
produces weird multiple lines for each edge. Controllable
resblock yields clear structures but coarse facial details. Our
style-based control is superior to the compared strategies for
both natural structures and vivid facial details.

D. Fine-Grained Control

In Fig. 17, we present the new feature of fine-grained
control provided by our extended model. Compared with our
base model [9] in Fig. 17(b), by introducing facial attribute
labels as additional guidance to relieve ambiguity, it becomes
easier for our model to learn the challenging coarse-to-fine
mapping. Therefore, the overall performance is enhanced as
shown in Fig. 17(c). Our method generates realistic faces
with cleaner facial structures. Furthermore, it enables users

Fig. 16. Visual comparison on label conditioning strategy.

TABLE III

ACCURACY OF FACIAL ATTRIBUTE CLASSIFICATION
WITHOUT AND WITH ATTRIBUTE CONTROL

to adjust facial attributes to better match the input sketches.
For example, without facial attribute labels, our model will be
biased towards synthesizing female faces under large dilation
due to the ambiguity and imbalanced distribution of the
training data. This problem is well solved by manually setting
the conditional attributes as shown in Fig. 17(d). Finally, our
extended model allows users to apply spatially non-uniform
refinement. In Fig. 17(e), our method largely corrects the
inaccurate facial structures while preserving key features such
as the raised corners of the mouth and eyebrows, which makes
the synthesized faces more distinctive.

1) Quantitative Evaluation: To quantitatively evaluate the
effectiveness of the facial attribute control, we report the
accuracy of facial attribute classification. Specifically, we syn-
thesize face images Igen from the edge maps of 1,000 testing
images in CelebA-HQ [39] with our base model and the
extended model with attribute control (AC). For the extended
model, the ground truth facial attributes are provided as inputs.
The auxiliary classifier C is used to predict the facial attributes
from Igen , and the classification accuracies in terms of hair
color, race, aged and gender under different refinement levels
are reported in Table III. It can be seen that our extended
model with AC outperforms the base model, and the advantage
becomes more evident in attributes that cannot be sufficiently
depicted by the sketches alone like hair color and race. Inter-
estingly, as the refinement level increases, the classification
accuracy of the base model drops since the dilated edges
become less reliable. By comparison, the accuracy of our
extend model improves because the model has more space
to adjust the edges to match the target attributes.

Next, we investigate whether our extended model can adjust
sketches spatially non-uniformly according to the label map L.
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Fig. 17. Effect of facial attribute control and spatially non-uniform refinement level control. (a) User inputs. (b) Results by our base model [9]. (c) Results
with class labels c1 where c1 is set to match the attributes in (b). (d) Results with class labels c2 where we manually select c2 that best matches the original
sketches. (e) Results with class labels c2 and level map L to preserve local details in the input sketches. (f) Visualized level map L . The red (white) region
in L uses a lower (higher) refinement level.

Fig. 18. Facial attribute control on edge maps from CelebA-HQ dataset.

TABLE IV

MEAN SQUARED ERROR OF THE RECONSTRUCTED EDGE MAPS

For simplicity, we use a binary label map where its left
half part is all zeros, and the right half part is all ones.
Then, we refine the edge maps of 1,000 testing images in

Fig. 19. Applications: cartoon-to-photo translation.

CelebA-HQ [39] using our extended model with such label
map. The mean squared errors (MSE) between the resulting
Sgen and the original edge maps in the left part and the right
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Fig. 20. Applications. From top to bottom, from left to right: object removal, rejuvenation and facial attribute editing.

part are reported in Table IV. The error is larger in the right
part, meaning the model successfully adjusts the edges more
drastically in this region. We further report the MSE using
an all-one L and an all-zero L for reference, which is found
to be matched with the MSE using the non-uniform L in the
corresponding regions. It verifies that the refinement level of
each position matches L’s value in the corresponding position.

E. Applications

Fig. 18 presents the results of controlling facial attributes
over edge maps of real-world face images, which realize facial
attribute editings such as modifying the hair color or age.

In addition to the fine edge maps and rough sketches, our
method can be applied to cartoons, which usually contains
exaggerated facial structure such as big ears and thin necks.
Fig. 19 presents two examples of cartoon-to-photo translation,
where our method shows certain robustness.

Fig. 20 shows three applications of facial editing. First,
our method can remove large occlusions using user guidance.
Second, it allows users to perform “plastic surgery” digitally,
including removing wrinkles and lifting the eye corners.
Finally, our method can also edit fine-grained facial attributes
such as adding glasses and further specifying their types.

Besides facial images, we further present our results on
the handbag and shoe datasets [45], [46] and the Sketchy
dataset [4] in Fig. 21. It can be seen that our method effectively
designs novel handbags and shoes, and synthesizes realistic
shoes from various real-world hand-drawn sketches.

F. Limitation and User Interaction

The robustness of our method to structural errors is limited
by the maximum allowable radius R. Since large dilation
will merge line details, make the coarse-to-fine mapping more
ambiguous and difficult to learn, R cannot increase arbitrarily.
Then, when the structural errors are large than R, our method
cannot revise them. To address this problem, one possible
solution is user interaction. Instead of synthesis in one step,

Fig. 21. Performance on other dataset. (a) Fashion design on handbag
dataset [45] and shoe dataset [46]. (b) Shoe synthesis on Sketchy dataset [4].

Fig. 22. User interaction for error revision.

users can always modify the input sketch and the temporary
output until satisfied, as shown in Fig. 22.

VI. CONCLUSION

In this paper, we raise a new problem of controllable
sketch-to-image translation, to adapt edge-based models to
hand-drawn sketches, and present a novel dilation-based sketch
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refinement framework. We show that the proposed drawable
region modelling can effectively bridge the fine edges and
rough sketches. An advantage is that it allows our method
to work robustly on various sketches without the need for
collecting real sketch data. We further demonstrate advanced
user controllability in terms of refinement level, facial attribute
and regional editing can be accomplished by the proposed
comprehensive style-based feature modulations. Our method
improves the generalizability and robustness of sketch-based
image synthesis and editing. The network’s ability to infer
details from the dilated edges suggests a potential of building
the relationship of two domains by degrading them into
a shared rough domain, which might benefit more gen-
eral research areas such as domain adaptation and transfer
learning.
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