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Abstract—Recent studies have made great progress on skeleton-
based action recognition. However, most of them are developed with
relatively clean skeletons without the presence of intensive noise.
We argue that the models learned from relatively clean data are not
well generalizable to handle noisy skeletons commonly appeared in
the real world. In this paper, we address the challenge of recognizing
human actions from noisy skeletons, which is seldom explored
by previous methods. Beyond exploring the new problem, we
further take a new perspective to address it, i.e., noise adaptation,
which gets rid of explicit skeleton noise modeling and reliance on
skeleton ground truths. Specifically, we develop regression-based
and generation-based adaptation models according to whether
pairs of noisy skeletons are available. The regression-based model
aims to learn noise-suppressed intrinsic feature representations by
mapping pairs of noisy skeletons into a noise-robust space. When
only unpaired skeletons are accessible, the generation-based model
aims to adapt the features from noisy skeletons to a low-noise
space by adversarial learning. To verify our proposed model and
facilitate research on noisy skeletons, we collect a new dataset Noisy
Skeleton Dataset (NSD), the skeletons of which are with much
noise and more similar to daily-life data than previous datasets.
Extensive experiments are conducted on the NSD, VV-RGBD and
N-UCLA datasets, and results consistently show the outstanding
performance of our proposed model.

Index Terms—Action recognition, noisy skeletons, regression
model, generative model, noise adaptation.

I. INTRODUCTION

HUMAN action recognition has been extensively studied
in recent years. It plays an important role in computer

vision with broad applications in human-machine interaction,
video surveillance and robotics.

In the past decades, many efforts have been devoted to action
recognition [1]. One important branch of this area focuses on
recognition based on RGB videos, while skeleton-based action
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recognition attracts much research attention more recently. As a
high-level human representation [2], skeleton data is essentially
2D/3D human joint coordinates, and invariant to background
and viewpoints. The robustness of skeletons and low data di-
mensions make it an ideal source to support real-time action
recognition algorithms. Moreover, with the prevalence of depth
cameras (e.g., Microsoft Kinect [3]) and the advance of pose
estimation technologies from RGB frames [4], skeleton data is
more accessible nowadays.

The key to the success of skeleton-based action recognition
lies on how to capture robust and discriminative features embed-
ded in the spatial configuration and temporal dynamics. There
have been many attempts leveraging the strength of deep neural
networks to achieve this task, including recurrent neural network
(RNNs) [5]–[7], the convolutional neural network (CNNs) [8],
[9], and graph neural networks [10]. Though these methods
achieve promising results, they are developed and evaluated on
the datasets with relatively clean skeletons1 [11]–[14]. How-
ever, skeletons in real life are always with much noise for many
reasons (e.g., occlusion, environment, etc.), resulting in heavy
degradation in skeleton-based human representations. It remains
unclear whether these models can well adapt to deal with ex-
tremely noisy skeletons for action recognition. Though there
are a few works taking skeleton noise into account for action
recognition [15]–[17], they model it as an independent skeleton
denoising problem as data preprocessing, and perform action
recognition based on the denoised skeleton data. However, we
argue that there might be two issues in the above pipeline:
� With various human skeleton capture conditions and de-

vices, it is hard to design a uniform and general skeleton
denoising method because how the ground-truth skeletons
degrade to noisy ones is unknown.

� Independent skeleton denoising does not guarantee bet-
ter action recognition performance, because filtering noise
(e.g., motion jittering) may eliminate critical action cues
for recognition.

In this paper, we tackle action recognition for noisy skele-
tons from a new perspective. Instead of skeleton denoising,
we regard it as a skeleton noise-adaptation problem. Consid-
ering the difficulties in collecting totally noise-free data, which
requires expensive motion capture systems, we explore differ-
ent models that can learn to extract noise-robust features with

1Due to the accuracy limit of capture devices and inevitable random errors,
skeleton data from experimental datasets is not totally clean and only called
relatively clean.
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paired or unpaired noisy skeletons. Specifically, we design a
regression-based adaptation model for paired noisy skeletons,
and a generation-based adaptation model for unpaired noisy
skeletons, respectively. In our paper, paired noisy skeletons re-
fer to pairs of two observed noisy skeletons of the same action
sequence, e.g., skeletons recorded from different viewpoints, un-
paired noisy skeletons refer to two skeleton sequences at differ-
ent noise levels, e.g., skeletons from real world and lab environ-
ment, and they do not have to be observations of the same action
sequence. The regression-based adaptation model aims to map
the multiple observed skeletons for a certain action sequence to
a noise-robust common space. In this process, the influence of
random noise is suppressed while intrinsic feature representa-
tions of skeletons are extracted. The generation-based model is
to model the distribution of skeletons with low-level noise (e.g.,
lab-environment skeletons), and then adapt feature embeddings
extracted from skeletons with high-level noise (e.g., real-world
skeletons) to a low-noise feature space by adversarial learning.

