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Band Representation-Based Semi-Supervised
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Abstract— It has been widely acknowledged that
under-exposure causes a variety of visual quality degradation
because of intensive noise, decreased visibility, biased color,
etc. To alleviate these issues, a novel semi-supervised learning
approach is proposed in this paper for low-light image
enhancement. More specifically, we propose a deep recursive
band network (DRBN) to recover a linear band representation
of an enhanced normal-light image based on the guidance of the
paired low/normal-light images. Such design philosophy enables
the principled network to generate a quality improved one by
reconstructing the given bands based upon another learnable
linear transformation which is perceptually driven by an image
quality assessment neural network. On one hand, the proposed
network is delicately developed to obtain a variety of coarse-
to-fine band representations, of which the estimations benefit
each other in a recursive process mutually. On the other hand,
the extracted band representation of the enhanced image in the
recursive band learning stage of DRBN is capable of bridging
the gap between the restoration knowledge of paired data
and the perceptual quality preference to high-quality images.
Subsequently, the band recomposition learns to recompose the
band representation towards fitting perceptual regularization
of high-quality images with the perceptual guidance. The
proposed architecture can be flexibly trained with both paired
and unpaired data. Extensive experiments demonstrate that
our method produces better enhanced results with visually
pleasing contrast and color distributions, as well as well-restored
structural details.

Index Terms— Low light, image enhancement, perceptual
quality.
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I. INTRODUCTION

IN LOW-LIGHT acquisition environments, a variety of
visual quality degradation, i.e. low contrast, low visibility,

and intensive noises may appear in the acquired images. It
is beneficial to apply more advanced capture devices and
adopt specialized photographic techniques to ease these quality
degradation issues. However, it is still quite challenging to
completely avoid the presented noise, especially when insuffi-
cient light can reach camera sensors such that the background
scene signals might be inevitably contaminated and even
buried by the system noise. Though increasing the exposure
time to suppress noise would be beneficial, blurriness is then
introduced inevitably in this scenario. Therefore, it is highly
desired to apply the software low-light enhancement solu-
tions instead of resorting to advanced hardware. In particular,
such methodologies enhance images acquired in the low-light
environment back to a normal one, such that the contrast,
visibility and noise are expected to be enhanced, improved
and suppressed, respectively. The enhancement process not
only brings in visual quality improvement, but also provides a
promising start point for high-level visual understanding tasks
(e.g., recognition or object detection).

In general, it is very challenging to enhance low-light
images to the perfect quality as the inherent noise is also
prone to be amplified in this process. In the past decades,
numerous efforts have been dedicated to addressing this issue.
The most traditional histogram equalization (HE) methods [1],
[2] enhance the low-light images via stretching the dynamic
range of the images. However, noise is amplified and regions
might be characterized with undesirable illumination. Retinex
theory-based methods [3] decompose an image into two sep-
arate layers, i.e. reflectance and illumination layers, which
are further processed for enhancement purpose. Moreover,
a variety of filters [4]–[6] have been built to decompose
the images, and different priors [7]–[11] have also been
developed and enforced on the decomposed illumination and
reflectance.

Recently, the strong representation capability of deep
neural networks also inspires a series of deep-learning
based approaches for low-light enhancement. These
methods [12]–[16] learn to alleviate the related composite
complex degradation relying on the sophisticated designed
learning models as well as the learned mapping of the paired
images which are well-prepared as low and normal-light.
However, the existing loss functions are not specifically
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designed according to the human visual perception and
may cause the in-appropriate estimation of the intrinsic
image structure, resulting in unsatisfactory visual quality,
e.g., residual noise and biased color distribution. Recently,
EnlightenGAN [17] was developed without the constraint of
paired supervision. The method only relies on a database
containing low as well as normal light images that are not
necessarily paired. EnlightenGAN demonstrates the feasibility
to train a low-light enhancement model with unpaired data.
However, without paired data as supervision, it is difficult
to restore fine structural details reliably, and the enhanced
results still contain the intensive noise.

In general, deep-learning based methods are classified into
two categories, including fully supervised methods and unsu-
pervised methods. In fully supervised methods, the enhance-
ment models are trained with the ground truth guidance in
terms of paired supervision which is assumed to be available
to model the detailed signal structure in the training phase.
Therefore, with the ground truth guidance, the networks are
more capable of learning to suppress noise and impair local
structural details. In unsupervised methods, the enhancement
mapping is trained based on unpaired low/normal-light image
sets, as it is effortless to collect such large-scale data with
diversified content. As such, these methods can learn to
recover the illumination, contrast, and color in an adaptive
and economical manner.

