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Sparse Gradient Regularized Deep Retinex Network
for Robust Low-Light Image Enhancement
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Abstract— Due to the absence of a desirable objective for low-
light image enhancement, previous data-driven methods may
provide undesirable enhanced results including amplified noise,
degraded contrast and biased colors. In this work, inspired by
Retinex theory, we design an end-to-end signal prior-guided layer
separation and data-driven mapping network with layer-specified
constraints for single-image low-light enhancement. A Sparse
Gradient Minimization sub-Network (SGM-Net) is constructed
to remove the low-amplitude structures and preserve major edge
information, which facilitates extracting paired illumination maps
of low/normal-light images. After the learned decomposition, two
sub-networks (Enhance-Net and Restore-Net) are utilized to pre-
dict the enhanced illumination and reflectance maps, respectively,
which helps stretch the contrast of the illumination map and
remove intensive noise in the reflectance map. The effects of
all these configured constraints, including the signal structure
regularization and losses, combine together reciprocally, which
leads to good reconstruction results in overall visual quality. The
evaluation on both synthetic and real images, particularly on
those containing intensive noise, compression artifacts and their
interleaved artifacts, shows the effectiveness of our novel models,
which significantly outperforms the state-of-the-art methods.

Index Terms— Low-light enhancement, Retinex model, sparse
gradient regularization, residual dense network, denoising.

I. INTRODUCTION

IN LOW-LIGHT conditions, the captured images face sev-
eral kinds of degradations, including low visibility, low con-

trast and intensive noise. With more advanced shooting devices
and specialized photographic techniques, some of these degra-
dations may be mitigated. However, the presence of noise can
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be hardly avoided by upgrading hardware facilities. In low-
light conditions, there is insufficient amount of light reaching
camera sensors, thus their output usually is contaminated by
the intrinsic noise in the system. Using longer exposure time
helps remove noise to some extent and leads to a higher signal-
to-noise ratio (SNR). However, it also causes new problems,
such as over-exposure and motion blur. Therefore, low-light
enhancement in the sight of software is expected. It can
effectively enhance visibility and visual quality of the input
image. Furthermore, the enhanced visibility makes the scenes
and objects more highlighted and provides a better starting
point for high-level computer vision tasks (i.e. object detection
and recognition).

It is non-trivial to enhance low-light images, especially
in the presence of intensive noise, which makes it difficult
to adjust the normal image signals. Furthermore, once low-
light images are compressed, even with a high compression
ratio, large quantization errors and the related visual artifacts,
including blockiness and truncated random noise, will appear.
Therefore, low-light image enhancement needs to improve the
low visibility, suppress the intensive nosies and compression
artifacts, and stretch the low contrast.

In the past decades, many researchers have been dedi-
cated to low-light image enhancement. The earliest meth-
ods directly amplify the illumination globally. Later on,
histogram equalization (HE) methods stretch the dynamic
range of an image [1], [2]. Their results may present unde-
sirable illumination with amplified intensive noise. Retinex
theory-based methods [3] decompose an image into two
components – reflectance and illumination, process these two
components separately, and recombine them to obtain the
final enhanced results. Several filters [4]–[6] are designed for
that decomposition. Many works [7]–[9] impose priors on
the decomposed illumination and reflectance. In [10], [11],
the Retinex model is further extended to a robust one with
an explicit defined noise term, which benefits developing
joint low-light enhancement and noise suppression methods.
Simultaneously, in [12], a new theoretical model, i.e. the
absorption light scattering model, is proposed to improve
the quality of low-light images using atmospheric light and
transmittance. Recently, there are some new approaches using
deep networks to facilitate low-light enhancement. In [13],
Chen et al. proposed a learning-based pipeline to produce the
processed normal-light images from low-light RAW format
images. In [14]–[17], deep networks are built to enhance
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processed low-light images. Lore et al. [14] proposed a deep
auto-encoder to perform contrast enhancement and denoising.
In [15], local and global information is jointly captured to
adjust the illumination of the input low-light images. In [16],
a CNN-based single image contrast enhancer is designed to
learn a mapping function between the low contrast input image
and and its corresponding normal-image one. In [17], deep
networks are designed to perform the Retinex decomposition
and enhancement guided with the reflectance consistency con-
straint. In [18], the inherent connections between the spatially-
varying noise and the illumination layer is explored and a
framework is built to capture the interaction between noise
estimation and illumination layer estimation in the bilateral
space.

Although these previous methods can obtain good perfor-
mance in some cases , there still exists some important issues
as follows:

• In recent learning-based methods [14], [19], the syn-
thesized low-light images used for training are usually
generated by applying random Gamma transformation
on normal light images. This synthesis process may
not fully characterize the formation of natural low-light
images. The real captured paired dataset is either in a
small scale or in RAW format, which may not meet the
requirement of most real applications.

• Some recent data-driven methods learn a direct mapping
between low-light and normal light images [14], [19].
Due to the ill-posed nature, the enhanced results gener-
ated by the learned mapping function may present blurred
details with biased and visually inauthentic colors.

• Most previous methods only consider parts of degrada-
tions in low-light enhancement. Specifically, few works
pay attentions to suppressing the artifacts caused by
the intensive noise after the quantization, which usually
appear in real applications.

