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Abstract—Dynamic artistic text style transfer aims to migrate the style in terms of both the appearance and motion patterns from a

reference style video to the target text to create artistic text animation. Recent researches have improved the usability of transfer

models by introducing texture control. However, it remains an important open challenge to investigate the control of the stylistic degree

with respect to shape deformation. In this paper, we explore a new problem of dynamic artistic text style transfer with glyph stylistic

degree control. The key idea is to build multi-scale glyph-style shape mappings through a novel bidirectional shape matching

framework. Following this idea, we first introduce a scale-ware Shape-Matching GAN to learn such mappings to simultaneously model

the style shape features at multiple scales and transfer them onto the target glyph. Furthermore, an advanced Shape-Matching GAN++

is proposed to animate a static text image based on the reference style video. Our Shape-Matching GAN++ characterizes the short-

term consistency of motion patterns via shape matchings within consecutive frames, which are propagated to achieve effective long-

term consistency. Experiments show that the proposed method outperforms previous state-of-the-arts both qualitatively and

quantitatively, and generate high-quality and controllable artistic text.

Index Terms—Text style transfer, structure transfer, scale control, temporal consistency

Ç

1 INTRODUCTION

ARTISTIC text is highly appreciated and widely used in
many visual designs such as posters and websites.

Recent works have investigated the automatic generation of
artistic text based on two kinds of references. The first one is
to render text in the style specified by well-designed refer-
ence text effects [1], while the second one is more flexible
and creative by simulating the style features from more gen-
eral free-form reference style images [2].

Considering text is highly different from natural images
in terms of structures, for free-form style as reference,
more attention ought to be paid to match the glyph to
the style during the stylization. Fig. 1b shows an example
where the glyph needs careful deformation to better resem-
ble the style subject flames. As the deformation increases,
the text demonstrates more artistry but with the cost of legi-
bility. Hence, there is a trade-off between legibility and art-
istry. However, such a subtle balance is subjective and
difficult to achieve automatically. Therefore, providing
users with a user-friendly tool to adjust the stylistic degree
of the glyph is of great application value. Furthermore, to
obtain desired effects, users are inclined to try various set-
tings before making the final selection, thus an immediate
response to the scale adjustment is expected.

In search for an efficient solution to style scale control,
namely, fast scale-controllable style transfer, recent researches
have proposed to train feed-forward networks to adjust tex-
ture scales such as the texture strength [3] and the size of
texture patterns [4]. However, the real-time control of glyph
deformations has been less investigated, which is essential
for text stylization.

This practical requirement motivates our work to explore
a new problem of fast controllable artistic text style transfer
from a single style image/video. As illustrated in Figs. 1b
and 1c, we focus on the efficient stylistic degree control in
terms of the crucial glyph deformation, which allows users
to select the artistic text of the best visual quality by navigat-
ing across different rendered results. Our problem has two
challenges. First, different from the aforementioned well-
defined texture scales that can be directly modeled by hyper-
parameters, glyph deformation is subjective and not clearly
defined. How to parameterize it remains an open question.
Second, each style usually has only one available image/
video for reference, lacking large-scale paired datasets to
provide mappings between the text and its stylized versions
under various deformation degrees. Thus we cannot directly
learn such multi-scale glyph deformation using popular
data-drivenmodels.

In this paper, we develop a novel Shape-Matching GAN
to meet the aforementioned challenges. The key idea is to
model the glyph deformation as the shape mappings of the
style image/video between the coarse level and the fine
level, and manipulate the deformation degree with the
coarse level. We show that such mappings can be robustly
established by the proposed bidirectional shape matching
framework with backward and forward transfers. Specifi-
cally, we first build a sketch module to forward simplify the
style image to match the glyph features in different coarse
levels. The obtained coarse-fine image pairs offer effective
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mappings to train the date-driven Shape-Matching GAN.
Then, we propose a scale-aware Controllable ResBlock to
equip our network with the ability to simultaneously char-
acterize the style features of various scales. Finally, scale-
controllable style transfer is achieved by forward transfer-
ring the learned style features of an arbitrary specified scale.

Compared with our previous work [5], we further
explore dynamic text style transfer with glyph stylistic
degree control. We extend ShapeMatching GAN to dynamic
text style transfer by establishing effective spatial-temporal
structural mappings within consecutive frames. As shown
in Fig. 1e, the improved ShapeMatching GAN++ realizes
appearance and motion pattern transfer between the output
and the reference dynamic styles with nice temporal consis-
tency. In addition, comprehensive experiments are con-
ducted to analyze the style transfer performance of the
proposed model, including additional comparison results
for quantitative evaluation, results for dynamic text style
transfer, ablation studies to explore the submodule and
parameter settings of our proposed techniques, and new
application for dynamic text transition. In summary, our
contributions are threefold:

� We raise a new controllable artistic text style transfer
problem for efficient glyph deformation control, and
design a novel bidirectional shape matching frame-
work to resolve it.

� We propose a sketch module to simplify the style
shape to match the glyph, and convert a single style
image/video into paired multi-scale training data to
provide robust glyph-style mappings.

� We develop Shape-Matching GAN with a scale-con-
trollable module to stylize the text and manipulate
its stylistic degree in a fast and continuous manner
for flexible user customization to balance legibility
and artistry.

� We present Shape-Matching GAN++ to transfer
dynamic styles onto plain text, which generates artis-
tic text animation that characterizes large-scale motion
patterns while preserving temporal consistency.

The rest of this paper is organized as follows. In Section 2,
we review related works in image stylization, artistic text
stylization, and scale control in style transfer. Section 3
defines the fast scale-controllable style transfer problem and
the dynamic text style transfer problem, and gives an over-
view of the proposed bidirectional shape matching frame-
work. Sections 4 and 5 introduce the details of the proposed
Shape-Matching GAN for static text style transfer and
Shape-Matching GAN++ for dynamic text style transfer,
respectively. In Section 6, the superiority of our method is
validated via extensive experiments and comparisons with
state-of-the-art style transfer methods. Finally, the conclu-
sion of our work is presented in Section 7.