The main contributions of our paper can be summarized as
follows:
� We propose to address action recognition from noisy skele-

tons from the perspective of noise adaptation. We explore
regression-based and generation-based adaptation models
respectively to take full advantage of accessible skeleton
data.

� We collect a new dataset, Noisy Skeleton Dataset (NSD),
containing simultaneous skeleton sequences captured by
cameras set from surrounded viewpoints. The occlusion
leads to extremely noisy skeletons, which are much closer
to real-world data than previous datasets. Besides, we de-
sign a method to estimate the skeleton noise level.

� We make sufficient observations and analyses of our pro-
posed models, as well as state-of-the-art methods, and try to
provide some insights to inspire the community on recog-
nition from noisy skeletons and boost applications in the
real world.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the related works on skeleton-based action
recognition, skeleton datasets, and domain adaptation. In Sec-
tion III, we present more details of our newly-collected NSD
dataset and the skeleton noise estimation method. In Section IV,
we introduce the regression-based model for paired noisy skele-
tons and generation-based model for unpaired noisy skeletons,
respectively. Experiments and analysis are presented in Sec-
tion V. Conclusion remarks are finally given in Section VI.

II. RELATED WORK

A. Skeleton-Based Action Recognition

Earlier works for skeleton-based action recognition are gener-
ally based on hand-crafted features [13], [18]–[22]. More recent
works focus on models with deep neural networks [5], [7]–[9],
[23], [24]. Some works leverage the merits of recurrent neural
networks due to their powerful temporal modeling ability. Du
et al. [5] achieved the pioneering work with a hierarchical RNN

to process each body part. Song et al. [7] proposed an attention-
based LSTM network to improve discrimination of skeleton fea-
tures by automatically selecting important human joints and
video frames. Zhang et al. [24] developed a view-invariant
model, enabling the network to adapt to the most suitable obser-
vation viewpoints. To better handle the spatial-temporal features,
convolutional neural networks (CNNs) equipped with excel-
lent capacity in extracting high-level information are employed
in skeleton-based action recognition [8], [9]. By transforming
skeleton sequence into clips, a new representation was presented
in [8], and the clip images are processed with CNNs. Li et al. [9]
designed a hierarchical CNN model to learn joint co-occurrence
and temporal evolutions. Given that human skeletons are natu-
rally with graph structure, graph convolution neural networks are
recently explored to capture spatial structural information [10],
[25].

Though previous methods achieve promising results, they are
trained and evaluated on relatively clean skeletons. Recently,
a few works have paid attention to dealing with action recog-
nition from noisy skeletons [15]–[17]. All of them regard it
as a skeleton-denoising problem, which first apply linear or
non-linear transformation to filter skeleton noise and then per-
form action recognition. Suffering from the lack of ground-truth
clean skeletons, some of them [15], [16] are based on the prior
from the bio-constrained skeleton structure, and perform skele-
ton denoising with linear transformation. However, the linear
transformation based on human prior may not be optimal and
powereful enough for denoising. To tackle the above issues, De-
misse et al. [17] first proposed a non-linear denoising transfor-
mation based on an autoencoder. However, it is problematic by
only forcing the mean square loss between the noisy input and
reconstructed output, because it can easily converge to a trivial
solution (i.e., identical mapping). Besides, the unknown skele-
ton degradation process leads to difficulties in finding a general
denoising model and further facilitating action recognition. In-
stead, we regard action recognition from noisy skeletons as a
noise-adaptation problem to get rid of an explicit skeleton noise
modeling and reliance on the ground truth clean skeletons.

B. Dataset for 3D Skeletons

There are usually two sources for skeletons in datasets for
3D action analytics, i.e., motion capture system (MoCap) and
depth cameras. The skeletons from MoCap are quite accurate
because they are obtained by sensors stuck on the human body.
With the release of Microsoft Kinect [3], more datasets are col-
lected by different research teams [11], [12], [14], [26]. The
well-known NTU RGB+D dataset [11] recorded over 50 k skele-
ton sequences from multiple view points. The cameras in the
NTU RGB+D dataset are set mainly in the front with slight
view changes, and the actors perform different actions towards
the cameras. Though noises exist in these datasets, they are far
from those in the skeletons from real world, in which the actors
can suffer from heavy occlusions. We simulate the scenarios in
real-life, and the skeletons in our dataset are with much noise.
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C. Domain Adaptation

The domain gap between relatively clean and noisy skeletons
leads to the degradation of the models trained on relatively clean
skeletons. This is essentially a domain adaptation problem. One
of the major categories minimize Maximum Mean Discrepancy
(MMD) to narrow the domain shifts. Long et al. [27] proposed
a deep adaptation network (DAN) to project features in a kernel
Hillbert space and minimize the MMD in the project space.
In addition, Joint Maximum Mean Discrepancy (JMMD) [28]
is adopted to learn transferable features by aligning the joint
distributions of multiple layers. However, the work in [29] claims
that focusing only on the shared features leads to the ignorance
of individual characteristics.

