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Abstract

The self-supervised pretraining paradigm has achieved
great success in skeleton-based action recognition. How-
ever, these methods treat the motion and static parts equally,
and lack an adaptive design for different parts, which has a
negative impact on the accuracy of action recognition. To
realize the adaptive action modeling of both parts, we pro-
pose an Actionlet-Dependent Contrastive Learning method
(ActCLR). The actionlet, defined as the discriminative sub-
set of the human skeleton, effectively decomposes motion
regions for better action modeling. In detail, by con-
trasting with the static anchor without motion, we extract
the motion region of the skeleton data, which serves as
the actionlet, in an unsupervised manner. Then, center-
ing on actionlet, a motion-adaptive data transformation
method is built. Different data transformations are ap-
plied to actionlet and non-actionlet regions to introduce
more diversity while maintaining their own characteristics.
Meanwhile, we propose a semantic-aware feature pooling
method to build feature representations among motion and
static regions in a distinguished manner. Extensive experi-
ments on NTU RGB+D and PKUMMD show that the pro-
posed method achieves remarkable action recognition per-
formance. More visualization and quantitative experiments
demonstrate the effectiveness of our method. Our project
website is available at https://langlandslin.
github.io/projects/ActCLR/

1. Introduction

Skeletons represent human joints using 3D coordinate
locations. Compared with RGB videos and depth data,
skeletons are lightweight, privacy-preserving, and compact
to represent human motion. On account of being easier
and more discriminative for analysis, skeletons have been
widely used in action recognition task [19,23,31,32,46,48].

Supervised skeleton-based action recognition meth-
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Figure 1. Our proposed approach (ActCLR) locates the motion
regions as actionlet to guide contrastive learning.

ods [3,27,28] have achieved impressive performance. How-
ever, their success highly depends on a large amount of la-
beled training data, which is expensive to obtain. To get
rid of the reliance on full supervision, self-supervised learn-
ing [16, 32, 34, 49] has been introduced into skeleton-based
action recognition. It adopts a two-stage paradigm, i.e. first
applying pretext tasks for unsupervised pretraining and then
employing downstream tasks for finetuning.

According to learning paradigms, all methods can be
classified into two categories: reconstruction-based [14, 32,
41] and contrastive learning-based. Reconstruction-based
methods capture the spatial-temporal correlation by pre-
dicting masked skeleton data. Zheng et al. [49] first pro-
posed reconstructing masked skeletons for long-term global
motion dynamics. Besides, the contrastive learning-based
methods have shown remarkable potential recently. These
methods employ skeleton transformation to generate pos-
itive/negative samples. Rao et al. [24] applied Shear and
Crop as data augmentation. Guo et al. [8] further proposed
to use more augmentations, i.e. rotation, masking, and flip-
pling, to improve the consistency of contrastive learning.

These contrastive learning works treat different regions
of the skeleton sequences uniformly. However, the motion
regions contain richer action information and contribute
more to action modeling. Therefore, it is sub-optimal to di-
rectly apply data transformations to all regions in the previ-
ous works, which may degrade the motion-correlated infor-
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mation too much. For example, if the mask transformation
is applied to the hand joints in the hand raising action, the
motion information of the hand raising is totally impaired.
It will give rise to the false positive problem, i.e., the seman-
tic inconsistency due to the information loss between pos-
itive pairs. Thus, it is necessary to adopt a distinguishable
design for motion and static regions in the data sequences.

To tackle these problems, we propose a new actionlet-
dependent contrastive learning method (ActCLR) by treat-
ing motion and static regions differently, as shown in Fig. 1.
An actionlet [38] is defined as a conjunctive structure of
skeleton joints. It is expected to be highly representative of
one action and highly discriminative to distinguish the ac-
tion from others. The actionlet in previous works is defined
in a supervised way, which relies on action labels and has
a gap with the self-supervised pretext tasks. To this end,
in the unsupervised learning context, we propose to obtain
actionlet by comparing the action sequence with the aver-
age motion to guide contrastive learning. In detail, the av-
erage motion is defined as the average of all the series in
the dataset. Therefore, this average motion is employed as
the static anchor without motion. We contrast the action
sequence with the average motion to get the area with the
largest difference. This region is considered to be the re-
gion where the motion takes place, i.e., actionlet.