• In most current Retinex-based methods [8]–[11], [17],
the decomposition process and constraints are either
handcrafted signal-prior guided or learned freely from
data. This leads to two drawbacks: 1) the illumination and
reflectance decomposed from the low-light image maybe
not desirable for the successive enhancement process;
2) the handcrafted signal-prior guided constraints are not
adaptive enough to handle complex cases.

Considering these limitations of existing works, we explore
possible deep learning architectures to effectively enhance
low-light images suffering from low visibility, low contrast,
intensive noise, and compression artifacts.

Specifically, we construct a large-scale LOw Light (LOL)
paired image dataset, including both real photos and synthe-
sized data. The first type of images capture the degradation
features and properties in real cases. The second one plays
a role in data augmentation to synthesize paired images with
diversified scenes and objects. Then, we build a deep network
based on Retinex model (Retinex-Net) for robust low-light
enhancement, which leads to visually pleasing and realistic
enhanced results. For normal light images, we develop a train-
able sparse gradient minimization network (SGM-Net),

namely Decom-Net, to remove their low-amplitude structures
and preserve major edges to obtain the illumination map. Then,
an Enhance-Net is employed to predict the illumination of the
normal light image. SGM-Net(Decom-Net), and Enhance-Net
as well as Restore-Net (introduced later) are jointly trained.
Therefore, the decomposed representations (illumination and
reflectance layers) can better serve for the successive enhance-
ment process. After the decomposition, the structure details are
mainly preserved in reflectance. Thus, we build a Restore-
Net to map the low-light reflectance to the normal one. This
design benefits removing noise and compression artifacts, and
stretching the contrast.

This article is an extension of our previous conference
paper [20]. Based on our well developed LOL image dataset
in the preliminary work, we choose an improved technical
route to borrow from Retinex model to develop an end-to-end
decomposition and mapping network for single-image low-
light enhancement. Comparing with our previous work [20],
the proposed method has four new features: 1) We add the
sparse gradient constraint to regularize the output of the
decomposition sub-network, which makes the learned decom-
position results more reasonable; 2) After decomposition,
the illumination of the normal-light image is directly predicted
from the low-light image, which simplifies the learning para-
digm and makes the prediction of the normal-light illumination
map and the low-light image preciser; 3) A more expressive
deep network – multi-scale residual dense network – is used
as the backbone model of each sub-network; 4) Besides
random noise, JPEG artifacts and the interleaved noise
are further considered in low-light degradation. In sum-
mary, the contributions of our work are summarized as
follows:

• We construct a new large-scale LOL paired image dataset
consisting of two categories: real photography pairs and
synthesized pairs from raw images. They together capture
the degradation in real cases and have diversified scenes
and objects.

• We develop a deep network based on Retinex model for
low-light image enhancement. Combining the advantages
of deep learning and Retinex model, our method can
effectively enhance the illumination, and generate more
visually pleasing and realistic enhanced results.

• A Restore-Net is built to restore the reflectance. It is
capable of learning to suppress the intensive nosies and
artifacts that appear in real cases.

• In the proposed deep Retinex framework, the sub-
networks for image decomposition and illumination
enhancement are jointly trained. Thus, the decomposed
representations (illumination and reflectance) better serve
for the successive enhancement process. The whole
framework is flexible to handle complex cases.

The rest of this article is organized as follows. Section II
briefly reviews the related work. Section III presents the
proposed Retinex-Net for robust low-light image enhance-
ment. Section III illustrates the built LOL dataset. Exper-
imental results and concluding remarks are presented in
Sections V and VI, respectively.

Authorized licensed use limited to: Peking University. Downloaded on January 25,2021 at 08:11:42 UTC from IEEE Xplore.  Restrictions apply. 



2074 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

II. RELATED WORK

A. Hand-Crafted Methods

Different image priors have been explored for single image
low-light enhancement. A preliminary method is to directly
amplify the illumination uniformly. Nevertheless, the regions
that are already bright may be over-exposed and lose details.
Histogram equalization (HE) can mitigate the problem and
make dark image visible by stretching the dynamic range of
an image [1], [2]. However, HE aims to enhance the contrast
instead of adjusting the illumination. Thus, the results may
present undesirable illumination and are easily contaminated
by intensive noise in low-light images.

Some methods [21], [22] regard the inverted low-light
images as haze images, and enhance the visibility by apply-
ing dehazing. Then, the dehazing result is inverted as the
enhancement result. These methods also consider the noise
suppression. In [22], a joint-bilateral filter is applied after
enhancement. In [21], adaptive BM3D denoising opera-
tions [23] are conducted on segmented superpixels. These
methods obtain reasonable results. However, a convincing
physical explanation on their basic model is missing, and
applying denoising as postprocessings may lead to blurred
details.