Other methods use adversarial learning to perform domain
adaptation. The adversarial losses have been applied in the em-
bedding space [30], [31] and pixel space [32]–[35]. The main
idea of such approaches is to use generative models such as
GANs to perform cross-domain mapping. Inspired by these
methods, we use adversarial learning to utilize relatively clean
skeletons to facilitate the recognition from noisy ones. However,
the methods above map a shared feature to a specific domain.
They may ignore characteristics of each domain. Instead, we use
a residual compensation network to extract robust features.

III. NOISY SKELETON DATASET

A. Dataset Settings

Our dataset aims to provide noisy skeletons that consistent
with those in the real world. The noise in skeletons is largely due
to heavy occlusion caused by viewpoints. Thus, we set Microsoft
Kinect V2 cameras around the actors. The horizontal angles
of each camera are −120◦ (side view 1), 0◦ (front view), and
+120◦ (side view 2) with the height of 120 cm. Our dataset
provide simultaneous color images, depth maps, 3D joints and
IR frames. The data format is consistent with [11].

B. Dataset Details

We collect 1,009 untrimmed videos, each of which lasts about
1∼2 minutes and contains about 7 action instances. In total, there
are 6,952 trimmed action clips in 41 action categories. We invite
13 subjects and each subject takes part in 4 daily action videos.
Some sample frames can be viewed in Fig. 1. The actors perform
actions towards a random direction. Thus, in any case, the data
from one of the cameras suffer from heavy occlusion and thus
noisy skeletons.

C. Evaluation Protocol

We suggest two data splits (i.e., cross-subject and cross-view)
in our dataset.

Cross-Subject: Cross-subject evaluation aims to test the abil-
ity to handle intra-class variations among different actors. 10
subjects are chosen to be training samples and 3 for testing.

Cross-View: Cross-view evaluation aims to test the robust-
ness in terms of transformation (e.g., translation, rotation). The

Fig. 1. From left to right, we show sample frames in the NSD dataset captured
from the front view, side view 1, and side view 2, respectively. Skeletons are
with much noise due to occlusion caused by viewpoints. We show the skeletons
in their original coordinate system in green, and then manually transform them
for better visualization in blue.

videos from Camera #1 and #2 are chosen as the training set,
and those from Camera #3 are as the testing set.

D. Action Taxonomy

Our dataset contains 41 action labels, including health related
actions, home related actions, dressing related actions, interac-
tion with items and human locomotion.
• Health related (4): touch head (headache), touch

neck (neckache), touch back (backache), touch chest (stom-
achache/heart pain).
• Home related (5): brush teeth, comb hair, wipe face, drink

water, eat meal/snack.
• Dressing related (6): put on glasses, put on jacket, put on

a hat/cap, take off glasses, take off jacket, take off a hat/cap.
• Interaction with items (14): drop, write, read, pick up, take

a selfie, tear up paper, type on a keyboard, play with phone/tablet,
check time (from watch), use a fan (with hand or paper), make
a phone call/answer phone, point to something with finger.
• Human locomotion (14): bow, clap, throw, salute, fall, hop

(one foot jumping), sit down, stand up, cheer up, jump up, kick
something, hand waving, rub two hands together, cross hands in
front (say stop).

E. Skeleton Noise Estimation

Though it is difficult to obtain skeleton ground-truths, we de-
sign a method to estimate the skeleton noise level for our dataset.
With the development of pose estimation approaches, open-
pose [4] is able to accurately estimate 2D pose joints on RGB
frames. Therefore, we regard the 2D pose estimation results as
skeletal joint ground-truths, and then further estimate the skele-
ton noise level by projecting the 3D skeletons to the RGB frames.
More specifically, for a skeleton coordinate p = [x, y, z]T in our
dataset, we can get the corresponding coordinate p′ = [x,′ y′]T
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TABLE I
SKELETON NOISE ESTIMATION RESULTS FOR THE NSD AND NTU DATASETS,

RESPECTIVELY

Fig. 2. Offset maps for the NTU and NSD datasets, respectively. A brighter
point in the offset map indicates a larger number of joints. Note the offsets are
calculated based on pose coordinates without normalization.

in the RGB image with the camera parameter matrix M

[a, b, c]T = Mp, (1)

x′ = a/c, (2)

y′ = b/c. (3)

We then calculate an offset (dx, dy) with the pose estimation
result p̂ = [x̂, ŷ] for the given joint as

dx = ||N(x′)−N(x̂)||1, dy = ||N(y′)−N(ŷ)||1, (4)

where N is a normalization function that translates the body co-
ordinate system with its origin on the torso joint, and normalizes
the distance between the torso and head joints to 1. To estimate
the noise level, we calculate the mean and standard variation for
the offsets of all the joints, and compare them with those from the
NTU dataset. The results for each view and the overall dataset
are shown in Table I. Note that for the NTU dataset, we also re-
gard the pose estimation results from [4] as ground-truths, and
use the 2D coordinates provided by the dataset as 3D projected
results. From Table I, we observe higher mean and standard
variation values for the NSD dataset, indicating the skeletons
are much noisier than those from NTU. It is also noticed that,
for each dataset, the skeletons from the front view are less noisy
compared to those from side views.