2 RELATED WORK

2.1 Image/Video Style Transfer

For image style transfer, Gatys et al. [6] proposed the first
deep-based method of Neural Style Transfer, where the
image style was represented as the correlation between
deep features in form of Gram matrix [7]. The style is trans-
ferred by matching these statistics from the output image to
the style image in an iterative optimization way. To speed
up the method, feed-forward StyleNet [8] was trained using
the loss in [6]. In terms of style representation, besides the
Gram matrix, similar statistics like means, variances [9],
covariance [10] and even learnt convolution kernels [11] are
explored. These global statistics are shown to be effective in
modeling textures but are hard to characterize image struc-
tures. On the other hand, the style is viewed as local neural
patches in [12], [13] based on Markov random fields, which
can better match semantic structures for photorealistic style

Fig. 1. Illustration of the dynamic text style transfer with glyph stylistic degree control. We propose a novel Shape-Matching GAN++ to render artistic
text based on reference (a) style images or (e) style videos, and allow users to (b) control the glyph deformation in a fast and continuous manner to
effectively adjust the stylistic degree and select the most desired one. Our network provides users with a practical tool for (d) poster design and
(e) artistic text animation rendering.
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transfer. Recently, with the in-depth study of Generative
Adversarial Network (GAN) [14], some researches applied
image-to-image translation models [15], [16] to the image
style transfer task. Driven by the big data, the specialized
styles such as artistic paintings [17], cartoons [18] and make-
ups [19], [20] are precisely learned and convincingly trans-
ferred. In this paper, we combine the idea of the local model
and GAN. The structure changes are modeled in a local
manner and are learned through the powerful GAN.

To achieve temporal consistency for video style transfer,
Ruder et al. [21] incorporated optical-flow-based temporal
loss into Neural Style Transfer. In [22] and [23], the authors
further used the previous stylized frame as input to con-
strain the feed-forward stylization process. Later, Chen et al.
[24] proposed to warp and fuse the stylized frames in the
feature domains, so that the short-term consistency can be
propagated to achieve the long-term ones. Recently, Wang
et al. [25] proposed a compound temporal regularization
from two perspectives of both local jitters and global
motions, which better balances the spatial and temporal
performance. However, our scenario is very different from
video style transfer and the aforementioned methods are
not fit for our problem. In video style transfer, the input
style is a static image and the content is a video, which
requires that the output preserves the temporal consistency
as in the content video. Our dynamic text style transfer is
the opposite, where the content is a static text image and the
style is a video. Our problem mainly focuses on capturing
the motion patterns in the style video and transferring them
onto the text.

2.2 Artistic Text Style Transfer

In [1], Yang et al. first put forward the problem of artistic
style transfer on text, where the authors focused on the style
of well-designed text effects. The text effects are character-
ized by image patches along with its correlated spatial infor-
mation to the glyph, which helps achieve spatially
consistent style transfer. Later, Azadi et al. [26] proposed a
deep-based MC-GAN for fast text effect transfer. However,
it is limited to 26 English letters of small image size. A large
dataset with high-quality text effects images is built in [27]
to support the training of a feature disentangling TET-GAN
on more diversified glyph and styles. Wang et al. [28] fur-
ther considered the separation, transfer, and recombination
of exquisite decorations over the text effects.

Up to our best knowledge, DynTypo [29] is the most
related work of our problem. It aims to animate a static text
image based on a well-designed text effects video. This
method exploited example-based texture synthesis technol-
ogy and optimized the texture across keyframes as a whole.
Although achieving good performance, DynTypo [29]
required the input style to be dynamic text effects rendered
on a static text, and assumed its unstylized text image is given
for guidance. This strict requirement limits DynTypo’s appli-
cation scenarios and makes this method less competent for
glyph deformations. Also, it suffered a time-consuming opti-
mization process.

In addition to the text effects, more general texture
images can also be used as the reference style. UT-Effect [2]
explored artistic text style transfer with arbitrary textures,

enjoying wider application scenarios. This method
exploited shape synthesis [30] to deform the glyph to match
the style shape. Compared with UT-Effect [2], our method
additionally investigates a more challenging problem of fast
and continuous control over the glyph stylistic degree.

2.3 Multi-Scale Style Control

Image style in terms of textures is extensively studied in
recent years, thus the research on style scale control mainly
focuses on the texture. In the literature, two kinds of scales
are explored. The first one is the strength of the texture,
determining the richness and prominence of the textures
over the content image (Fig. 2c). It is effectively parameter-
ized by the weight between the style loss and content
loss [6] in the mainstream neural style transfer framework.
To avoid retraining the network for different weights,
Babaeizadeh et al. [3] introduced an auxiliary network to
modulate the style transfer network based on a texture
strength parameter, achieving fast texture strength control.
The second scale is the stroke size of the texture, which
describes the scale of the texture patterns as illustrated in
Fig. 2d and can be controlled by the input image size. It is
first studied in [31], where the coarse-scale and fine-scale
strokes are sequentially rendered in the downsampled and
the original images. To achieve fast stroke size control, a
stroke-controllable network [4] is proposed to train adap-
tively on images of different scale factors. In this paper, we
explore a less explored but important dimension of “scale”:
the glyph deformation degree (Fig. 2b).

3 PROBLEM ANALYSIS

3.1 Multi-Scale Glyph Deformation

This section defines the multi-scale glyph deformation prob-
lem and gives an overview of our bidirectional shape
matching framework. We start by stipulating two concrete
goals for this new problem. First, taking the style maple in
Fig. 12 for example, rendering leaf textures on glyph with-
out leaf-like shapes produces unnatural results. It reveals
our first goal of shape deformation and matching at all pos-
sible scales in addition to the texture transfer. Second, as

Fig. 2. Illustration of three style scales in text style transfer. (a) Style
image and text image. (b) From top to bottom, our style transfer results
under an increasing glyph deformation. (c) and (d) From top to bottom,
stylization results by Neural Style Transfer [6] under an increasing tex-
ture strength and stroke size, respectively.
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shown in Fig. 2b, the legibility of complex glyph is more
susceptible to large glyph deformation [32], which means
the ideal scale that balances artistry and legibility is greatly
affected by the glyph, let alone the more diversified style
and people’s subjective evaluation. Hence, users would pre-
fer navigating across the possible scale space rather than
retraining the model for each scale. To sum up, a controlla-
ble text style transfer should satisfy:

� Artistry: The stylized text should imitate the shape
characteristics of the style reference, at any scale.

� Controllability: The glyph deformation degree needs
to be adjusted in a quick and continuous way.