B. Retinex Theory Based Methods

To simultaneously suppress the noise and preserve high-
frequency details, a series of methods built on Retinex
theory [3]. The theory assumes that, images can be decom-
posed into two components: reflectance and illumination.
Then, the enhanced results are obtained by further processing
and combining these two parts. Single-scale Retinex [4] is
the seminal work. It defines a practical implementation of
Retinex – center/surround Retinex, and treats the reflectance
as the final enhanced result. Multi-scale Retinex [5] creates
the enhanced results by fusing different single-scale Retinex
outputs. Wang et al. [6] constructed a bright-pass filter for
Retinex decomposition, and tried to preserve the naturalness
while enhancing details in low-light images. Fu et al. [7]
proposed an improved version by fusing different merits into
a single one based on multiple derivatives of the estimated
illumination. Guo et al. [8] proposed to refine an initial illumi-
nation map with a structure aware prior. In [9], a weighted vari-
ational model is proposed to impose better prior representation
in the regularization terms. In [24], a novel Retinex-based
fractional-order variational model is proposed. The image is
decomposed, and the fractional-order gradient total variation
regularization is adopted on both the reflectance component
and the illumination component to obtain better estimated
results. These methods consider less on the constraints on
the reflectance, and the latent intensive noise in the low-light
regions are usually amplified.

Li et al. [10] proposed to extend the traditional Retinex
model to a robust one with an explicit noise term, and
made the first attempt to estimate a noise map out of that
model via an alternating direction minimization algorithm.
Ren et al. [11] also aimed to enhance low-light images based
on that robust Retinex model, and developed a sequential

algorithm to estimate a piecewise smoothed illumination and a
noise-suppressed reflectance. These methods show impressive
results in removing small random noise. However, with only
hand-crafted constraints, these methods fail to remove heavy
noise with large gradients and structural noise including quan-
tized errors and quantized random noise, which are usually
presented in compressed images. Comparatively, in our work,
we use a Retinex model-driven deep network for image
decomposition, and use two deep networks for illumination
adjustment and reflectance restoration, respectively. Due to
learning from large collections of training data, our method
can not only better enhance the visibility of dark details but
also remove large structural noise.

C. Data-Driven Methods and Low-Light Image Datasets
In recent years, deep learning (DL)-based image process-

ing applications have emerged with promising performance.
These applications include denoising [25], completion [26],
inpainting [27], super-resolution [28], deblurring [29], decon-
volution [30], and style transfer [31], etc. There are also some
recent works on bad weather restoration or image enhance-
ment, such as dehazing [32], raindrop and dirt removal [33],
and rain removal [28]. Besides, with the superior modeling
capacity than shallow models, DL-based methods begin to
solve harder problems, such as blind image denoising [34],
and image compression [35].

Learning based low-light image enhancement methods have
also been studied. Yang et al. [36] proposed to enhance low-
light images by coupled dictionary learning. Lore et al. [14]
used a deep auto-encoder named Low-Light Net (LLNet) to
perform contrast enhancement and denoising. In [19], deeply
root in multi-scale Retinex representation, a feed-forward con-
volutional neural network with different Gaussian convolution
kernels is proposed to learn an end-to-end mapping between
dark and bright images. In these works, low-light images
used for training is synthesized by applying random gamma
transformation on natural normal light images. This synthesis
process may not fully characterize the formation of natural
low-light images, which may lead to unnatural results.

Some recent works aim to build paired training data
from real scenes. In [13], Chen et al. introduced a dataset
See-in-the-Dark (SID) of short-exposure low-light raw images
with corresponding long-exposure reference raw images. How-
ever, there is one limitation for this database, because in most
applications, such as video surveillance, it is more preferred
to process coded images instead of RAW ones. Because many
equipments do not support to output RAW format images and
it is too expensive to directly enhance them before encoding in
the terminal platform. These RAW images can be converted
as PNG or JPEG images. However, the setting of capturing
RAW images makes the converted images not conform the
character of natural low-light 8-bit images, which sets barriers
to network learning. Cai et al. [16] built a dataset of under/
over-contrast and normal-contrast encoded image pairs,
in which the reference normal-contrast images are gen-
erated by Multi-Exposure image Fusion (MEF) or High
Dynamic Range (HDR) algorithm. However, MEF or HDR
results are different from images captured in real scenes.
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Using these images as references may lead to inappropriate
enhanced results. Comparatively, in our work, we build a
large scale dataset with both synthesized and real captured
paired low/normal-light images. The images are encoded in
PNG format. The shooting parameters are adjusted to cap-
ture moderate noise to simulate the commonly seen scenes.
The background categories of real captured data are limited.
To make our dataset more diversified, we also synthesize
low/normal-light pairs. We go beyond the simple random
Gamma transformation scheme by analyzing the illumination
distribution of low-light images and adjusting synthetic images
according to the analysis results. Our models are trained on
both synthesized and real data in Retinex domain, and generate
illumination enhanced, noise-suppressed and natural looking
results.

III. RETINEX-NET FOR ROBUST LOW-LIGHT

IMAGE ENHANCEMENT

A. Retinex Model-Based Low-Light Image Enhancement

The classic Retinex theory models the human color percep-
tion. It assumes that the observed image S can be decomposed
into two components, reflectance R and illumination I :

S = R · I, (1)

where R represents reflectance; I represents illumination; and ·
represents element-wise multiplication. Reflectance describes
the intrinsic property of captured objects, which is considered
to be consistent under any lightness conditions. The illumina-
tion represents the various lightness on objects.