In this work, we consider the strengths, weaknesses, and
potentials of existing methods comprehensively and explore
to construct a unified architecture with the merits of both
fully supervised and unsupervised methods. More specifically,
we develop a novel semi-supervised learning framework for
low-light image enhancement. We propose a deep recursive
band network (DRBN) relying on the band representation to
link the signal-level fidelity constraint obtained from paired
supervision and the nature scene statistics prior [18] based
upon a quality assessment neural network, measuring the
preference in terms of human visual perception. In particular,
this is rooted in the widely accepted philosophy that the human
visual system evolves with the perception of natural scenes,
such that the network is learned based on a large collec-
tion of natural images with human annotated mean opinion
scores (MOS). In the first stage of DRBN, a linear band
is first recovered via training with paired low/normal-light
images. The estimations of this representation are beneficial
mutually in a recursive process. Subsequently, the extracted
band representation of the enhanced image in the first stage
of DRBN (recursive band learning) is capable of bridging
the gap between the paired data knowledge and the per-
ceptual quality provided by a quality assessment neural net-
work. In the second stage of DRBN (band recomposition),
the band representation is reconstructed towards fitting under-
lying visual characteristics of high-quality images with the
perceptual guidance provided by a quality assessment neural
network. The two-stage design facilitates to generate enhanced
results with visually pleasing contrast, color distributions, and
well-reconstructed structural details.

This work is the extension of our previous conference
paper [19]. Compared to the conference version, this work

further makes significant contributions. First, we introduce
the Long Short Term Memory (LSTM) networks to further
augment the feature representation capacity in a form of
residual learning in each recurrence, which improves the per-
formance with slightly increased complexity. Second, instead
of applying quality-guided adversarial learning, we introduce
an image quality assessment neural network to infer the nature
scene statistics, implying the preference in terms of human
visual perception. The image quality assessment network is
trained with the whole Aesthetic Visual Analysis (AVA) [20]
dataset, such that it can provide more comprehensive and
accurate feedback to train the enhancement network, making
the enhancement network produce visually satisfactory results.
The contributions of this work are summarized as follows:

• To our best knowledge, this is the first attempt to
enhance the quality of low-light images relying on a semi-
supervised learning framework, where a deep recursive
band representation is specifically designed to combine
fully-supervised and unsupervised learning to integrate
both superiority.

• The proposed framework is sophisticatedly designed to
achieve a series of coarse-to-fine band representations.
The estimations of these band representations are mutu-
ally beneficial through the end-to-end training in a recur-
sive way, enabling the capabilities of noise removal and
local structural details recovery.

• The perceptual characteristics are incorporated into deep
band representations based upon a quality assessment
neural network learned from an aesthetic analysis dataset
with human labeled mean opinion score (MOS), which
guides the recomposed results to move towards better
visual quality. To our best knowledge, this is also the
first trial to pursue perception-driven low-light image
enhancement.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III presents the pro-
posed deep recursive band network for semi-supervised low-
light image enhancement. Experimental results and concluding
remarks are presented in Sections IV and V, respectively.

II. RELATED WORKS

A. Global Adjustment-Based Image Enhancement

The earliest low-light enhancement strategies adjust the
illumination by stretching out the range, which could eas-
ily lead to over-exposure and under-exposure, such as HE
based methods [1], [2]. Without the local adaptation, such a
straightforward enhancement methodology results in undesir-
able illumination and intensive noise. Along this vein, several
kinds of priors have also been adopted to constrain the equal-
ization process, e.g. mean intensity preservation [21], white
and black stretching [22] and noise robustness to improve
the overall visual quality of the output image. In [23], [24],
the HE is applied to the difference of pixels for fine-grained
manipulation on the histograms. In [25], depth information
is introduced as side information to adaptively guide the
pixel value variation. In [26], [27], the imaging and visual
perception models are used as the guidance information for the
low-light image enhancement. Moreover, the visibility can also
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be enhanced by adopting dehaze models to inverted low-light
images [28], [29]. However, the off-line denoising [30] is
thereby applied for noise removal which unfortunately leads
to structural detail blurriness.