We further visualize the offset maps in Fig. 2 for the NTU and
NSD datasets, respectively. We calculate the number of joints
for each (dx, dy). It is observed that points from NSD distribute
more evenly in the map, illustrating that the offsets towards
ground-truths are larger and thus the skeletons from NSD are
with more noise. It is also consistent with the results in Table I.

IV. NOISE ADAPTATION NETWORKS

A. Motivation

In this work, our goal is to mitigate the performance degra-
dation in action recognition caused by skeleton noise. However,
in reality it is challenging to model skeleton noise directly due
to the unavailability of totally clean skeletons. In this work, we
take a more accessible way, making full of available skeleton
data (i.e., paired noisy skeletons or unpaired skeletons at dif-
ferent noise levels) to mitigate the effect of captured skeleton
noise for action recognition via noise adaptation. There are usu-
ally two branches to tackle noisy data. One lies in the regression
model, which is able to converge to the expected value of mul-
tiple unreliable measurements for a true unknown target [36],
[37], another is the generative model with adversarial learning,
which is able to adapt data among different distributions [38],
[39] and deal with noisy inputs [40] or labels [41]–[43]. There-
fore, we are inspired to make efforts on noise adaptation for
action recognition along the above two routes.

B. Regression-Based Adaptation Model

From the perspective of regression model, we aim to learn the
noise-robust feature space from multiple skeleton measurements
of a certain action sequence. Though it is unfeasible and expen-
sive to collect ground-truths for noisy skeletons, we can easily
have a set of unreliable skeleton measurements {X1,X2, . . .}
for a certain action sequence, i.e., recording the sequences si-
multaneously with different cameras. Therefore, the training
set is considered as D = {(X1

1,X
1
2,y

1), . . ., (XN
1 ,XN

2 ,yN )},
where Xi

1 and Xi
2 denote the ith observed noisy skeleton pairs,

and yi ∈ {0, 1}c is a one-hot vector indicating the ground-truth
action label. To learn the common space, we constrain the l2
distance of sequence-level feature embeddings from a feature
encoder E(·) by minimizing

min
∑

i

||E(Xi
1)− E(Xi

2)||22, (5)

The goal of learning the common space is to suppress skele-
ton noise in the feature representations and further achieve noise
adaptation. More importantly, the learned feature space should
be optimal for action recognition at the same time. With a clas-
sifier C(·), we have to minimize the cross-entropy loss Lcls for
classification

min
∑

i

yi log p(Xi), (6)

where p(Xi) is the output of classifier C(·) indicating the clas-
sification probability for the given sequence Xi over all classes.

Instantiation. Fig. 3(a) shows an instantiation for the
regression-based noise adaptation network. To learn the noise-
robust feature space, we constrain the l2 distance of video-
level feature embeddings from an encoder E(·). We leverage
the merits of bidirectional GRU (BiGRU) networks in E(·)
to process skeletons, obtaining vl

1 = 1
T1

∑T1

t=1 h
l,t
1 and vl

2 =
1
T2

∑T2

t=1 h
l,t
2 as video-level representations from the lth BiGRU

layer, wherehl,t
1 ,hl,t

2 are hidden states from BiGRU layers. Then
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Fig. 3. Instantiations for action recognition from noisy skeletons. (a) Regression-based noise adaptation model. X1 and X2 are observed noisy skeletons for
a certain action sequence. (b) Generation-based noise adaptation model. X and Z are noisy and relatively clean skeleton sequences, respectively. (Note we omit
some losses for simplicity.).

we constrain the l2 distance of video-level feature embeddings
after each BiGRU layer. We adopt video-level features here for
two reasons: (1) Video-level features are able to encode tempo-
ral dynamics and spatial relationship at the same time, which are
both critical for action recognition. (2) Video-level features do
not require frame-wise paired skeletons. Thus, we do not need
to have T1 = T2, which is more practical and flexible. Then
the classifier C(·) consisting of a single fully connected layer
is learnt jointly with video-level features. Besides, we adopt a
parameter γ on the l2 distance term to balance its contribution.