For Retinex theory-based low-light enhancement, the low-
light image Slow is first decomposed into illumination Ĩlow and
reflectance R̃low: [

Ĩlow, R̃low
] = fdecom (Slow) , (2)[

Ĩnormal, R̃normal
] = fdecom (Snormal) , (3)

where fdecom(·) signifies a corresponding learnable process
(the same below for all f (·)) to perform illumination and
reflectance separation with a convolutional l0 gradient min-
imization process which will be illustrated in Section III-C.
Then, the enhanced illumination Înormal and reflectance R̂normal
are inferred based on Ĩlow and R̃low:

Înormal = fenhance
(
Ĩlow

)
, (4)

R̂normal = frestore
(
R̃low

)
, (5)

The final enhanced result Ŝnormal is reconstructed by

Ŝnormal = R̂normal · Înormal. (6)

where ˆ signifies the predicted results and˜denotes the decom-
position results. In our approach, fdecom(·) is not a hand-
crafted filter but a learnable process that is optimized jointly
with fenhance(·) and frestore(·) in a data-driven way. Further-
more, it might cause accumulated inaccuracy by predicting
Înormal based the predicted Ĩlow first. Therefore, in our scheme,
we turn Eq. (4) to:

Înormal = fenhance (Slow) . (7)

TABLE I

THE FUNCTIONALITY OF EACH SUB-NETWORK IN RETINEX-NET

That is, the illumination layer of the normal-light image will
be directly predicted based on the low-light image instead of
the estimated low-light illumination.

B. Overall Network Architecture
Motivated by Retinex model, we design a deep Retinex-

Net to perform the illumination/reflectance decomposition,
illumination enhancement and reflectance restoration jointly.
The whole network architecture is shown in Fig. 1. It consists
of three stages: decomposition, adjustment, and reconstruction.
Three sub-networks are built to model fdecom(·), fenhance(·)
and frestore(·), respectively.

At the decomposition stage, a sparse gradient minimiza-
tion network (SGM-Net) is designed (denoted as fdecom(·)) to
generate the illumination map Ĩnormal and Ĩlow which preserve
major edges and remove low-amplitude structures, and its
counterpart reflectance map R̃normal and R̃low. The network
design is inspired by an iterative solution of the l0 gradient
minimization problem – re-weighted l1 minimization – and
is embedded into the whole Retinex-Net for an end-to-end
training.

At the adjustment stage, an Enhance-Net is used to pre-
dict Înormal, denoted by fenhance(·). Furthermore, the noise
in the reflectance R̃low are suppressed by a Restore-Net to
generate R̂normal, denoted by frestore(·). Finally, we combine
the adjusted illumination and reflectance by element-wise
multiplication at the reconstruction stage. The functionality of
each sub-network is summarized in Table I. For Decom-Net,
Enhance-Net and Restore-Net, their basic network struc-
tures are our proposed multi-scale residual dense network
(MS-RDN) [37].

In the following, we will illustrate: 1) the detailed design
of SGM-Net; 2) how SGM-Net (Decom-Net) and Enhance-
Net work jointly to capture the illumination of low-light
and normal light images simultaneously; 3) how Restore-Net
is trained to remove noise from reflectance and reveal the
structural details of low-light images; 4) the implementation
details of our MS-RDN.

C. Sparse Gradient Minimization Network (SGM-Net)

In our work, we aim to decompose an input image into two
parts: illumination and reflectance. We hope the former map
preserves major edges, increases the steepness of transition
and removes low-amplitude structures. Thus, we regard the
illumination extraction as solving the problem of l0 gradient
minimization (l0GM) [38] on an initially extracted illumination
map. Compared to [38], we provide a learnable solution, which
can be integrated into the whole Retinex-Net for an end-to-end
training.
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Fig. 1. The proposed Retinex-Net for robust low-light image enhancement consists of three sub-networks. A trainable sparse gradient minimization
network (SGM-Net), namely Decom-Net, is developed to remove low-amplitude structures and preserve major edges of normal and light images to obtain
their illumination maps. An Enhance-Net is employed to predict the illumination layers of normal light images. SGM-Net (Decom-Net) and Enhance-Net
are jointly trained. A Restore-Net is built to map the low-light reflectance to the normal-light one. Finally, the enhanced results are obtained by recombining
the enhanced illumination and restored reflectance. The loss functions are denoted by orange blocks in subfigure (a).

Specifically, suppose that x is an image, ŷ is the smoothed
result obtained by solving the following equation:

ŷ = arg min
y

‖x − y‖2
2 + λ ‖Dy‖0 , (8)

where D denotes the Prewitt gradient operation.
Inspired by re-weighted l1 minimization [39] that approx-

imates l0 minimization, we use re-weighted l1 regularization
to promote the gradient sparsity of an output image by CNN.
Thus, we turn Eq. (8) to an iterative optimization process:

ŷ(l) = arg min
y

‖x − y‖2
2 + λ

∥∥∥w(l)Dy
∥∥∥

1
,

w(l)
i, j = 1(

Dy(l−1)
)

i, j + ε
,

w(1)
i, j = 1, (9)

where i and j denote the spatial locations of pixels. ε is the
parameter related to the sparsity. The iteration is terminated
on convergence or l attains a specified maximum number
of iterations max. After converting l0 minimization to re-
weighted l1 minimization, all components are derivable. Thus,
we can easily build an iterative network to solve Eq. (9)
progressively. Here, we further make a slight change by setting
a step-wise increasing ε(l), which simulates the coarse-to-fine

process to promote the sparsity:

w(l)
i, j = 1(

Dy(l−1)
)

i, j + ε(l)
. (10)