B. Retinex Model-Based Image Enhancement
In the Retinex-based methods [3], the design philosophy

is to decompose to-be-enhanced images into illumination
and reflectance layers which could be further adaptively
adjusted. The joint noise suppression and illumination adjust-
ment can be performed via various priors, e.g., structure aware
prior [8], weighted variation [9], and multiple derivatives of
illumination [7]. There are also a series of Retinex models,
e.g., single-scale Retinex [4], multi-scale Retinex [5], natu-
ralness Retinex [6], and robust Retinex [10], [11] developed
towards this goal. Based on these models, impressive enhance-
ment results in terms of thin noise removal and illumination
adjustment have been achieved. In [31], the weight of each
single-scale Retinex is adaptively computed based on the input
image. Wang et al. [5] construct a bright-pass filter for Retinex
decomposition. In [32], prior distributions of the reflectance
and the illumination are modeled with a hierarchical Bayesian
model.

Efforts have also been devoted to exploiting more effective
priors [7]–[9] to regularize the enhancement of illumination
and reflectance layers. These methods may ignore the con-
straints on the reflectance, such that the latent intensive noises
in the low-light regions are usually amplified. Li et al. [10]
proposed to extend the traditional Retinex model to a robust
one with an explicit noise term. Ren et al. [11] also devel-
oped a sequential algorithm to address the inverse recovery
problem. These methods are built with constraints obtained
by hand-crafted design, which may not be adaptive enough to
model the complicated signal characteristics of various kinds
of images. Therefore, their results might inevitably involve
noises, over-exposed and under-exposed local regions.

C. Deep Learning-Based Image Enhancement
Inspired by the impressive performance of deep neural

networks in low-level vision tasks, a series of deep learning
based low light enhancement models have been developed.
Lore et al. [12] made the first attempt in this trail by devel-
oping a deep auto-encoder named Low-Light Net (LLNet) for
contrast adjustment and noise removal. Subsequently, different
networks [6], [15], [16], [33], [34] towards this goal have
been proposed. In [33], [35], [36], the multi-scale features
are injected into the multi-branch architecture to form bet-
ter low-light enhancement results. Attempts have also been
made to build paired low/normal-light datasets for the model
training [6], [12], [16]. Diversified losses are utilized to help
train the enhancement model, such as MSE [12], SSIM [6],
and compound loss [16]. In [33], [34], [37], Retinex structure
is incorporated into the design of effective deep neural net-
works, to equip with the advantages of Retinex-based methods,
i.e. good signal structure, as well as deep learning-based
methods, i.e. the general effective priors extracted from the
large-scale training data. In [14], [48], the layer decomposition
and separated processing are used to better model the image
structure (low-frequency component) and texture detail (high-
frequency component). In [50], dark regions are precisely

detected by a new visual attention module and the brightness
is adjusted to maintain the color, tone, and brightness of the
input images and prevent normally illuminated areas from
being saturated and distorted. The results and performance of
these methods, trained on the paired dataset, could be largely
dependent on the used training dataset. As the synthetic data
could not fully account for the degradation in real application
scenarios and practically acquired paired data cover limited
scenes, there is still a large gap between the results of these
methods and satisfactory quality.

In [17], [38], adversarial learning is utilized to capture
the statistical characteristics of visual signals beyond the
traditional metrics. In particular, for EnlightenGAN [17],
Jiang et al. applied the unpaired learning to train a low-light
enhancement model, which gets rid of paired dataset con-
struction and addresses the domain shift problem between the
limited training data and practical applications in the wild.
In [49], the light enhancement problem is formulated as a
task of image-specific curve estimation with a deep network.
Pixel-wise and high-order curves are estimated for dynamic
range adjustment of the input low-light image. In addition,
efforts have also been devoted to deep-learning based image
enhancement from raw images [13], as well as joint low-light
image enhancement and high-level visual understanding such
as face detection [39] and object detection [40].

In our work, we concentrate on perceptual quality improve-
ment of low-light images in RGB format. Compared with pre-
vious relevant studies, we build a semi-supervised framework.
In our framework, useful knowledge is creatively used to offer
joint perceptual guidance via a quality assessment network.
In particular, the quality assessment network is learned from
a large collection of natural images with human annotated
MOS values for both structural detail modeling and global
illumination, color and contrast recovery.