These two goals make our problem distinguished from pre-
vious multi-scale style control problems, which either do
not deal with the shape deformation [3], [4] as in Figs. 2c
and 2d, or are unable to control it efficiently [2].

To solve this problem, we proposed a novel bidirec-
tional shape matching strategy, whose key idea is dis-
played in Fig. 3. We first backward simplify the reference
structure map into various coarse levels to match the
glyph. Then the forward style transfer is achieved by
learning the obtained coarse-to-fine shape mappings that
characterize the reference structural features. In Figs. 3a,
3b, and 3c, under coarser level, the similar horizontal
strokes are mapped to more irregular shapes, thus learn-
ing greater glyph deformation. By doing so, Artistry is
achieved because input shapes are all mapped to the orig-
inal fine-level stylish shapes. Meanwhile, these mappings
could be learned using a single feed-forward network to
meet Controllability.

In summary, this paper formulates the new scale-control-
lable glyph deformation problem as learning the function to
map the style image from different coarse levels back to itself in a
fast feed-forward way. Given the framework, we still have
two technical obstacles to clear. First, a reasonable method
to simplify the shape needs to be figured out so that the
acquired mappings are well applied to the text images. Sec-
ond, how to prevent model collapse in learning the afore-
mentioned complicated mappings on only a single style
image is to be explored. Section 4 will explain our network
design to meet these challenges.

3.2 Dynamic Text Style Transfer

Classic video style transfer stylizes a target video based on
one static style image, which focuses on reducing the dis-
crepancy of corresponding pixels between frames. Our

dynamic text style transfer aims to animate a static text
image based on dynamic styles such as the dancing flames
and flowing liquid, which deals with the modeling of the
motion patterns in the style. The two have completely dif-
ferent research focuses. And it is not straightforward to
exploit commonly used video style transfer techniques such
as optical flows to solve our problem.

Our solution is to model the motion patterns through
short-term shape matchings. Instead of dealing with the
long-term motion patterns of the entire video, we focus on
the short-term motion patterns of short video clips. We
define the short-term motion pattern as the shape changes
between the front and back frames within a video clip. Then
it can be naturally modeled as the shape mappings from the
previous frames to the last frame, i.e., frame prediction.
Finally, by repeatedly predicting the next frame based on
previous frames, the short-term motion patterns can be
propagated to achieve long-term motion patterns. Section 5
will detail our frame prediction network.

4 SHAPE-MATCHING GAN FOR STATIC TEXT
STYLE TRANSFER

The controllable static text style transfer studies the problem
of developing a feed-forward Shape-Matching GAN G to
synthesize artistic text, whose deformation degree is con-
trolled by a parameter ‘ 2 ½0; 1� and is positively related to ‘.
We further disentangle the stylization procedure into
sequent structure transfer and texture transfer steps, and
model them using generators GS and GT , respectively.
Then we have G ¼ GT �GS . As we will show later in Sec-
tion 6.4, such disentanglement helps two generators better
focus on their own tasks to boost the overall performance.
Let I and Y be the target text image and reference style
image, respectively, and the stylization process is formu-
lated as

IY‘ ¼ GT ðGSðI; ‘ÞÞ; IY‘ � pðIY‘ jI; Y; ‘Þ; (1)

where the target statistic pðIY‘ Þ of the stylized image IY‘ is
characterized by the text image I, the style image Y , and the
controllable parameter ‘.

As analyzed in Section 3, we realize text style transfer
through a novel bidirectional shape matching strategy. Let
X denote the structure map of Y to indicate the shape of its
style subject, which can be readily acquired through exist-
ing image matting methods or image editing tools like Pho-
toshop. During backward structure transfer, X is simplified
to a coarse version with the shape style of the glyph and
coarse level ‘, which we refer to as the sketch structure map
~X‘. f ~X‘;Xg forms a training pair for GS . Then, during for-
ward structure transfer, GS learns the shape characteristics
ofX under various deformation degrees from the mappings
between ~X‘ and X. Fig. 4 illustrates our overall framework
with GS and GT :

� Glyph Network GS : It learns the mapping from ~X‘

under deformation degree ‘ to X in the training
phase. During testing, it transfers the structure style
ofX onto I, yielding the structure transfer result IX‘ .

� Texture Network GT : It learns the mappings from the
structure map X to the style image Y in the training

Fig. 3. Overview of bidirectional shape matching. Left: we backward sim-
plify a leaf-like structure map into three coarse levels. Right: The result-
ing coarse-to-fine image pairs constitute forward shape mappings in
(a) slight, (b) moderate, and (c) heavy deformation degrees.
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phase. During testing, it transfers the texture style of
Y onto IX‘ to produce the final result IY‘ .

We couple our generators with discriminatorsDS andDT to
introduce the adversarial loss to enhance the quality of styl-
ized images. Then in Section 4.1, we are going to introduce
the details of the proposed bidirectional shape matching to
train the structure transfer network GS . Section 4.2 next
details the texture transfer network GT .

4.1 Bidirectional Structure Transfer (GS)

Backward Structure Transfer. To simply X in various coarse
levels to match the glyph characteristics, we design a sketch
module GB. Fig. 5a shows an overview of GB containing a
smoothness block and a transformation block. Motivated by
the multi-scale image simplification via Gaussian scale-
space representation [33], [34], we build our smoothness
block as a fixed convolutional layer with Gaussian kernel
and control its standard deviation by ‘ as s ¼ 16‘þ 8. Then,
the smoothness block blurs the text image and X, mapping

them into a shared smooth domain, where all shapes have
similar blurry contours. Finally, the transformation block
conditioned by ‘ via label concatenation is trained to restore
the text image from its smoothed version so that it learns to
capture the glyph characteristics. By using the smooth
domain as a bridge between the source style domain and
target glyph domain, we can transfer the glyph characteris-
tics onto X by feeding the smoothed X into the transforma-
tion block. The advantages are twofold. First, the coarse
level is naturally parameterized by s, in other words, the
deformation degree is thus controlled by ‘; and second,
only text images, which are easy to collect, are required to
train GB. Once trained, we can apply GB to arbitrary styles.