Following Eq. (9) and (10), we construct a fully convolutional
network to perform the layer decomposition of illumination
and reflectance maps, as shown in Fig. 2. The input x is
transformed into a series of {ŷ(k)} whose gradients are sparser
along with an increased k via cascaded residual networks. Each
network is trained guided by the step-wise losses in Eqn. (9).
Specifically, in the stage k, the signal ŷ(k−1) outputted from
the previous stage (k − 1) is transformed into a sparser signal
ŷ(k). ŷ(k) is constrained by the signal reconstruction loss:

L(k)
RECT =

∣∣∣ŷ(k) − x
∣∣∣ , (11)

and its gradients are regularized by re-weighted l1 total vari-
ation loss:

L(k)
SPARSE =

∣∣∣wkDŷ(k)
∣∣∣ , (12)

where wk is determined by the gradient estimation
∣∣Dŷ(k−1)

∣∣
from the stage (k −1). The network will generate {ŷ(k)} whose
gradients are sparser along with an increasing k.
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Fig. 2. The framework of our proposed l0 gradient minimization network (SGM-Net). Inspired by the reweighed l1 minimization, the network learns to
promote l0 gradient sparsity progressively. In the stage k, the signal ŷ(k−1) outputted from the previous stage (k − 1) is transformed into a sparser signal ŷ(k).
ŷ(k) is constrained by the signal reconstruction loss

∣∣∣ŷ(k) − x
∣∣∣ and its gradients are regularized by re-weighted l1 total variation loss

∣∣∣wkDŷ(k)
∣∣∣, where wk is

determined by the gradient estimation
∣∣∣Dŷ(k−1)

∣∣∣ from the stage (k − 1). The input x is transformed into a series of {ŷ(k)} whose gradients are sparser along
with an increased k via cascaded residual networks. Each network is trained guided by the step-wise losses in Eqn. (9), namely reconstruction and sparse
losses .

D. Coupled Illumination Estimation

To make the structural boundaries of low-light illumination
more significant and those of both low-light and normal light
illumination better corresponded, which benefit the successive
low-light enhancement process, our method trains SGM-Net
(Decom-Net), Enhance-Net and Restore-Net (which will be
illustrated in Sec. III-E) jointly. The training loss consists of
three terms:

LI = LIE + λRECTLRECT + λSPARSELSPARSE,

LRECT =
∑

i

L(i)
RECT,

LSPARSE =
∑

i

L(i)
SPARSE, (13)

where λRECT and λSPARSE are the coefficients that control
the importance of different terms. LRECT and LSPARSE jointly
ensure that Ĩnormal( Ĩlow) are piecewise-smooth, preserve the
main structure of Snormal(Slow) and remove low-amplitude
structures. Illumination enhancement term LIE maximizes
Structural SIMilarity (SSIM) index distance [40] between the
enhanced illumination Înormal and the decomposed illumina-
tion Ĩnormal from normal light images,

LIE = −SSIM
(

Înormal, Ĩnormal

)
. (14)

After obtaining Ĩnormal and Ĩlow, R̃normal and R̃low are inferred
by an element-wise division,

R̃normal = Snormal

Ĩnormal
, (15)

R̃low = Slow

Ĩlow
. (16)

Before division, the small values (smaller than 0.01) in Ĩnormal
and Ĩlow are replaced by 0.01 to avoid too large values
appeared in R̃normal and R̃low.

E. Structure Revealing Reflectance Restoration

Low-light images usually suffer from low visibility, high-
level noise and low contrast. As for the reflectance, it is
usually contaminated by the latter two factors. Therefore,

in Retinex-Net, we employ a Restore-Net to alleviate noise
from reflectance and stretch its contrast.

Due to the ill-posedness nature, directly end-to-end learning
a mapping between the reflectance may suffer from two draw-
backs: 1) blurred details; 2) biased and visually inauthentic
colors. Therefore, we propose a structure revealing reflectance
restoration method. Considering that the characteristics of
noise and edges are mainly reflected in the gradient domain,
we try to fit both the signal and gradient of the reflectance
of the normal-light images. The training loss consists of three
terms:

LR = LRF + λFFLFF + λRGLRG, (17)

where λFF and λRG is the coefficients that control the impor-
tance of different terms. The role of each term in the Eq. (17)
is interpreted below:

• Reflectance fidelity term LRF constrains the fidelity
between the restored reflectance R̂normal and the ground
truth R̃normal,

LRF = −SSIM
(

R̂normal, R̃normal

)
. (18)

• Full fidelity term LFF constrains the fidelity between the
restored signal Înormal R̂normal and the ground truth signal
Snormal,

LFF = −SSIM
(

Înormal R̂normal, Snormal

)
. (19)

• Reflectance gradient term LRG minimizes the distance
between the gradient of the restored reflectance R̂normal
and that of the normal-light one R̃normal,

LRG =
∥∥∥�R̂normal − �(�R̃normal)

∥∥∥2

F
, (20)

where �(·) will cuts-off the signal when the value is less
than 0.15, which will benefit the noise suppression.