C. Generation-Based Adaptation Model

In the regression model, paired noisy skeletons are required.
To go a step further, we explore to learn a noise adaptation net-
work from unpaired skeletons at different noise levels. We em-
ploy the generative model with adversarial learning to model the
distribution of relatively clean skeletons, and then adapt feature
embeddings corrupted by high-level noise towards those from
relatively clean data. In this scenario, the training data is a set
of noisy skeleton sequences with labels, and relatively clean se-
quences. It can be formulated as D = DX ∪ DZ, where DX =
{(X1,y1), . . ., (XNn ,yNn)}, and DZ = {Z1, . . .,ZNc}, Nn

and Nc are the number of samples for noisy and relatively clean
skeleton sequences, respectively. Note that we do not require
labels for relatively clean data in this scenario. We build upon
a standard action recognition model C ◦M , where M(·) is an
encoder to extract features from X for the classifier C(·) to
make the prediction. To incorporate the adapted feature embed-
dings, we further use E(X) ∼ pclean to compensate M(X) by
h(M(X), E(X)), where h is a pre-defined compensation func-
tion.

Instantiation. Fig. 3(b) shows an instantiation of our idea for
action recognition with a generative adversarial network. It in-
cludes a main network M(·), a classifier C(·), an encoder E(·),
a decoder G(·), discriminators Dd(·) and Dc(·). This model
adapts skeleton features with high-level noise into the low-level

noise space by adversarial learning, which is achieved withE(·),
G(·), Dd(·) and Dc(·). The encoder E(·) is encouraged to learn
an embedding robust to noise, by generating skeletons withG(·)
to confuse discriminators. There are two components in the dis-
criminator:Dd(·) is a binary classifier to indicate the probability
of its input being relatively clean skeletons, and the other is a
C-way classifier Dc(·) that models the class probability distri-
bution of its input, forcing E(·) and G(·) encoding action in-
formation in the generated skeletons to avoid mode collapse. To
adapt the high-level noisy features to the low-level noisy space,
the encoder E(·) and the decoder G(·) are trained to generate
clean skeletons from high-level noisy input to confuse the dis-
criminator Dd(·).

For feature compensation, we have h = M ⊕ E, where the
original feature from M(·) is compensated as M(X) + E(X).
To further boost action recognition performance in testing, we
integrate the results from C(·) and Dc(·), and the final result is
given by C(M(X) + E(X)) +Dc(G(E(X))).

During training, the network is optimized iteratively due to
their mutual influence of each part. The optimization procedure
is described as follows:

Step 1: We optimize the binary classifier Dd, which is for
judging the input being real or fake, by maximizing a least square
adversarial loss [44] LD

adv

LD
adv = max

Dd

EZ∼pclean(Z)[1−Dd(Z)]
2

+ EX∼pnoisy(X)(Dd(G(E(X))))2. (7)

We optimize Dc by minimizing the cross-entropy loss LD
cls for

reconstructed X

LD
cls = min

Dc

− log(Dc(G(E(X)))y). (8)

Thus, the objective function for discriminators can be formulated
as

LD = LD
adv + LD

cls. (9)
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Algorithm 1:Training details of the integrated framework.
1: Require: relatively clean skeleton sequences for

training {Zi}, noisy skeletons for training {(Xi,yi)},
main network M(·), classifier C(·), encoder E(·),
decoder G(·), discriminators Dc(·) and Dd(·), training
iterations N , learning rate lr

2: FOR t = 1,..., N DO
3: Forward the network
4: Update Dc(·) and Dd(·) by minimizing (9) with

learning rate 0.5× lr.
5: Update E(·) and G(·) by minimizing (13) with

learning rate lr.
6: Forward the network
7: Update E(·), M(·) and C(·) by minimizing (14). Note

M(·) and C(·) are updated with learning rate 10× lr,
while E(·) is updated by a learning rate lr.

8: END

Step 2: With the gradient from Dd(·) and Dc(·), we update
G(·) andE(·) with an adversarial loss to produce realistic skele-
tons.

LG
adv = min

G
EX∼pnoisy

[1−Dd(G(E(X)))]2. (10)

To avoid mode collapse, that the decoder always generates mean
skeleton sequences, we employ a content loss between the rela-
tively clean input and its reconstruction from G(·).

LG
cont = ||G(E(Z))− Z||22. (11)

Besides, we add a classification loss to produce class consistent
skeletons with the input noisy skeletons.

LG
cls = min

G,E
− log(Dc(G(E(X)))y). (12)

Therefore, the objective function for G(·) is given by

LG = min
G,E

LG
adv + LG

cls + LG
cont. (13)

Step 3: Finally we updateM(·),E(·) andC(·) in a supervised
manner for noisy skeletons.

Lcls = min
E,M,C

− log(C(M(X) + E(X))y). (14)

The training details of the integrated framework are summarized
in Algorithm 1 to avoid fast convergence of discriminators.

V. EXPERIMENTS

A. Experimental Settings

We evaluate our instantiated models with the Noisy Skeleton
Dataset (NSD) collected by ourselves, Varying-View RGB-D ac-
tion dataset (VV-RGBD) [45] and Northwestern-UCLA dataset
(N-UCLA) [26].

Noisy Skeleton Dataset (NSD). The detailed configuration
for NSD can be found in Section III. For the evaluation protocol,
we suggest cross-subject (CS) and cross-view (CV) splits for our
dataset.