III. DRBN FOR SEMI-SUPERVISED LOW-LIGHT

IMAGE ENHANCEMENT

A. Motivations

1) Recursive Band Learning: The training data in the paired
form is capable of offering signal fidelity constraint with
strong capability to recover the signal structure details. Herein,
we adopt a recursive band learning to recover structural detail
with the paired training. In addition to the enhanced image
ŷ, a variety of band representations

{
�ŷT

s1
,�ŷT

s2
, . . . ,�ŷT

sn

}
are also produced progressively from a low-light image x ,
where ŷ = ∑n

i=1 ŷT
si

and si indicates the order of the band
representation. �ŷT

si
is learned by fully-supervised learning on

paired low/normal-light data, such that the high-order band ŷT
si

depends on the low-order one ŷT
si−1

.
2) Facilitating Recursive Band Representation with Adver-

sarial Learning: Relying on signal fidelity constraint in the
first stage only cannot fully guarantee the visual quality. There-
fore, in the second stage, the learned band representations
are recomposed, leading to better visual quality from the
perspective of visual perception,

ŷ =
n∑

i=1

wi

(
x,

{
�ŷT

s1
,�ŷT

s2
, . . . ,�ŷT

sn

})
�ŷT

si
(x) , (1)
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Fig. 1. Illustration of the proposed DRBN consisting of recursive band learning and band re-composition. In the first stage, a coarse-to-fine band representation
can be obtained in a recursive process, such that different band signals are jointly inferred. The enhancement result from the last recurrence is further leveraged
as the guidance of the next recurrence, making the later recurrence learn the residue in the feature and signal domains at different scales. In the second stage,
the band representation improves perceptual quality based upon a neural network which is responsible for image quality assessment.

where wi (·) is the learned weighting factors in the recompo-
sition process, which aims to recompose band signals of an
enhanced image. In this manner, well-reconstructed images
with better perceptual quality can be obtained which are
characterized with abundant structural details, little noise,
superior contrast, illumination, and color distributions.

B. Deep Recursive Band Network

1) Architecture: As illustrated in Fig. 1, there are two
modules in our framework, including recursive band learning
(learning from paired data), and band recomposition (learning
from unpaired data). In the recursive band learning, DRBN is
built to generate an image with normal-light with the guidance
of the low-light input recursively. The output of the previous
recurrence leads to the intermediate estimation which can
be regarded as the guidance input of the next recurrence,
such that all band estimations are tied together and jointly
optimized. The DRBN employs the residual learning in both
feature and signal domains, such that the latter recurrence only
accounts for estimating the residual features and images to
obtain better estimations. In this manner, structural details are
better modeled with the later recurrence with the suppression
of noise. In each recurrence, a variety of coarse-to-fine band
representations are obtained and subsequently merged into the
enhancement results. Such band representation is effective in
terms of the fidelity priors learned from the paired images and
the natural scene statistics from high-quality images. In the
band re-composition, we feed-forward the band representation
into another network to generate a set of transformation coef-
ficients, which manipulate and fuse these bands linearly. An
image quality assessment network determining the perceptual
quality of a given image, is utilized to provide the feedback
to the enhancement network as guidance. A set of natural
images with human annotated MOS values are used to train

the quality assessment network which aims at extracting the
prior natural scenes statistics and inferring the preference in
terms of human visual perception. In this way, the overall
promising enhancement results from the perspective of both
signal fidelity and perceptual quality can be obtained.

2) Recursive Band Learning: The intrinsic mapping that
could be learned from paired data learning is leveraged to
recover each band of an enhanced image. The band learning
networks (BLN) based upon a series of U-Net like deep neural
networks are established, as shown in Fig. 1. In each BLN,
the input formed by the concatenation of x and the enhanced
image of the last recurrence ŷt−1

s3
is projected into the fea-

ture space. Subsequently, the features are transformed with
several convolutional layers. In intermediate layers, we first
down-sample the spatial resolutions of features and then
up-sample them via stride convolutions and deconvolutions.
Skip connections are used to link the features with the same
spatial resolution from shallow layers to deep layers, making
the local information that is contained in the features gener-
ated by shallow layers reach the output feature. Each BLN
generates three features at the scales s1 = 1/4, s2 = 1/2 and
s3 = 1.