During the training of GB, text images t are sampled
from the TE141K dataset [35] with parameter ‘ sampled
within [0, 1]. GB is tasked to restore t using L1 loss

Lrec
B ¼ Et;‘½kGBðt; ‘Þ � tk1�: (2)

A conditional adversarial loss is further imposed to
improve the quality of the reconstructed image

Ladv
B ¼ Et;‘½logDBðt; ‘; �t‘Þ�

þ Et;‘½log ð1�DBðGBðt; ‘Þ; ‘; �t‘ÞÞ�;
(3)

whereDB learns to discriminate generated images from real
images given the parameter ‘ and smoothed image �t‘ as con-
ditions. Hence, the total loss function is defined as

min
GB

max
DB

�adv
B Ladv

B þ �rec
B Lrec

B : (4)

Once trained, we can finally obtain the sketchy shape of
X at various levels ‘ as ~X‘ ¼ GBðX; ‘Þ. Fig. 5b shows an
example of ~X‘, which is compared with a naı̈ve thresholded
Gaussian simplification result sigmoidð �X‘Þ by substituting a
sigmoid layer for the transformation block. It can be seen
that the result of our sketch module better matches the

Fig. 4. Framework of shape-matching GAN.

Fig. 5. Illustration of sketch moduleGB for backward structure transfer.
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strokes of the text in the red boxes, which offers more accu-
rate mappings for the glyph network.

Forward Structure Transfer. Given X and f ~X‘g under vari-
ous ‘, the glyph network GS is then trained to learn their
mappings so as to capture and transfer the shape character-
istics of X onto the target text. Now we are facing the chal-
lenge of learning many-to-one mappings with only a single
example X. As we will show later in Section 6.4, directly
exploiting standard image-to-image translation models
would easily fall into model collapse, namely, just memoriz-
ing the targetX during training and producing almost iden-
tical results ignoring the conditional ‘ during testing.

To solve this issue, we put forward two strategies: data
augmentation and Controllable ResBlock. First, we expand a sin-
gle image into a dataset by randomly cropping X and ~X‘

into abundant sub-image pairs fx; ~x‘g. Second, inspired by
Deep Network Interpolation [36], we design an effective
scale-aware Controllable ResBlock to constitute the middle
layers of GS . As displayed in Fig. 6, Controllable ResBlock is
composed of two ResBlocks [37] with the linear weighting
factor ‘. When ‘ ¼ 1 ð0Þ, half path of GS is blocked and Con-
trollable ResBlock degrades into a standard ResBlock to learn
a well-defined one-to-one mapping for the greatest (tiniest)
shape deformation. Meanwhile, when ‘ 2 ð0; 1Þ, GS learns to
compromise between the two extremes. Thus GS is effec-
tively controlled by ‘.

In the loss aspect, GS aims to approach the target X and
compete with the discriminatorDS

Lrec
S ¼ Ex;‘½kGSð~x‘; ‘Þ � xk1�; (5)

Ladv
S ¼ Ex½logDSðxÞ�

þ Ex;‘½log ð1�DSðGSð~x‘; ‘ÞÞÞ�:
(6)

For irregular styles, text t could become nearly illegible
under large deformation degree ‘. A glyph legibility loss is
further optionally imposed to preserve the trunk of t in the
result GSðt; ‘Þ. Specifically, we first compute a weighting
map WðtÞ with pixel value increasing as its distance from
the text contour increases. Then GSðt; ‘Þ is tasked to
approach t in the area far from the text contour by element-
wisely multiplying withWðtÞ

Lgly
S ¼ Et;‘½kðGSðt; ‘Þ � tÞ �WðtÞk1�: (7)

Hence, the overall loss function of GS is

min
GS

max
DS

�adv
S Ladv

S þ �rec
S Lrec

S þ �gly
S Lgly

S : (8)

4.2 Texture Transfer (GT )

With the structure transfer result IX‘ ¼ GSðI; ‘Þ, we formu-
late texture transfer as an image analogy problem such that
X : Y :: IX‘ : IY‘ [38]. Considering that existing models to
solve this problem such as Image Analogy [38] and Neural
Doodle [39] are mainly based on less efficient optimization,
we directly train a feed-forward texture transfer network
GT to build a fast end-to-end Shape-Matching GAN. Given
image pairs fx; yg randomly cropped from X and Y , GT is
trained to map x to ywith the reconstruction loss and condi-
tional adversarial loss

Lrec
T ¼ Ex;y½kGT ðxÞ � yk1�; (9)

Ladv
T ¼ Ex;y½logDT ðx; yÞ�

þ Ex;y½log ð1�DT ðx;GT ðxÞÞÞ�: (10)

To further promote the overall performance on real text
images, we sample text images t and improve the style simi-
larity between GT ðGSðt; ‘ÞÞ and X using the style loss Lstyle

T

introduced in Neural Style Transfer [6]. Thus, the final loss
function for texture transfer is

min
GT

max
DT

�adv
T Ladv

T þ �rec
T Lrec

T þ �style
T Lstyle

T : (11)

5 SHAPE-MATCHING GAN++ FOR DYNAMIC TEXT
STYLE TRANSFER

In dynamic text style transfer, we are given a style video
Y ¼ fY iji ¼ 1; 2; . . . ; TY g containing TY consecutive frames
for style reference and a text image I for content reference.
We study the problem of rendering dynamic artistic text
IY‘ ¼ fIY;i‘ ji ¼ 1; 2; . . . ; Tg that characterizes both spatial
structure/texture features and temporal dynamic features
of Y. The total frame number and the glyph deformation
degree is controlled by user-specified T and ‘, respectively.

Our solution is to repeatedly predict the next frame
according to a few previously generated frames. Let N be
the number of previous reference frames required to synthe-
size the next frame. Let Ia:b denote the subset of I with
indexes i 2 ½a; b�. As in Section 4, we decompose the style
transfer process into structure transfer and texture transfer,
and the latter is still modeled by GT . For structure transfer,
we use a new glyph network Gpre

S to predict the ith structure
frame IX;i‘ based on its previous N structure frames
IX;i�N:i�1
‘ . In the beginning, there are no readily stylized
frames for Gpre

S . Thus, we incorporate the original glyph net-
work for static style to generate the first N structure frames.
This glyph network is denoted as Gini

S for frame initializa-
tion in Shape-Matching GAN++. Therefore, the proposed
Shape-Matching GAN++ is built upon three main compo-
nents, and Fig. 7 illustrates the framework

� Frame Initialization Glyph Network Gini
S : It learns the

mappings from ~Xi
‘ under deformation degree ‘ to Xi

in the training phase. During testing, it transfers the
structure style of X onto I repeatedly to obtain the
initialN structurally stylized frames.