F. Network Structures: Residual Dense Network

We here briefly present our network structures of Decom-
Net, Enhance-Net and Restore-Net. We propose a multi-scale
residual dense network as our basic backbone because of
its distinguished modeling capacity and moderate complexity.
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Fig. 3. Network architecture: (a) Dense block. (b) Residual dense network:
dense blocks are cascaded by progressive channel compressions and residual
skip connections. (c) Our proposed multi-scale residual dense network. The
features are down-sampled to different scales (1/4, 1/2 and 1) and then are
processed, un-sampled and fused progressively from small scales to the larger
ones.

More details about residual dense network (RDN) can be
found in [37].

The overall architecture is presented in Fig. 3. MS-RDN
can be considered as the chained RDN with progressive
down-sampling and up-sampling, which fuses information at
different scales to infer the restored results.

Dense Network (Block). A preliminary effective backbone
is the dense network as shown in Fig. 3 (a). A convolution
layer passes its output feature to all preceding convolutional
layers, which preserves the feed-forward nature and integrates
the dense features at both local and global levels.

Residual Dense Block. The network in Fig. 3 (a) may face
the problem of parameter explosion, due to the progressive
increase of the channel number. To make the generated feature
maps more compact, we add channel compression mechanism
in the network, as shown in Fig. 3 (b). The whole network is
splited into several dense blocks, each of which is fed into a
concatenation layer and a 1 × 1 convolution layer for channel
compression. Then, to make gradients better back-propagate to
previous layers, we add residual skip connections to connect
all these dense blocks as well as the successive concatenation
and convolution layer.

Multi-Scale Residual Dense Block. Our proposed multi-
scale residual dense network in Fig. 3 (c) can aggregate multi-
scale information and obtain information of a larger region.
The features are down-sampled to different scales (1/4, 1/2 and
1) and then are processed, un-sampled and fused progressively
from a small scale to the larger ones.

IV. LOW LIGHT (LOL) DATASET

In this section, we illustrate our LOL dataset used for
training and testing.1 To make it tractable to learn a low-light
enhancement network, the constructed LOL dataset consisting
of two categories: real photography pairs and synthesized
pairs from raw images. The first one captures the degradation
features and properties in real cases. The second plays a role
in data augmentation, diversified scenes and objects. Because
of the space limit, more detail information is provided in the
supplementary material.

A. Dataset Captured in Real Scenes
The real captured dataset of LOL contains 500 low/normal-

light image pairs. Most low-light images are collected by
changing exposure time and ISO, while other configurations
of the cameras are fixed. We capture images from a variety of
scenes, e.g., houses, campuses, clubs, streets.

Since camera shaking, object movement, and lightness
changing may cause misalignment between the image pairs,
inspired by [41], a three-step shooting strategy is used to
eliminate such misalignments between the image pairs in our
dataset. For one scene, we first shoot two normal-light images
N1 and N2. Then, we change the exposure time and ISO
to capture a series of low-light images. Finally, we set the
exposure time and ISO back to shoot another two normal-
light images N3 and N4. The average of Ni (i = 1,2,3,4) is
treated as the ground-truth G = 1

4

∑4
i=1 Ni . Then, we check

whether there is object or camera movement. Specifically,
the misalignment for these normal-light images is measured
by M = 1

4

∑4
i=1 MSE(Ni , G). If M > 0.1, we abandon the

corresponding pair.
These raw images are resized to 400 × 600 and converted

to Portable Network Graphics format. The dataset is publicly
available. Fig. 6 shows a subset of the scenes.

B. Synthetic Image Pairs From Raw Images
To make synthetic images match the property of real

dark photography, we analyze the illumination distribution
of low-light images. We collect 270 low-light images from
public MEF [42], NPE [6], LIME [8], DICM [43], VV,2

and Fusion [44] dataset, transform the imagesT into YCbCr
channel and calculate the histogram of Y channel. We also
collect 1000 raw images from RAISE [45] as normal-light
images and calculate the histogram of Y channel in YCbCr.
Fig. 4 shows the result.

Raw images contain more information than the converted
results. For raw images, all operations used to generate pixel
values are performed in one step on the base data, making
the result more accurate. 1000 raw images in RAISE [45]
are used to synthesize low-light images. Interface provided
by Adobe Lightroom is used and we try different kinds of
parameters to make the histogram of Y channel fit the result
in low-light images. Final parameter configuration can be
found in the supplementary material. As shown in Fig. 4,

1LOL dataset link: https://daooshee.github.io/BMVC2018website
2https://sites.google.com/site/vonikakis/datasets
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TABLE II

QUANTITATIVE MEASUREMENT RESULTS ON SYNTHESIZED TEST IMAGES

Fig. 4. Several examples for low/normal light image pairs in LOL dataset.
Objects and scenes captured in this dataset are diverse.

the illumination distribution of synthetic images matches that
of low-light images. Finally, we resize these raw images to
400 × 600 and convert them to Portable Network Graphics
format.

C. Features
The built LOL dataset is advantageous compared with

previous datasets in the following aspects:
• Well-designed synthesis. Instead of using the random

gamma transform, we analyze the illumination distribu-
tion of low-light images and adjusting synthetic images
based our analysis results.