For convenience, the first recurrence of the recursive
learning is given by,[

g1
s1

, g1
s2

, g1
s3

]
= G1

BLN_G (x) ,[
β1

si
, h1

si

]
= Gi

LSTM

(
g1

si
, h0

si

)
, i = 1, 2, 3,

g̃t
si

= gt
si

+ β1
si
, i = 1, 2, 3,

ŷ1
s1

= G1
R_s1

(
g̃1

s1

)
,

ŷ1
s2

= G1
R_s2

(
g̃1

s2

)
+ GU

(
ŷ1

s1

)
,

ŷ1
s3

= G1
R_s3

(
g̃1

s3

)
+ GU

(
ŷ1

s2

)
, (2)
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where g1
s1

, g1
s2

, g1
s3

denote features extracted from x at their
corresponding scales. Moreover, g̃1

s1
, g̃1

s2
, g̃1

s3
are features aug-

mented by LSTMs. G1
BLN_G (·) denotes the feature extraction

process, and G1
R_s1

(·), G1
R_s2

(·) and G1
R_s3

(·) indicate projec-
tion of the augmented features back to the image domain at
the corresponding scales. Herein, GU (·) is the up-sampling
process. As such, the image is first reconstructed at the
roughest scale s1, then at finer scales the residual signals are
predicted to compose the whole.

Our convolution LSTM unit Gi
LSTM (·) consists of an input

gate ji
t , a forget gate f i

t , an output gate oi
t as well as a cell

state Ci
t . Given the input Xi

t = gt
si

and the cell state as well as
the output feature

[
Ci

t−1, Hi
t−1

] = ht−1
si

in Eqn. (2) and (3),
the interaction between states and gates along the temporal
dimension t is defined as follows:

ji
t = σ

(
Wi

x j ∗ Xi
t + Wi

h j ∗ Hi
t−1 + bi

j

)
,

f i
t = σ

(
Wi

x f ∗ Xi
t + Wi

h f ∗ Hi
t−1 + bi

f

)
,

Ci
t = f i

t � Ci
t−1 + ji

t � tanh
(

Wi
xc ∗ Xi

t +Wi
hc ∗ Hi

t−1+bi
c

)
,

oi
t = σ

(
Wi

xo ∗ Xi
t + Wi

ho ∗ Hi
t−1 + bi

o

)
,

Hi
t = oi

t � tanh
(

Ci
t

)
,

where W and b are learnable weights and biases in LSTM,
respectively. The operators ∗ and � denote the convolution
and element-wise multiplication . At the output end, we have:
β t

si
= Hi

t and ht
si

= [
Ci

t , Hi
t

]
.

Subsequently, at the t-th recurrence, only the learned resid-
ual features and images are guided by previously estimated
results. x and previously estimation ŷt−1

s3
are concatenated and

regarded as the input as follows:
[
�gt

s1
,�gt

s2
,�gt

s3

] = Gt
BLN_G

(
x, ŷt−1

s3

)
,

gt
si

= �gt
si

+ gt−1
si

, i = 1, 2, 3,[
β t

si
, ht

si

] = Gi
LSTM

(
gt

si
, ht−1

si

)
, i = 1, 2, 3,

g̃t
si

= β1
si

+ gt
si
, i = 1, 2, 3,

ŷt
s1

= Gt
R_s1

(
g̃t

s1

)
,

ŷt
s2

= Gt
R_s2

(
g̃t

s2

) + GU
(
ŷt

s1

)
,

x̂ t
s3

= Gt
R_s3

(
g̃t

s3

) + GU
(
ŷt

s2

)
. (3)

As such, all band features are closely connected, forming a
joint optimization of all bands. At the final recurrence T (set
to 4 in our work), the reconstruction loss is given by,

LRect = −
(
φ

(
ŷT

s3
, y

)
+ λ1φ

(
ŷT

s2
, FD (y, s2)

)

+ λ2φ
(

ŷT
s1

, G D (y, s1)
))

, (4)

where G D(·) is the down-sampling process given the scaling
factor si . φ (·) is the calculation of quality in terms of structural
similarity index (SSIM) [41]. Moreover, λ1 and λ2 denote the
weighting factors.

Overall, there are three main characteristics for our recursive
band learning that benefit the performance of the enhancement
task,

• The low-order band in the current recurrence is influenced
by the high-order one based on the inference from the last
recurrence. As such, the relationship between the low and
high-order bands is bi-directional, since the high-order
bands can offer useful guidance for low-order bands
recovery.

• The recursive estimation makes different bands learn to
adjust their estimations with the guidance of previous
estimations of all bands.

• The recursive learning boosts the modeling capacities.
The later recurrence only is expected to recover the
residue signals with the guidance of the estimation from
previous recurrences. Hence, accurate estimations can be
acquired with the attention paid to fine structural details.