Based on this actionlet, we design a motion-adaptive
transformation strategy. The actionlet region is transformed
by performing the proposed semantically preserving data
transformation. Specifically, we only apply stronger data
transformations to non-actionlet regions. With less inter-
ference in the motion regions, this motion-adaptive trans-
formation strategy makes the model learn better seman-
tic consistency and obtain stronger generalization perfor-
mance. Similarly, we utilize a semantic-aware feature pool-
ing method. By extracting the features in the actionlet re-
gion, the features can be more representative of the motion
without the interference of the semantics in static regions.

We provide thorough experiments and detailed analysis
on NTU RGB+D [17, 26] and PKUMMD [18] datasets to
prove the superiority of our method. Compared to the state-
of-the-art methods, our model achieves remarkable results
with self-supervised learning.

In summary, our contributions are summarized as fol-
lows:

• We propose a novel unsupervised actionlet-based con-
trastive learning method. Unsupervised actionlets are
mined as skeletal regions that are the most discrimina-
tive compared with the static anchor, i.e., the average
motion of all training data.

• A motion-adaptive transformation strategy is designed
for contrastive learning. In the actionlet region, we
employ semantics-preserving data transformations to

learn semantic consistency. And in non-actionlet re-
gions, we apply stronger data transformations to obtain
stronger generalization performance.

• We utilize semantic-aware feature pooling to extract
motion features of the actionlet regions. It makes fea-
tures to be more focused on motion joints without be-
ing distracted by motionless joints.

2. Related Work
In this section, we first introduce the related work of

skeleton-based action recognition, and then briefly review
contrastive learning.

2.1. Skeleton-Based Action Recognition

Skeleton-based action recognition is a fundamental yet
challenging field in computer vision research. Previous
skeleton-based motion recognition methods are usually re-
alized with the geometric relationship of skeleton joints [7,
36, 37]. The latest methods pay more attention to deep net-
works. Du et al. [6] applied a hierarchical RNN to process
body keypoints. Attention-based methods are proposed to
automatically select important skeleton joints [28–30, 47]
and video frames [29, 30] to learn more adaptively about
the simultaneous appearance of skeleton joints. However,
recurrent neural networks often suffer from gradient van-
ishing [11], which may cause optimization problems. Re-
cently, graph convolution networks attract more attention
for skeleton-based action recognition. To extract both the
spatial and temporal structural features from skeleton data,
Yan et al. [40] proposed spatial-temporal graph convolution
networks. To make the graphic representation more flexi-
ble, the attention mechanisms are applied in [3, 27, 28] to
adaptively capture discriminative features based on spatial
composition and temporal dynamics.

2.2. Contrastive Learning

Contrastive representation learning can date back to [9].
The following approaches [1, 13, 35, 39, 42] learn represen-
tations by contrasting positive pairs against negative pairs to
make the representations between positive pairs more sim-
ilar than those between negative pairs. Researchers mainly
focus on how to construct pairs to learn robust representa-
tions. SimCLR proposed by Chen et al. [2] uses a series
of data augmentation methods, such as random cropping,
Gaussian blur and color distortion to generate positive sam-
ples. He et al. [10] applied a memory module that adopts a
queue to store negative samples, and the queue is constantly
updated with training. In self-supervised skeleton-based ac-
tion recognition, contrastive learning has also attracted the
attention of numerous researchers. Rao et al. [24] applied
MoCo for contrastive learning with a single stream. To uti-
lize cross-stream knowledge, Li et al. [15] proposed a multi-
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view contrastive learning method and Thoker et al. [34]
employed multiple models to learn from different skeleton
representations. Guo et al. [8] proposed to use more ex-
treme augmentations, which greatly improve the effect of
contrastive learning. Su et al. [33] proposed novel represen-
tation learning by perceiving motion consistency and conti-
nuity. Following MoCo v2 [10], they exploit InfoNCE loss
to optimize contrastive learning:

LCL = − log
exp(sim(ziq, z

i
k)/τ)

exp(sim(ziq, z
i
k)/τ) +K

, (1)

where ziq = gq(fq(X
i
q)) and zik = gk(fk(X

i
k)). K =∑M

j=1 exp(sim(ziq,m
j)/τ) and τ is a temperature hyper-

parameter. fq(·) is an online encoder and fk(·) is an of-
fline encoder. gq(·) is an online projector and gk(·) is
an offline projector. The offline encoder fk(·) is updated
by the momentum of the online encoder fq(·) by fk ←
αfk + (1− α)fq , where α is a momentum coefficient. mj

is the negative sample, stored in memory bank M. sim(·, ·)
is the cosine similarity.