� Frame Prediction Glyph Network Gpre
S : It learns to map

~Xi
‘ with deformation degree ‘ and the previous N

Fig. 6. Illustration of controllable ResBlock.
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frames Xi�N:i�1 to the current frame Xi during train-
ing. In testing, it repeatedly predicts the next frame
IX;i‘ based on the target text image I and the previ-
ously synthesizedN frames IX;i�N:i�1

‘ .
� Texture Network GT : It learns the mappings from the

structure mapXi to the style image Y i in the training
phase. During testing, it transfers the texture style of
Y onto IX‘ to produce the final result IY‘ .

As with Shape-Matching GAN, we randomly crop
frames into abundant sub-images to augment training
data. In the following, we present the details of the back-
ward structure transfer, frame initialization, and frame
prediction.

5.1 Backward Structure Transfer With Frame Fusion

In static text style transfer, a sketch module is designed
to simplify the structure map X into different coarse lev-
els to generate paired training data for the glyph net-
work. For dynamic text style transfer, we can also
perform backward structure transfer frame-by-frame to
form fX; ~X‘g. However, we found that the simplification
of our sketch module mainly focuses on the contour
adjustment of the style, which means only small-scale
motion patterns near the contours are characterized. Key
global motion patterns such as the whole flame’s left
and right swing cannot be transferred.

To tackle this issue, we propose to apply frame fusion to fur-
ther simplify the structure map in a more global way. Specifi-
cally, forXi and ‘, we first take the mean ofM frames around
Xi to obtain the fused frame meanðXi�M=2:iþM=2Þ. Hence, the
unique global motion of Xi is neutralized. Then the sketchy
shape is calculated as ~Xi

‘ ¼ GBðmeanðXi�M=2:iþM=2Þ; ‘Þ. Intui-
tively, a large M means large structural changes. Thus we can
associate M and ‘ as M ¼ 1þ bm‘c, where bc is the round
down operator, andm is the maximum allowable frame num-
ber for fusion. In this way, Shape-Matching GAN++ will still
adjust local contours for small ‘, but will pay more attention to
the global structural adjustment to fit the motion patterns
for large ‘.

5.2 Frame Initialization Glyph Network

The frame initialization glyph network Gini
S follows the

training of GS in Section 4.1. The only difference is that the
training data are sampled from all frames fX; ~X‘g rather
than a single image pair.

To generate initial N diverse frames with temporal consis-
tency, we propose to incorporate random noises into Shape-
Matching GAN++ to diversify its output and interpolate
frames through noise interpolation. Specifically, Gaussian
noises are added onto the input ofGini

S . In addition, inspired by
StyleGAN [40], Gaussian noises are also fed into the Controlla-
ble ResBlocks through AdaIN [9]. This strategy empowers our
network to generate different results according to the sampled
noise during testing. Another advantage is that the structure
map containsmany saturated areas, adding noises can alleviate
the ambiguity problem. Then, we sample two noises, which are
interpolated and fed into the network to generate N initial
frames. The frame initialization is summarized inAlgorithm 1.

We will show later that although achieving temporal
consistency, trained on independent frames, Gini

S cannot
depict accurate motion patterns. Thus these initial frames
are not included in the final output IX‘ . They are only used
for the prediction of the first N frames.

5.3 Frame Prediction Glyph Network

Gpre
S shares similar network architecture as Gini

S except that
it receives additional reference frames as input. To train
Gpre

S , Xi�N:i and ~Xi
‘ are first sampled from fX; ~X‘g. Then they

are cropped into sub-image triplet fxi; xi; ~xi
‘g to gather as a

training set, where we use xi to refer to the reference frames
xi�N:i�1 concisely. Gpre

S is trained using the reconstruction
loss and conditional adversarial loss

Lrec
S ¼ Ex;‘;i½kGpre

S ð~xi
‘; x

i; ‘Þ � xik1�; (12)

Ladv
S ¼ Ex;i½logDpre

S ðxi; xiÞ�
þ Ex;‘;i½log ð1�Dpre

S ðGpre
S ð~xi

‘; x
i; ‘Þ; xiÞÞ�: (13)

Fig. 7. Framework of Shape-Matching GAN++. For simplicity, we omit the discriminators and loss functions.
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In the testing phase, the frame prediction process is summa-
rized in Algorithm 1.

Algorithm 1. Dynamic Text Style Transfer

Input: Text image I, frame number T , deformation degree ‘
Output: Stylized text frames IY‘ ¼ fIY;i‘ ji ¼ 1; 2; . . . ; Tg
1: ~ Initial structure frame synthesis:
2: sample two random noises z1 and zN
3: for i ¼ 1 ! N do
4: zi ¼ ððN � iÞ � z1 þ ði� 1Þ � zNÞ=ðN � 1Þ
5: IX;i�N

‘ ¼ Gini
S ðI; ‘; ziÞ

6: end for
7: for i ¼ 1 ! T do
8: ~ Structure frame prediction:
9: IX;i‘ ¼ Gpre

S ðI; IX;i�N:i�1
‘ ; ‘Þ

10: ~ Texture transfer:
11: IY;i‘ ¼ GT ðIX;i‘ Þ
12: end for

6 EXPERIMENTAL RESULTS

6.1 Implementation Details

Network Architecture. Our generators are built upon the Style-
Net [8] with ResBlocks as middle layers, except that GS uti-
lizes the proposed Controllable ResBlock instead. The patch-
based discriminators introduced in pix2pix [15] is used to
better preserve image details. The architecture details are pro-
vided in the supplementary material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3055211.