3) Band Recomposition: Based upon the paired data learn-
ing, the band recovery process is performed by convert-
ing from the low-light images to the normal-light images,
which reliably restores structural details and suppresses noise.
However, it has been widely acknowledged that the signal
fidelity cannot fully account for the characteristics of human
visual perception, especially due to the widely acknowledged
gap in terms of global statistics such as lighting and color
distribution. Therefore, our model learns to recompose the
restored band signals with the perceptual guidance via learning
based perceptual quality assessment model trained with an
aesthetic quality assessment image dataset. The images in
the aesthetic visual analysis dataset AVA [20] are labeled
with MOS values which characterize prior statistics of natural
scenes that effectively measure the preference in terms of
human visual perception. We utilize another U-like network
to model the recomposition process GRC (·) to produce the
coefficients used for recomposing the band signals as follows,

{w1, w2, w3} = GRC

({
�ŷT

s1
,�ŷT

s2
,�ŷT

s3

})
,

ŷ F
3 =

3∑
i=1

wi�ŷT
si
,

�ŷT
si

= ŷT
si

− GU

(
ŷT

si−1

)
, i = 2, 3,

�ŷT
s1

= ŷT
s1

, (5)

where ŷ F
3 is trained based on the following three loss func-

tions,

LDetail = −φ
(

ŷ F
3 −y

)
, (6)

LPercept =
∥∥∥GP(ŷ F

3 ) − GP(y)
∥∥∥2

2
, (7)

LQuality =
∥∥∥D

(
ŷ F

3

)
− lr

∥∥∥2

2
, (8)

Herein, D(·) is a neural network-based quality predictor [42]
trained with AVA dataset [20], which effectively measures the
probability that ŷ F

3 is perceptually preferred. lr is set to 10
(10 representing the best quality). GP(·) is the process to
extract deep features from a pretrained VGG network.

In this stage, the whole loss function is given by,

LSBR = LPercept + λ3 LDetail + λ4 LQuality, (9)

where λ3 and λ4 denote weighting factors.
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TABLE I

QUANTITATIVE PERFORMANCE COMPARISONS ON IMAGES FROM LOL-Syn DATASET. EG DENOTES ENLIGHTENGAN

TABLE II

QUANTITATIVE PERFORMANCE COMPARISONS ON IMAGES FROM LOL-Real DATASET. EG DENOTES ENLIGHTENGAN

4) Summarization: In the DRBN, the band representation
learning is first performed. Then, we make each band sig-
nal learn to be recovered based on the guidance of the
paired dataset, to ensure both signal fidelity and structural
detail recovery. Subsequently, we perform band recomposition
to further improve the visual quality of enhanced images
based upon the perceptual guidance provided by a neural
network-based quality assessment model trained with aesthetic
quality assessment dataset, where a large number of natural
images with MOS labels serve as the guidance information
for extracting natural scene statistics.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed scheme is
validated through both quantitative and qualitative evaluations.
Moreover, the results and analyses based on ablation studies
are also shown in an effort to provide more useful evidence
regarding the effectiveness of the proposed scheme.

A. Experimental Setting

To comprehensively evaluate the proposed method, images
of diverse content are adopted. In particular, the LOL dataset
with actually acquired low and normal light images [34]
are used for objective and subjective evaluations. The
compared methods include Bio-Inspired Multi-Exposure
Fusion (BIMEF) [43], Brightness Preserving Dynamic His-
togram Equalization (BPDHE) [21], Camera Response Model
(CRM) [44], Differential value Histogram Equalization Con-
trast Enhacement (DHECE) [24], Dong et al.’s method [45],
Exposure Fusion Framework (EFF) [15], Contrast Limited
Adaptive Histogram Equalization (CLAHE) [46], Low-
Light Image Enhancement via Illumination Map Estima-
tion (LIME) [8], Multiple Fusion (MF) [7], Multiscale
Retinex (MR) [26] Joint Enhancement and Denoising Method
(JED) [11], Refined Retinex Model (RRM) [10], Simultaneous
Reflectance and Illumination Estimation (SRIE) [9], Deep
Retinex Decomposition (DRD) [34], Deep Underexposed
Photo Enhancement (DeepUPE) [16], Single Image Contrast

Enhancer (SICE) [14], and EnlightenGAN [17]. In addition,
we also provide the results of NPE [6] and DICM [23] for
visual quality comparisons.