• Real captured data. Compared with the datasets
generated by Multi-Exposure image Fusion
(MEF) [42] or High Dynamic Range (HDR) algorithm
[16], our real captured paired data is more representative
and can provide more useful guidance to train a low-light
image enhancer.

• Encoded format. Compared with SID datasets in RAW
format, our shooting parameters are adjusted to capture
moderate noise to simulate the commonly seen scenes of
encoded images.

Thus, based on these three properties, our LOL dataset
includes commonly seen low-light degradation factors in real
scenes with diversified objects and backgrounds. It is suitable
for training a model with input and output images in the
encoded format, which is beneficial to most applications.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of RetinexNet
for low-light enhancement. Due to the space limit, extensive

Fig. 5. Samples of testing images used in our experiments.

Fig. 6. Fitting results based on the histogram of Y channel in YCbCr. For
clarity, the histogram is depicted in the form of curve graphs and the vertical
axis is scaled in logarithmic domain. The horizontal axis represents the pixel
value, noticing that Y channel ranges from 16 to 240.

experiments on a deeper analysis on our method are presented
in the supplementary material.

A. Experiment Settings

To fully evaluate the proposed method, we test our method
on images from various scenes. Our LOL synthetic and
real captured low\normal light images are used for objective
evaluation. Several images from NPE [6], DICM dataset [43]
and VV are used for subjective evaluation. Fig. 5 shows some
testing images in our experiments. Their capturing devices are
listed in Table IV.

All experiments are conducted in Pytorch-0.4.0 on a PC
running Ubuntu 16.04.4 LTS OS with 64G RAM and Intel(R)
Core(TM) i7-6850K 3.60GHz CPU.

The training images include both synthetic and captured
paired data. We initialize the weights using the initialization
proposed by [54]. Adam is used as the optimization method.
The whole model, SGM-Net (Decom-Net), Enhance-Net and
Restore-Net are trained jointly in an end-to-end manner.
λSPARSE, λRECT, λRG, and λFF are set to 10−7, 10−2, 10, and
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TABLE III

QUANTITATIVE MEASUREMENT RESULTS ON REAL TEST IMAGES

Fig. 7. Comparisons of low-light image enhancement results on a real image from NPE [6] with little noise.

100, respectively. The maximum of iteration l is set to 4. ε(l) is
set to [0.03, 0.06, 0.12, 0.18] for processing low-light images,
and set to [0.09, 0.18, 0.27, 0.36] for processing normal-light
images. Each mini-batch contains 8 image pairs. We set the
learning rate to 0.0001. The model is trained for 200 epochs.

B. Quantitative Evaluation

We perform quantitative measurements to evaluate the per-
formance of the proposed method. Since assessing the quality
of enhanced images is not a trivial task, we adopt four evalu-
ation metrics: Peak Signal-to-Noise Ratio (PSNR), Structural
SIMilarity (SSIM) [55], Universal Quality Index (UQI) [56]
and Optimal Scale Selection (OSS) [57].

PSNR is the ratio between the maximum possible power of
the normal light image and the power of the enhanced image
and measures the fidelity of between them. SSIM considers
more on image structures, takes the image degradation as
perceived change in structural information and incorporates
luminance masking and contrast masking terms into the met-
ric. UQI models image distortion as a combination of three
different factors: loss of correlation, luminance distortion, and
contrast distortion, thus it measures the image quality from
these three perspectives. OSS models in spatial and discrete
wavelet transform domains, and measures image quality by
resizing filtered images to the optimal scale estimated based
on human eyes’ physiological mechanism.

1) Low-Light Enhancement for Noise-Free Inputs: For
noise-free evaluation, we test all methods on our LOL
synthetic dataset. For PSNR, SSIM, UQI, OSS-PSNR and
OSS-SSIM, larger values represent better image qualities. It is

TABLE IV

THE SOURCE AND CAPTURING DEVICES OF TESTING

IMAGES USED IN OUR WORK

observed from Table II that, our Retinex-Net achieves the best
results among all methods on all metrics. It demonstrates the
superiority of our Retinex-Net in fidelity, image structures,
signal correlation, luminance, contrast and human perception.

2) Low-Light Enhancement for Noisy Inputs: For noisy
case, we test all methods on our LOL real dataset. It is
observed from Table III that, our Retinex-Net also achieves
the best results among all methods almost on all metrics.
It witnesses superiority and robustness of our Retinex-Net.

C. Qualitative Evaluation
1) Low-Light Enhancement Without Noise Suppression:

Figs. 7-12 show several comparisons between enhancement
results generated by different methods. Figs. 7-9 contain little
noise to solely compare the illumination enhancement ability
of different methods while Fig. 10-12 include intensive noise.
In this part, no additional post-processing (noise suppression)
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Fig. 8. Comparisons of low-light image enhancement results on a real image from VV with little noise.

Fig. 9. Comparisons of low-light image enhancement results on a real image from NPE [6] with little noise.

Fig. 10. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. All methods take no post-processing techniques.

operations are adopted. As seen in Fig. 7-9, our method can
better capture the global illumination distribution of the whole
image, enhance different regions properly, and generate rich
textures, such as “shelf” in Fig. 7, “traffic line” in Fig. 8 and
“wall” in Fig. 9 while avoiding darkness and over-exposure.