Varying-View RGB-D action dataset (VV-RGBD). The
VV-RGBD dataset consists of 25,600 videos observed from 8
fixed viewpoints and the entire 360◦ view angles. There are 40
action categories performed by 118 actors. Each body has 25
skeletal joints in 3D coordinates. We follow the protocols of
cross-subject (CS) and cross-view II (CV) defined in [45] in our
experiments.

Northwestern-UCLA dataset (N-UCLA). This dataset in-
cludes 1,494 videos in 10 action categories performed by 10
subjects. Each body has 20 skeletal joints in 3D coordinates. We
use videos from the first two views for training and those from
the third view for testing following [26].

All of above datasets provide synchronous skeletons cap-
tured from large varied viewpoints, providing multiple observed
skeletons for the regression-based adaptation model. For the
generation-based model, we use the skeletons from the front
view of well-known NTU RGB-D dataset [11] as relatively clean
data. On the one hand, there is less occlusion from the front
view in recording process so we have less noisy skeletons. On
the other hand, the large scale of the NTU dataset makes it a
reliable source as an estimation of clean data distribution, even
with some random noise.

Implementation details. During training, we use the Adam
optimizer [46] to adjust the learning rate, which is initially set
as 0.0002. The batch size is set as 16, 128, 16 for the NSD,
VV-RGBD and N-UCLA datasets, respectively. To eliminate
the viewpoint variation [6], [7], we conduct frame-level normal-
ization by manually rotating each skeleton to the front view and
translate it to the body coordinate system with its origin on the
‘torso’ joint. The number of neurons for each BiGRU and GRU
layer in Fig. 3 is 100×2 and 100, respectively.

B. Results and Comparisons

In this section, we evaluate and compare our proposed model
with several state-of-the-art methods on each dataset.
• Baseline. A simple network with three BiGRU layers and a

fully connected layer without any noise-adaptation feature learn-
ing.
•R-NAN. Regression-based noise adaptation network instan-

tiated in Fig. 3(a).
•G-NAN. Generation-based noise adaptation network instan-

tiated in Fig. 3(b).
Noisy Skeleton Dataset (NSD). Table II shows the action

recognition results in terms of accuracy. In the regression-based
model, through mapping multiple observed skeletons into a com-
mon space, R-NAN effectively improves the baseline model
by 4.6% and 5.9%. In the generation-based model, G-NAN
improves the baseline results by 4.8% and 1.7%, by learning
the distribution of low-level skeleton noise. We also implement
several state-of-the-art skeleton-based action recognition meth-
ods to see whether these models can handle extremely noisy
data, the results of which can be viewed in Table II. It is chal-
lenging for attention-based action recognition methods (i.e.,
STA-LSTM [7], ST-GCN [10]) to learn attention patterns from
noisy skeletons, since noise could mislead the determination on
the attention weights. TPN [47] and VA-LSTM [24] also fail
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TABLE II
PERFORMANCE COMPARISON IN TERMS OF ACCURACY (%) ON THE NSD

DATASET

TABLE III
PERFORMANCE COMPARISON IN TERMS OF ACCURACY (%) ON THE VV-RGBD

DATASET

to extract discriminative features due to the interference from
noise. Though Denoised-LSTM [17] performs explicit skeleton
denoising using pose-encoding auto-encoders, they oversmooth
skeletons and fail to preserve action details as aforementioned.
Even compared with these state-of-the-art methods [48], [49],
both regression-based and generation-based adaptation mod-
els achieve significant improvement on action recognition from
noisy skeleton data.

Varying-View RGB-D action dataset (VV-RGBD). We
present action recognition results on the VV-RGBD dataset
in Table III. In regression-based adaptation model, R-NAN
achieves gains of 2.2% and 8.2% over the baseline results with
CS and CV splits, respectively. In generation-based adapta-
tion model, G-NAN achieves gains of 3.0% and 4.8% over the
baseline results with CS and CV splits, respectively. Moreover,
R-NAN and G-NAN outperform most of the state-of-the-art
methods, indicating that the noise-adaptation models can bet-
ter deal with skeleton noise in action recognition. It is observed
that SGN [49] shows the best performance. We argue that SGN
benefits from score fusion during inference.

Northwestern-UCLA dataset (N-UCLA). Table IV shows
the results for action recognition in terms of accuracy on the
N-UCLA dataset. R-NAN and G-NAN achieve better results
than the baseline model by 2.2% and 2.4%, respectively, which
suggests that the networks better extract discriminative features
for action recognition. We also achieve remarkable performance
in comparison with other state-of-the-arts.