B. Implementation Details
There are two stages in training the network. In the first

stage, we optimize the deep neural network with the Adam
optimizer [47] and the learning rate is set to 0.0001. The
cropped image size and batch size are set to be 256×256 and 4,
respectively. Regarding the second stage training, the generator
and discriminator are also trained with the Adam optimizer.
The learning rates of the generator and discriminator are set to
0.0001 and 1e-6, respectively. We set the cropping image size
and batch size for training to 320×320 and 1, respectively. The
parameters of λ1, λ2, λ3, and λ4 are set to 0.1, 0.1, 0.01 and
1, respectively. Moreover, the LOL dataset [34] is split for
training and testing. In the first stage, 300 epochs are allowed
and by contrast 30 epochs are allowed in the second stage.
The first module (BLN) is fixed in the second stage training.
After 200 epochs in the first stage training, the learning rate
drops by 0.5. The hyper-parameters of Adam optimizer are set
with β1 = 0.9, β2 = 0.999 and ε = 1e − 8.

C. Evaluation Criteria
First, quantitative evaluations are performed for perfor-

mance comparisons based on three objective evaluation met-
rics, including Peak Signal-to-Noise Ratio (PSNR), SSIM [41],
and SSIM based on the corresponding Gamma corrected
results (SSIM-GC). PSNR implies the fidelity of between
normal light image and the enhanced image, and SSIM empha-
sizes more on image structures by taking the majority of qual-
ity degradation as a perceived change in structural direction. In
the low-light enhancement task, the average illumination level
is difficult to be predicted. Therefore, the degradation of details
might not be well captured by PSNR and SSIM, motivating the
introduction of SSIM-GC. In this metric, we first correct the
global illumination via the Gamma transformation and then
calculate the corresponding SSIM index to inspect the detail
restoration capacity of different methods.
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Fig. 2. Visual quality comparisons of different methods. Left part: the original results. Right part: the results corrected by Gamma transformation for better
visibility.

D. Quantitative Evaluations

In Table II, it is shown that our method is superior in the
capacity of both structure recovery and illumination restoration
based on the adopted metrics. Better results in terms of
SSIM-GC also demonstrate our superiority when the global
illumination is deducted. Moreover, the EnligtenGAN, SICE
and CRM can also obtain superior PSNR values, indicating
that they have already well restored the global illumination.
The SSIM and SSIM-GC results of other methods imply
their limitations on repairing structural details and stretching
contrast, which has also been clearly confirmed in the latter
qualitative evaluations.

E. Qualitative Evaluations

Extensive qualitative evaluations are conducted in
Figs. 2 and 3. The results demonstrate that, compared
to the state-of-the-art methods, our DRBN obtains superior
performance in terms of both qualitative and quantitative
evaluations. Generally speaking, most previous methods fail
to well restore global structures and illumination. DHECE,
NPE, EnlightenGAN, and LIME well estimate the global
illumination. However, the burred noise is unintentionally
amplified in their results. RRM, JED, MF, and UPE suffer
from poor visibility and under-exposure. In their Gamma
corrected results (right parts), we observe noise in the results
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Fig. 3. Visual quality comparisons of different methods. Left part: the original results. Right part: the results corrected by Gamma transformation for better
visibility.

of JED and RRM. However, for these two methods the
quality in terms of contrast is not satisfactory. Comparatively,
our method obtains appealing visual quality, visually pleasing
color distribution and illumination, as well as sharp and clean
details.

F. Ablation Study
An ablation study is further conducted based on our

two-stage design in Figs. 4 and 5. From Fig. 4, comparing the
results before and after the band recomposition, more colorful
results and better boosted contrast can be obtained. Benefiting
from the quality prior for guidance, the quality as well as
overall visibility even outperform the ground-truths (bottom
rows). From Fig. 5, it is observed that our method is better

at handling under-exposed and over-exposed regions, such as
the light spot in Fig. 5 (a), the screen border in Fig. 5 (b),
the face areas in Fig. 5 (c), and the sky region in Fig. 5 (d).

G. Visualization of Recursive Band Learning and Band
Recomposition

The learned band representations and the weighting masks
for band recomposition are visualized in Figs. 6 and 7,
respectively. It is obvious that the proposed RBL effectively
extracts a series of coarse-to-fine layered representations.
Subsequently, the band signals could be adaptively recon-
structed with band recomposition. By comparing the weighting
maps from different bands, it can also be observed that the
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Fig. 4. Ablation study for the two-stage design. The top row: low-light images. The second row: the results without perceptual guidance. The third row: the
results with perceptual guidance. The bottom row: normal light images.

higher-order weighting maps are sparser with more focus on
edges and structures.