3. Actionlet-Based Unsupervised Learning
In this section, we introduce unsupervised actionlet

for contrastive representation learning, which is based on
MoCo v2 described in Sec. 2.2. First, we describe the un-
supervised actionlet extraction method. Then, the motion-
adaptive data transformation and the semantic-aware fea-
ture pooling are introduced.

3.1. Unsupervised Actionlet Selection

Traditional actionlet mining methods rely on the action
label to identify the motion region, which cannot be em-
ployed in the unsupervised learning context. Inspired by
contrastive learning, we propose an unsupervised spatio-
temporal actionlet selection method to mine the motion re-
gion as shown in Fig. 2. The actionlet is obtained by com-
paring the differences between an action sequence and the
static sequence where we assume no motion takes place.

Specifically, we introduce the average motion as the
static anchor, which is regarded as the sequence without
motion. Resort to this, we contrast the action sequences
between the static anchor to realize actionlet localization.
The details of the proposed method are described below.

Average Motion as Static Anchor. In the process of ob-
taining the sequence without action occurrence, we observe
that most of the action sequences have no action in most
of the regions. The motion usually occurs in a small local-
ized area, such as the hand or head. Therefore, as shown in
Fig. 4, we can easily obtain the static anchor via average all
the actions in the dataset, since most of the sequence has no
motion in most of the regions and this average is a relatively

static sequence. It is formalized as:

X̄ =
1

N

N∑
i=1

(Xi), (2)

where Xi is the ith skeleton sequence and N is the size of
the dataset.

Difference Activation Mapping for Actionlet Localiza-
tion. To obtain the region where the motion takes place,
we input the skeleton sequence Xi with the average motion
X̄ into the offline encoder fk(·) to obtain its corresponding
dense features hi

ctv = fk(X
i) and h̄ctv = fk(X̄), where

c means channel dimension, t temporal dimension, and v
joint dimension. After global average pooling (GAP), we
then apply the offline projector gk(·) to obtain global fea-
tures zi = gk(GAP(hi

ctv)) and z̄ = gk(GAP(h̄ctv)). Then
we calculate the cosine similarity of these two features. This
can be formalized as:

sim(zi, z̄) =
⟨zi, z̄⟩
∥zi∥2∥z̄∥2

, (3)

where ⟨·, ·⟩ is the inner product.
To find the region where this similarity can be reduced,

we back-propagate and reverse the gradient of this similar-
ity to the dense feature hi

ctv . These gradients then are global
average pooled over the temporal and joint dimensions to
obtain the neuron importance weights αi

c:

∆hi
ctv =

∂(−sim(zi, z̄))

∂hi
ctv

,

αi
c =

1

T × V

T∑
t=1

V∑
v=1

σ(∆hi
ctv),

(4)

where σ(·) is the activation function.
These importance weights capture the magnitude of the

effect of each channel dimension on the final difference.
Therefore, these weights αi

c are considered difference ac-
tivation mapping. We perform a weighted combination of
the difference activation mapping and dense features as fol-
lows:

Ai
tv = σ

(
C∑

c=1

αi
ch

i
ctv

)
Gvv, (5)

where σ(·) is the activation function and Gvv is the adja-
cency matrix of skeleton data for importance smoothing.
The linear combination of maps selects features that have
a negative influence on the similarity. The actionlet region
is the area where the value of the generated actionlet Ai

tv

exceeds a certain threshold, while the non-actionlet region
is the remaining part.
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Figure 2. The pipeline of actionlet-dependent contrastive learning. In unsupervised actionlet selection, we employ the difference from the
average motion to obtain the region of motion. For contrastive learning, we employ two streams, i.e., the online stream and the offline
stream. The above stream is the online stream, which is updated by gradient. The below is the offline stream, which is updated by
momentum. We get the augmented data Xi

trans by performing motion-adaptive data transformation (MATS) on the input data Xi
q with the

obtained actionlet. In offline feature extraction, we employ semantic-aware feature pooling (SAFP) to obtain the accurate feature anchor.
Finally, utilizing similarity mining, we increase the similarity between positives and decrease the similarity between negatives.