TABLE IV
PERFORMANCE COMPARISON IN TERMS OF ACCURACY (%) ON THE N-UCLA

DATASET

From Table II, Table III and Table IV, it is observed that
R-NAN outperforms G-NAN in most cases. We explain it as
that, R-NAN maps paired data into the common feature space
to suppress the noise in the feature representations. However,
G-NAN tries to adapts noisy skeleton features into the relatively
clean skeleton feature space with unpaired data. Compared to G-
NAN, R-NAN achieves more specific noise adaptation in a finer
granularity, and therefore better action recognition performance.

C. Model Analysis

1) Comparisons With Two-Stage Solutions: We first illus-
trate the superiority of our proposed noise adaptation models
compared with two-stage solutions (i.e., performing skeleton de-
noising and then action recognition) through the experiments on
the NSD dataset. According to the accessibility of noisy skele-
tons, we explore the following skeleton denoising methods. The
detailed structure and loss functions can be found in Fig. 4. For
paired noisy skeletons, we adopt a regression-based skeleton
denoising method:
•Regression-based Skeleton Denoising (R-SD). Borrowing

the idea from [36], we regress the feature embeddings from
two measurements of the same action sequence, and reconstruct
input skeletons to avoid mode collapse.

For unpaired noisy skeletons, we investigate two different
models:
• Pose-Encoding Auto-Encoders (PE-AE). This work

in [17] models skeleton denoising as a non-linear pose variation,
and solves it with an autoencoder by minimizing a reconstruc-
tion error.
• Generation-based Skeleton Denoising (G-SD). Another

alternative for unpaired skeleton denoising is to employ a gen-
erative model with adversarial learning. We adopt the bottom
stream in Fig. 3(b) to filter skeleton noise.

Note that after each skeleton denoising method, we apply
the same recurrent network with three BiGRU layers to achieve
action recognition. Each layer has 100 neurons.

The results for two-stage solutions are shown in Table V. It is
interesting to see that, after skeleton denoising, the performance
of action recognition drops a lot under both CS and CV settings.
We also employ stronger action classifiers (i.e., STA-LSTM [7],
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Fig. 4. Detailed structures for the independent skeleton denoising models:
(a) R-SD, (b) PE-AE [17], (c) G-SD.

TABLE V
PERFORMANCE COMPARISONS IN TERMS OF ACCURACY (%) ON THE NSD

DATASET WITH TWO-STAGE SOLUTIONS FOR ACTION RECOGNITION

Fig. 5. Performance of state-of-the-art methods on the NSD dataset with skele-
tons denoised by G-SD.

TPN [47], VA-LSTM [24], ST-GCN [10]) with the same skele-
ton denoising method G-SD. The action recognition results are
shown in Fig. 5 and the same phenomenon is observed. It can
be explained through visualization of the denoised skeletons in

Fig. 6. Parameter sensitivity analysis on the NSD dataset.

Fig. 7. The results shown in Fig. 7(c)–(e) illustrate that inde-
pendent skeleton denoising methods (R-SD, PE-AE [17], and
G-SD) are able to correct the noisy joints, which are marked
with green arrows in Fig. 7(b). However, the denoised results
could lose some important cues for action recognition. For ex-
ample, they filter motion jittering on the hand and elbow for
the action of hand waving (3 rd row in Fig. 7(c)–(e)), making
it similar with taking a selfie (4th row in Fig. 7(c)–(e)), which
explains the degraded performance on action recognition.

Compared with two-stage solutions, the superior action recog-
nition results in Table V from R-NAN and G-NAN indicate
noise-adaptation learning is more effective. R-NAN is able to
learn a noise-robust feature space by regularizing feature embed-
dings from different measurements of a certain action sequence.
For G-NAN which is instantiated as Fig. 3(b), the upper stream
is able to keep the original information for action recognition
and the bottom stream suppresses irrelevant skeleton noises with
adversarial learning. Therefore, the poorly represented features
from noisy skeletons can be well compensated and then boost
action recognition performance. Fig. 7(f) visualizes the adapted
skeletons generated from the decoder of G-NAN in Fig. 3(b). It
is observed that G-NAN generates more discriminative skeleton
representations for action recognition, compared with indepen-
dent skeleton denoising methods. As marked by red arrows in
Fig. 7(f), it magnifies the hand motion for rubbing two hands, and
preserves the details between one’s neck and hand for touching
head. Besides, it successfully distinguishes taking a selfie and
waving hands by the details on the hand and elbow, that skele-
tons have the horizontal hand to take a selfie and bend the elbow
to wave.