Network Training. The style image/video is randomly
cropped to 256	 256 to constitute the training set. We adopt
Adam optimizer and use a learning rate of 0.0002. During

training our Controllable ResBlocks in the three glyph net-
works, we first fix ‘ ¼ 1 to make the network learn the great-
est deformation. The parameters of the trained half part in
Controllable ResBlocks are copied to the other half part.
Then, we sample ‘ 2 f0; 1g to train the network on the great-
est and the tiniest deformation. Finally, the network is fine-
tuned on ‘ 2 fi=Kgi¼0;...;K . We use K ¼ 3 on static style and
K ¼ 4 on dynamic style. The number of reference frames is
N ¼ 5. Unless stated otherwise, the maximum allowable
number of frame fusion is m ¼ 16. For all experiments, we
set �rec

B ¼ �rec
S ¼ �rec

T ¼ 100, �adv
B ¼ �adv

T ¼ 1. �adv
S is set to 0.1

and 1 for static style and dynamic style, respectively. We
manually choose �gly

S from f0; 1g and �style
T from f0; 0:01g

based on the style types for better performance.

6.2 Comparisons With State-of-the-Art Methods

Static Text Style Transfer. We first qualitatively and quanti-
tatively analyze the performance of Shape-Matching GAN
on static text style transfer through comparative experi-
ment. Image Analogy [38], Neural Style Transfer [31], Doo-
dle [39], T-Effect [1], and UT-Effect [2] are selected for
comparison. For unsupervised Neural Style Transfer and
UT-Effect, we adapt them to a supervised manner by
directly feeding our extracted structure map to these meth-
ods for spatial control [31] or structure transfer [2]. By
doing so, all the methods follow a one-shot supervised
stylization paradigm that transfers styles based on one
style image and its unstylish counterpart for a fair compar-
ison. Fig. 8 shows the visual comparison results on four
styles. Please refer to the supplementary material for full
results on eighteen styles, available online.

As illustrated in Figs. 8c and 8f, Image Analogy [38]
and T-Effect [1] only transfer textures without adjusting

Fig. 8. Comparison with state-of-the-art methods on four styles of fire, maple, lightning, water. (a) Input style and its structure map. (b) Target text.
(c) Image Analogy [38]. (d) Neural Style Transfer [6] with spatial control [31]. (e) Neural Doodle [39]. (f) T-Effect [1]. (g) UT-Effect [2]. (h) Results of
the proposed Shape-Matching GAN. For UT-Effect [2] and Shape-Matching GAN, the deformation degrees are manually selected.
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the text contour, thus generating rigid and unnatural
results. Meanwhile, the deep-based methods of Neural
Style Transfer [31] and Doodle [39] model image styles
as deep features, which implicitly characterize both the
shape and texture patterns. Therefore, they can transfer
both structure and texture styles. But they often exces-
sively distort the text and produce color deviations and
checkerboard artifacts, which makes the results less legi-
ble as shown in the third row. UT-Effect [2] builds upon
a patch-based structure transfer algorithm to match the
glyph to style. However, patching matching and blend-
ing are not robust enough, and some structural details
are not fully transferred. By comparison, thanks to the
proposed bidirectional shape matching strategy, our
method successfully learns precise shape and texture
patterns, which are vividly transferred through

adversarial learning. Therefore, our method produces
highly natural and visually pleasing artistic text.

To quantitatively measure the performance of the com-
pared methods, we conducted a user study on the Amazon
Mechanical Turk platform where observers were given
image pairs and tasked to choose which one is of the best
style similarity with the reference style image while main-
taining legibility. The preference ratio is utilized as our eval-
uation metric. It measures the percentage of times a method
is selected in all of its related selections. According to the
definition, if a method performs as normal as other meth-
ods, then its mean preference ratio will be 0.5; if it is signifi-
cantly better than all other methods, then its mean
preference ratio can reach 1.0. The preference ratio over 18
test styles is shown in Table 1. For each style, 15 image pairs
were rated by 10 observers. As shown in Table 1, our
method obtains a steady preference from the users with
preference ratios surpassing 0.5 in all cases. The best aver-
age preference ratio of 0.802 quantitatively verifies the supe-
riority of our method.

Scale-Controllable Style Transfer. As the most related work
that focuses on the text deformation, we further compare
with UT-Effect [2] in Fig. 9. UT-Effect [2] models structure
patterns as boundary patches at multiple resolutions and
controls the deformation degree with the resolution level. It
has four drawbacks: First, the patch blending step inevita-
bly blurs the structure and texture details. Second, because
patches are locally and greedy matched, the globally consis-
tent stylization is not guaranteed. Third, the transformation
is discontinuous due to the independent patch matching
process for each scale. Finally, the iterative optimization
process in UT-Effect [2] has a high computational burden. It
takes UT-Effect [2] about 100 s for the 256	 256 image in
Fig. 9 on Intel Core i7-6500U CPU. Shape-Matching GAN,
on the contrary, trained simultaneously on all possible
scales, is able to fast and continuously adjust the deforma-
tion degree while preserving fine details. For the same
image, our feed-forward method requires about 0.43 s and
16 ms on Intel Xeon E5-2650 CPU and a GeForce GTX 1080
Ti GPU, respectively.

Dynamic Text Style Transfer. We study the performance of
Shape-Matching GAN++ on dynamic text style transfer in

TABLE 1
User Preference Ratio of Image Analogy [38], Neural Style

Transfer [6], Doodle [39], T-Effect [1], UT-Effect [2], and Shape-
Matching GAN on Eighteen Different Static Styles

Style [38] [6] [39] [1] [2] Ours

fire 0.30 0.54 0.48 0.30 0.70 0.68
maple 0.26 0.40 0.72 0.06 0.64 0.92
smoke 0.56 0.18 0.44 0.46 0.64 0.72
water 0.70 0.16 0.44 0.40 0.44 0.86
sketch 0.76 0.38 0.22 0.26 0.62 0.76
lightning 0.68 0.24 0.36 0.42 0.48 0.82
ink 0.42 0.82 0.38 0.14 0.54 0.70
sakura 0.48 0.56 0.70 0.04 0.48 0.74
cloud 0.38 0.22 0.76 0.20 0.66 0.78
water2 0.78 0.56 0.26 0.32 0.24 0.84
island 0.36 0.56 0.64 0.02 0.56 0.86
flower 0.52 0.26 0.64 0.24 0.54 0.80
flower2 0.50 0.54 0.56 0.22 0.46 0.72
fissure 0.74 0.06 0.50 0.36 0.52 0.82
ivy 0.62 0.42 0.52 0.26 0.44 0.74
snowflake 0.36 0.18 0.66 0.08 0.78 0.94
rime 0.42 0.28 0.68 0.06 0.62 0.94
wall 0.40 0.40 0.70 0.30 0.40 0.80

Average 0.513 0.376 0.537 0.230 0.542 0.802

For each row, we show the best preference ratio in bold and the second
underlined.