H. Ablation Study for Recursive Band Learning

We perform the ablation studies for Recursive Band Learn-
ing quantitatively. In particular, five alternative versions are
compared.

• Version 1 (RBL-v1) does not include the recursive
processing (only once prediction) and multi-scale loss
constraint, by replacing Eqn. (4) as follows,

LRect = −φ
(

x̂ T
s1

, x
)

. (10)

• Version 2 (RBL-v2) additionally includes the multi-scale
loss constraint.

• Version 3 (RBL-v3) includes the recursive processing but
without the feature bypass connection and the recursive
input, by replacing Eqn. (3) as follows,
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• Version 4 (RBL-v4) includes the recursive processing and
the recursive input without the feature bypass connection,
by replacing Eqn. (3) as follows,[
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• Version 5 (RBL-v5) includes the recursive process-
ing, recursive input and feature bypass connec-
tion without introducing the feature augmentation by
LSTMs:[
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• Version 6 (RBL-v6) is the full version and includes
the recursive processing, recursive input, feature bypass
connection and the feature augmentation by LSTMs.
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Fig. 5. Ablation study for the two-stage design. The top row: low-light images. The second row: the results without perceptual guidance. The bottom row:
the results with perceptual guidance.

Fig. 6. Visualization of the learned bands by our DRBN. RBL denotes the recursive band learning.

To better reflect the average performance of the six versions,
their average performance is calculated in the last 50 epochs
(250-300 epochs). The results are showed in Table III.
Comparing RBL-V1 to RBL-V2, it is clearly observed that
the multi-scale loss results in the performance gains in
PSNR and SSIM. Comparing RBL-V3 and RBL-V4 to
RBL-V2, it is observed that, the recursive structure might not
achieve an improved performance, since RBL-V3 and RBL-V4

lead to performance drops in terms of PSNR and SSIM,
respectively. With both the bypass connection and recur-
sive input, RBL-V5 acquires performance gains in terms
of both PSNR and SSIM. With the additional fea-
ture augmentation by LSTMs, RBL-V6 achieves further
gains and the best results in PSNR and SSIM, which
demonstrates the effectiveness and rationality of our
RBL.
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Fig. 7. Visualization of the learned weighting maps for band recomposition. RBL and BR denote the recursive band learning and band recomposition,
respectively.

Fig. 8. Visual quality comparisons between quality-aware adversarial learning [19] and the proposed quality-guidance with assessment network. First row:
low-light images. Middle row: images obtained by quality-aware adversarial learning. Bottom row: images obtained by quality-guidance via assessment
network. Blue arrows: under-exposed details. Red arrows: over-exposed regions.

TABLE III

THE ABLATION STUDY FOR RECURSIVE BAND LEARNING (RBL)

I. Quantitative Evaluation Between DRBN [19] and DRBN
in this Work

We also compare the performance of preliminary confer-
ence version [19] and the proposed scheme on LOL-Real
in Table IV. It is obvious that the performance has been
improved with very close computational complexity.

TABLE IV

THE ABLATION STUDY OF DARK AND BRIGHT CHANNEL PRIOR

J. Visual Quality Comparison Between Quality-Aware
Adversarial Learning in [19] and the Proposed
Quality-Guidance with Assessment Network

We also compare the visual quality between quality-aware
adversarial learning [19] and quality-guidance with assess-
ment network. As shown in Fig. 8, it is observed that
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compared to quality-aware adversarial learning, the result
of the enhancement network with quality-guidance via the
assessment network is more visually promising, containing
less under-exposed regions (blue arrows) and over-exposed
details (red arrows).

V. CONCLUSION

In this paper, we have proposed a novel semi-supervised
learning based low-light image enhancement method which
absorbs the advantages of both synthetic paired low/normal-
light enhancement for fidelity recovery and unpaired
high-quality data for quality enhancement. To this end,
we develop a two-stage network that first restores the signal
based on fidelity and further enhances the quality to improve
overall viewing experience. The two-stage design enables
to obtain enhanced results with well-reconstructed structural
details and visually pleasing contrast and color distributions.
Qualitative and quantitative validations have provided useful
evidence regarding the superior performance of the proposed
approach.
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