2) Model Structure Analysis: We now analyze our
regression-based and generation-based model structures
for noise adaptation, respectively. In Fig. 6, we analyze the
parameter sensitivity for R-NAN, in which γ controls the
regularization of feature embeddings. Smaller γ may not be
powerful enough to regularize feature spaces from multiple
observed skeletons, while a larger γ would focus more on
feature space regularization but ignore preserving action details
in feature embeddings. By showing validation accuracy with
different values of γ on the NSD dataset, we conclude that our
result is not sensitive to γ for a range and set γ as 10 in our
experiments. For G-NAN, to confirm that our improvement
comes from noise adaptation rather than the change of model
structure from baseline, we provide fusion results (Baseline +
BiGRUs w/ G-SD) in Table V, and the fusion model has the
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Fig. 7. (a) RGB images, (b) original noisy skeletons, (c) denoised results by R-SD, (d) denoised results by PE-AE [17], (e) denoised results G-SD, (f) adapted
results by G-NAN. The skeletons are slightly rotated around their torsos for better visualization. Though R-SD, PE-AE and G-SD correct noisy skeletal joints
marked by green arrows, our adapted results show more discriminative representations for action recognition marked by red arrows.

same number of parameters as G-NAN. The higher performance
from G-NAN illustrates the effectiveness of noise adaptation.

In addition, experiments with more complex structures for
R-NAN are conducted. We replace the GRU unit in Fig. 3(a)
with the graph convolutional network (GCN) [10]. The results
are shown in Table VI. It is observed with more complex struc-
ture, we obtain better performance, illustrating that our noise
adaptation is generalizable and flexible to other structures.

3) Noise Adaptation vs. More Accurate Skeletons: We fur-
ther explore how much noise adaptation can compensate for
the performance degradation caused by skeleton noise, com-
pared with the action recognition performance when we have
more accurate skeletons or even ground-truths. To investigate
the problem, we analyze the action recognition performance

TABLE VI
COMPARISONS WITH DIFFERENT STRUCTURES FOR R-NAN

from each viewpoint under the cross-subject setting of our NSD
dataset. Note that the skeletons from different viewpoints are
captured simultaneously and thus they can be regarded as dif-
ferent measurements of certain action sequences. Since there
is less occlusion when recorded from the front view, the skele-
tons are more accurate than those from the side views. It is also
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Fig. 8. Average precision on each action category of baseline, R-NAN and G-NAN on the NSD (CS) dataset.

TABLE VII
PERFORMANCE COMPARISONS IN TERMS OF ACCURACY (%) FOR DIFFERENT

VIEWPOINTS IN NSD-CS

consistent with a higher baseline performance from front-view
data in Table VII. With noise adaptation, we obtain larger im-
provement for action recognition from side-view data, that the
performance is improved by 4.3%-10.5% for side views and
2.0%-2.2% for front view. It indicates that, though more accu-
rate skeletons will definitely lead to higher action recognition,
our proposed noise adaptation is able to largely compensate for
feature embeddings encoded from noisy skeletons, and then mit-
igate the performance degradation caused by skeleton noise.

4) Classification Analysis: We analyze our adaptation by
investigating their performance on each action category. We
show the average precision on each action category of baseline,
R-NAN, and G-NAN on the NSD dataset under the cross-subject
split in Fig. 8. R-NAN and G-NAN are able to enhance the
recognition for most of the action categories. For R-NAN, we
found recognition performance degradation for some action cat-
egories, such as rubbing two hands together and playing with
phone. It is mainly because these two actions look similar, es-
pecially when there is noise. R-NAN tends to encode them into
similar feature embeddings after regularizing the feature spaces
but makes the classifier confused. The performance of combing
hair and saluting is degraded for the same reason. For G-NAN,
it is found that the performance of recognizing actions brush-
ing teeth and touching chest is worse than the baseline. The
actors would be occluded by themselves whenever performing
these actions. With adversarial learning, the network is prone to
regard these skeletons as noisy ones and then adapt them. As a
consequence, the action patterns are not well preserved for these
actions.

5) Results on Relatively Clean Skeletons: Finally, to further
illustrate the ability of our model, we also test our method on
a general action recognition dataset, the NTU RGB-D dataset
(NTU) [11]. We use 256 units for each BiGRU layer. Table VIII
shows the results. Thanks to noise adaptation, our models consis-
tently outperform the baseline results for both settings. We also
compare with other state-of-the-art methods. With comparable

TABLE VIII
PERFORMANCE COMPARISON IN TERMS OF ACCURACY (%) ON THE NTU

DATASET

number of parameters, our models show superiority in the action
recognition performance even for relatively clean skeleton data.

VI. CONCLUSION

In this paper, we study the problem of action recognition from
noisy skeleton data, which is seldom explored by previous meth-
ods. We propose noise adaptation networks (NAN) to get rid of
explicit noise modeling and reliance on ground-truths. To miti-
gate the performance degradation caused by skeleton noise, we
explore the regression-based adaptation model for paired noisy
skeletons and the generation-based adaptation model for un-
paired noisy skeletons, respectively. The regression model aims
to learn noise-robust feature representations by mapping the
paired noisy skeletons into a common space. The generation-
based model aims to suppress noise into a low-noise feature
space by adversarial learning. We analyze our model by conduct-
ing comprehensive experiments on the NSD dataset collected
by us, the VV-RGBD dataset and the N-UCLA dataset, respec-
tively. Experiments show our proposed models consistently and
significantly outperform other approaches.
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