Fig. 9. Qualitative comparison between Shape-Matching GAN and UT-Effect [2]. For the first column, from top to bottom: target text, style image, the
enlarged patches from the style image, and their corresponding structure maps. Remaining columns: Results by (a) UT-Effect [2] with resolution level
evenly increasing from 1 to 7; (b) the proposed method with ‘ evenly increasing from 0 to 1. The red box region is shown enlarged at the bottom with
the corresponding structure map for better visual comparison.
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Fig. 10. Since there is no other work exactly handling our
task, we choose the most related UT-Effect [2] and Shape-
Matching GAN for comparison in terms of motion pattern
transfer and temporal consistency. UT-Effect [2] generates
the ith frame by using the ith reference style frame. Hence it
fails to preserve the temporal coherence and suffers severe
flickers. For Shape-Matching GAN, we directly use the
frame initialization strategy introduced in Section 5.2 to
generate artistic text animation. It can be seen that noise
interpolation introduces temporal consistency between
adjacent frames. However, the structural motions derived
from the noise changes do not reflect the real motion pat-
terns of the reference style. By comparison, Shape-Matching
GAN++ preserves realistic fluid motion patterns, while
achieving satisfactory temporal consistency.

For dynamic text style transfer, a user study is conducted
for quantitative evaluation. Besides structure/texture simi-
larity and text legibility, the observers were asked to addi-
tionally consider the temporal consistency and motion
pattern similarity to the reference style video. Three

methods on six styles including the two styles in Fig. 10
(full results are included in the supplementary material,
available online) are rated by 15 observers. Table 2 reports
the preference ratio where UT-Effect [2] obtains low scores
due to bad temporal consistency. Shape-Matching GAN++
is much more preferred than its previous version, indicating
our frame prediction glyph network achieves better motion
pattern transfer.

We further compare with DynTypo [29]. Since this
method only supports text effects as style with no text
deformation, we adapt Shape-Matching GAN++ to dynamic
text effect transfer by fixing ‘ ¼ 0. The provided source text
image is directly used as the sketchy structure map ~Xi

‘ for
all frames. Fig. 11 shows the results. In this example, we use
a large sub-image size of 400	 296 to better capture the
shape of the flame above the text. As can be seen, the perfor-
mance of our adapted Shape-Matching GAN++ is compara-
ble to DynTypo [29]. Meanwhile, our method can handle
more general styles and is superior in time efficiency. As
reported in [29], for 159 frames with a size of 496	 360,

Fig. 10. Comparison with state-of-the-art methods on dynamic text style transfer. For each group: (a) Four consecutive frames of the reference style
with the target text in the lower-left corner. (b) Results of UT-Effect [2]. (c) Results of Shape-Matching GAN. (d) Results of Shape-Matching GAN++.

TABLE 2
User Preference Ratio of UT-Effect [2],

Shape-Matching GAN [5] and Shape-Matching
GAN++ on Six Different Dynamic Styles

Style [2] [5] Shape-Matching GAN++

fire1 0.17 0.55 0.76
fire2 0.33 0.50 0.67
water1 0.03 0.80 0.67
water2 0.07 0.56 0.87
smoke1 0.37 0.40 0.73
smoke2 0.27 0.30 0.93

Average 0.206 0.522 0.772

For each row, we show the best preference ratio in bold and the second
underlined. Fig. 11. Comparison with DynTypo [29] on dynamic text effect transfer.
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DynTypo uses about 1,200 s while the testing time of our
method is only 194 s on Intel Xeon E5-2650 CPU and 15 s on
a GeForce GTX 1080 Ti GPU.

6.3 Running Time

In Table 3, we report the running time of the proposed
method on a GeForce GTX 1080 Ti GPU. In the training
phase, we crop training images into 256	 256 sub-images,
thus our method is essentially invariant to practical resolu-
tions of the style image. The training of our sketch module
is independent of the style. After about 0.75 hours of train-
ing, it can be applied to arbitrary styles. For a new style
image/video, it takes about 2.46 hours and 5.38 hours to
train Shape-Matching GAN and Shape-Matching GAN++,
respectively. In the testing phase, our feed-forward method
requires less than 50 ms to process a 256	 256 frame, which
implies a potential of nearly real-time user interaction.

6.4 Ablation Study on Shape-Matching GAN

Network Architecture. To investigate each component of
Shape-Matching GAN, the following four configurations
are designed and compared:

� Baseline: The baseline model is a texture network to
render textures based on the mapping between the
structure mapX and the style image Y .

� W/o CR: This model contains a naı̈ve glyph network
and a texture network. The naı̈ve glyph network is
controlled by ‘ via conventional label concatenation
instead of the Controllable ResRlock (CR).

� W/o TN: This model contains a single glyph net-
work without the Texture Network (TN) and is

trained to directly map the sketchy structure map ~X‘

to Y .
� Full model: The proposed model with both the glyph

network and the texture network.
Fig. 12 exhibits the style transfer results of these configu-

rations. As expected, the baseline model does not consider
structure transfer, thus its results have rigid and unnatural
contours. The naı̈ve glyph network learns to synthesize
leaf-like contours, but conventional label concatenation is
not powerful enough to characterize the challenging many-
to-one mapping. Thus it generates very similar results
under different ‘. As illustrated in Fig. 12d, the proposed
Controllable ResBlock effectively solves this issue: our
glyph network learns accurate multi-scale structure trans-
fer, and can even simultaneously render textures. Finally,
by transferring the texture transfer task to a dedicated tex-
ture network, full Shape-Matching GAN is able to render
more exquisite texture details, sharing better style consis-
tency with the reference style.