As can be observed in the Fig. 10-12, the noise hidden in
very low-light condition becomes intense. SRIE cannot light
up some parts of the input images, and its results also contain
noticeable noise, e.g. the blocking artifacts in Fig. 10. CRM
lights up images, however, noise is obviously observable and

contrasts are degraded, e.g. the results in Fig. 12 and 11. LIME
can sufficiently enhance the visibility of low-light images.
It also amplifies the intensive noise and sometimes over-
enhances local illuminations, as shown in Fig.10-12. RRM
and JED can remove some noise to extent, however, some
structure details are removed and the contrast is weakened.
BIMEF sometimes generates dark results, such as the results
shown in Fig. 11 and 12. Our method presents satisfying
performance in handling low-light images with intensive noise.
The noise, including compression artifacts, are successfully
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Fig. 11. Comparisons of noisy low-light image enhancement results on a real image from NPE [6]. All methods take no post-processing techniques.

Fig. 12. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. All methods take no post-processing techniques.

Fig. 13. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. Besides RRM [10], JED [11] and RetinexNet, other
methods are pre-processed by BM3D [23] with the noise level estimated by [58]. The estimated noise level σ is listed after the method name.

removed. Image structure details are preserved and contrasts
of images are enhanced.

2) Low-Light Enhancement With Noise Suppression: We
also provide the comparison of the proposed method with other
methods pre/post-processed by BM3D [44] with the denoising
parameter σ estimated by [58] and those methods jointly with
JPEG artifact removal [59]. The BM3D is performed as the

post-processing, following the operations in LIME [8]. For
JPEG artifact removal method [59], the structure component
enhancement operation is replaced by each low-light enhance-
ment method and the final enhancement results are compared.
As shown in Figs. 13-14, the noise amplified by CRM, LIME
and BIMEF is handled. However, many tiny structures are
removed inevitably. LIME over-enhances the input image,
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Fig. 14. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. Besides RRM [10], JED [11] and RetinexNet, other
methods are post-processed by BM3D [23] with the noise level estimated by [58]. The estimated noise level σ is listed after the method name.

Fig. 15. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. Besides RRM [10], JED [11] and RetinexNet, other
methods are processed by low-light enhancement methods in the framework proposed by [59].

Fig. 16. Comparisons of noisy low-light image enhancement results on a real image from DICM [43]. Besides RRM [10], JED [11] and RetinexNet, other
methods are processed by low-light enhancement methods in the framework proposed by [59].

especially in regions with higher illumination. Similarly, JED
and RRM remove details and weaken the contrast. When
considering low-light image enhancement and JPEG artifact
removal, as shown in Figs. 15-16, the results of other methods
jointly with [59] are still unsatisfied. It is clearly demonstrated
that, the results of SRIE, CRM, BIMEF, and LIME include
blurry details and residual noise. By contrast, in both two
cases, our result looks sharper and more natural. The result
images are clean with fine-grained texture details.

3) Subjective Evaluation: We also evaluate the subjective
visual quality of different methods using the Mean Opinion
Score (MOS) for subjective evaluation. 15 images are manu-
ally selected from LOL dataset with a thoughtful consideration
of content diversity, illumination variety, and randomness of
testing images for evaluation. These images are enhanced
by different low-light enhancement methods, including Deep-
UPE [15], EnlightenGAN [60], LIME [8], LLNet [14],
DRD [20], RRM [10], SICE [16], and the proposed method.
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TABLE V

THE RESULTS OF PAIRWISE COMPARISON IN A USER STUDY. EACH VALUE REPRESENTS THE NUMBER OF TIMES THE METHOD IN EACH ROW HAS
OUTPERFORMED THE METHOD IN THE RESPECTIVE COLUMN

TABLE VI

THE MOS SCORE OF DIFFERENT METHODS

Fig. 17. Visualization of all paired comparisons. The horizontal axis denotes
the comparison group ID, while the vertical axis indicates the winning time
in the comparison.

Their results are evaluated by human annotators. 30 partici-
pants are invited to join the subjective experiment. There are
15 test images comparing the results of 8 methods. For each
image, there are 28 paired comparisons. All testing images are
divided into 3 groups. Each individual is required to provide
subjective results for 2 of 3 groups, including 10 × 28 = 280
image pairs. The comparison results are illustrated in Fig. 17
and Table V. Based on the compared pairs, we also fit a
Bradley-Terry model [61] to estimate the MOS score for each
method so that they can be ranked. The inferred average MOS
score is presented in Table VI. It is observed that, the proposed
method achieves superior visual quality than other methods.

VI. CONCLUSION

In our work, we build a large-scale paired dataset with
real photography and construct a deep network (Retinex-Net)
based on Retinex model for robust low-light enhancement. The
Retinex-Net enhances the illumination and reflectance maps
in the Retinex domain. With the help of integration of l0
gradient minimization, Retinex-Net learns a coupled represen-
tation in low-light and normal-light spaces for decomposition

and enhancement. The evaluation on both synthetic and real
images, particularly on those containing intensive noise and
compression artifacts, shows the effectiveness of our novel
model, which significantly outperforms the state-of-the-art
methods.
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