We further compare with the closely related Deep Net-
work Interpolation (DNI) [36] in Fig. 13 to verify the effec-
tiveness of Controllable ResBlock. DNI trains two correlated
networks on two related mappings, and interpolates net-
work parameters to smoothly control the output’s imagery
effects between these two mappings, which is proven to
work well in interpolating color and texture styles. How-
ever, when applying DNI to structure transfer, its interpo-
lated result is poor as shown in the middle row of Fig. 13b.
It might be because the structure deformation is much more
non-linear than texture blending. Inspired by DNI, we
design two paths in Controllable ResBlock to break down
the challenging multi-scale mapping into two extreme one-
to-one mappings to avoid model collapse. To model the
challenging structure deformations, we propose to train our

TABLE 3
Running Time of the Proposed Method on 256	 256 Sub-Images and Testing Frames

Method Training time Training time (per style) Testing time (per frame)
sketch glyph texture glyph + texture

Shape-Matching GAN 0.75 h 1.71 h 0.75 h 16 ms
Shape-Matching GAN++ 0.75 h 2.47 h (ini) + 2.16 h (pre) 0.75 h 48 ms

Fig. 12. Ablation study on four different network configurations. (a) From
top to bottom: target glyph, reference style, the enlarged patches
from (d) and (e), respectively. (b)-(e) From top to bottom: Results under
‘ ¼ 0:0; 0:5; 1:0, respectively. Fig. 13. Comparison with DNI [40] on multi-scale structure transfer.
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network with ‘ 2 ð0; 1Þ to compromise between the two
extremes. Instead of interpolating network parameters as
DNI, Controllable ResBlock interpolates feature maps,
which allows easier training when ‘ 2 ð0; 1Þ. Compared
with only training on two extremes (Fig. 13c), the proposed
training strategy is more effective in teaching our network
to infer moderate deformations (Fig. 13d). Note that we
only sample ‘ 2 f0; 1=3; 2=3; 1g for training, and our net-
work infers reasonable results of unseen ‘ ¼ 0:5.

Sketch Module. As analyzed in Section 4.1, the task of the
sketch module GB is to offer robust mappings between the
text and style domain by simplifying the style image to
match the glyph. We study the effect of GB in Fig. 14, where
the Transformation Block (TB) in GB is replaced by a single
sigmoid layer to simplify the style image but without imitat-
ing the glyph contours. Fig. 14c shows that this configura-
tion cannot provide robust mappings, and the stylized text
still has rigid contours. By contrast, our full model success-
fully synthesizes a rounded h-shaped balloon.

Loss Function. In Fig. 15, we investigate the performance
of our glyph legibility loss (Eq. (7)) through a comparative
experiment. Our method successfully renders a rigid Chi-
nese character into trickles of wafting smoke. However,
under large deformation (‘ ¼ 0:75), its strokes become
extremely irregular with fractures as in Fig. 15c, making the
character less recognizable. This issue can be solved effec-
tively through our glyph legibility loss by setting �gly

S ¼ 1.
As shown in Fig. 15d, the trunk region of the strokes is well
preserved with other regions highly stylized, thus striking a
good balance between the artistry and legibility.

6.5 Ablation Study on Shape-Matching GAN++

Number of Reference Frames. We examine the effect of the
number N of reference frames in Fig. 16. In this experiment,
we train Shape-Matching GAN++ on the style video fire.
During testing, the network aims to reconstruct the video
fire as accurately as possible based on only its first N frames
and its sketchy structure map. As can be seen in Figs. 16a
and 16b, a small number of reference frames cannot charac-
terize adequate temporal motion patterns. Thus, the genera-
tor tends to rely more on the input sketchy structure map
and generate less dynamic flames in the 21st and 27th

frames. For a large N , on the other hand, reference frames
contain too much spatial-temporal structural information,
making it hard to match and transfer. Thus the results grad-
ually deviate from the reference video. The best reconstruc-
tion result is obtained with an intermediate number of 5. It
is also verified that although out network is trained with
only short-term temporal consistency within 5 frames, our
network can effectively propagate short-term temporal con-
sistency to achieve long-term temporal consistency.

Number of Frame Fusion. In Fig. 17, we investigate the
impact of the number m of frames for fusion. Although
using the maximum deformation degree ‘ ¼ 1, without
frame fusion, i.e., m ¼ 1, the structures are only transferred
in a limited region near the text contour. As m increases,
flames gradually emerge from the contour of the text and
sway. It verifies that frame fusion could effectively guide
the network to capture large-scale global motion patterns.

Fig. 14. Performance of the proposed sketch module. The foreground
stylized text in the red box is enlarged for better visual comparison.

Fig. 15. Performance with and without the glyph legibility loss Lgly
S .

Fig. 16. Effect of the number N of reference frames. (a)-(e): Each row
shows the generated ninth, 15th, 21st, and 27th frames. (f) The target
style frames. Blue boxes indicate a large divergence between the gener-
ated frame and the target frame.

Fig. 17. Effect of the number m of frames for fusion. (a) The reference
style. (b)-(e): The generated five consecutive frames.
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6.6 Applications

In this section, we demonstrate three applications of our
method: structure/texture mash-up, stroke-based art
design, and artistic countdown.

Structure/Texture Mash-Up. By mixingly using the glyph
and texture networks trained on different styles, we can
obtain a mash-up of structure style and texture style, thus
creating brand-new text styles. Fig. 18a shows a standard
stylization result and two mash-ups. The text in the shape
feature of maple is rendered by the maple, water, and smoke
textures, respectively.

Stroke-Based Art Design. Our method can extend to more
general shapes such as icons and symbols without addi-
tional modifications. It is shown in Fig. 18b that our method
successfully renders wings made of maple leaves based on
an icon, facilitating the following graphic design.

Artistic Countdown. By interpolating between text images,
Shape-Matching GAN++ can render dynamic transitions
between text. We find those fluid styles such as water and
smoke, are especially suitable to render the shape changes
naturally. Fig. 18c presents an example of a countdown ani-
mation composed of colored inks.

7 CONCLUSION

In this paper, we explore a new problem of fast controllable
text style transfer and propose Shape-Matching GAN++ that
renders dynamic artistic text animation and enables continu-
ous control of the stylistic degree of the glyph. The multi-scale
glyph deformation task is expressed as learning a coarse-to-
fine shape mapping problem and a corresponding bidirec-
tional shape matching framework is introduced. We present a
sketch module to narrow the style’s structure discrepancy to
the glyph and to offer robust mappings. Our model leverages
the proposed Controllable ResBlock to learn the multi-scale

shape mappings for effective scale control. The temporal con-
sistency is further modeled as shape mappings within conse-
cutive frames to achieve the transfer of motion patterns for
dynamic stylization. The experimental results verify the supe-
riority and robustness of Shape-Matching GAN++ on both
glyph deformation control and dynamic text style transfer.
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