3.2. Actionlet-Guided Contrastive Learning

To take full advantage of the actionlet, we propose an
actionlet-dependent contrastive learning method, shown in
Fig. 2. We impose different data transformations for differ-
ent regions by a motion-adaptive data transformation strat-
egy module (MATS). Moreover, the semantic-aware feature
pooling module (SAFP) is proposed to aggregate the fea-
tures of actionlet region for better action modeling.

Motion-Adaptive Transformation Strategy (MATS). In
contrastive learning, data transformation T is crucial for
semantic information extraction and generalization capac-
ity. How to design more diverse data transformations while
maintaining relevant information for downstream tasks is
still a challenge. Too simple data transformation is limited
in numbers and modes and cannot obtain rich augmented
patterns. However, data transformations that are too diffi-
cult may result in loss of motion information. To this end,
we propose motion-adaptive data transformations for skele-
ton data based on actionlet. For different regions, we pro-
pose two transformations, actionlet transformation and non-
actionlet transformation.

• Actionlet Transformation Tact: Actionlet data trans-
formations are performed within the actionlet regions. In-
spired by the previous work [8], we adopt four spatial data
transformations {Shear, Spatial Flip, Rotate, Axis Mask};
two temporal data transformations {Crop, Temporal Flip};
and two spatio-temporal data transformations {Gaussian
Noise, Gaussian Blur}.

Besides, Skeleton AdaIN is proposed as a mixing

method of global statistics. We randomly select two skele-
ton sequences and then swap the spatial mean and tempo-
ral variance of the two sequences. This transformation is
widely used in style transfer [12]. Here, we are inspired by
the idea of style and content decomposition in style trans-
fer and regard the motion-independent information as style
and the motion-related information as content. Therefore,
we use Skeleton AdaIN to transfer this motion independent
noise between different data. The noisy pattern of the data
is thus augmented by this transfer method. This transforma-
tion can be formalized as:

Xi
adain = σ(Xj)

(
Xi − µ(Xi)

σ(Xi)

)
+ µ(Xj), (6)

where σ(·) is the temporal variance, µ(·) is the spatial mean,
and Xj is a randomly selected sequence. All these data
transformations maintain the action information.
• Non-Actionlet Transformation Tnon: To obtain

stronger generalization, several extra data transformations
are applied to the non-actionlet regions in addition to the
above data transformation.

We apply an intra-instance data transformation {Random
Noise} and an inter-instance data transformation {Skeleton
Mix}. The random Noise has larger variance. Skele-
ton Mix is an element-wise data mixing method, includ-
ing Mixup [44], CutMix [43], and ResizeMix [25]. Be-
cause these transformations are performed on non-actionlet
regions, they do not change the action semantics. There-
fore, the transformed data are used as positive samples with
the original data.
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• Actionlet-Dependent Combination: To merge the
data transformations of the two regions, we utilize action-
lets to combine. It is formalized as:

Xi
trans = Ai

tv ⊙Xi
act + (1−Ai

tv)⊙Xi
non, (7)

where Xi
trans is the final transformed data, Xi

act and Xi
non

are transformed with actionlet transformations Tact. Then,
Xi

non is performed non-actionlet transformations Tnon. Ai
tv

represents the actionlet.

Semantic-Aware Feature Pooling (SAFP). To extract
the motion information more accurately, we propose a
semantic-aware feature pooling method along the spatial-
temporal dimension. This method focuses only on the fea-
ture representation of the actionlet region, thus reducing the
interference of other static regions for motion feature ex-
traction. It is formalized as:

SAFP(hi
ctv) =

T∑
t=1

V∑
v=1

hi
ctv

(
Ai

tv∑T
t=1

∑V
v=1 A

i
tv

)
. (8)

This semantic-aware feature aggregation approach effec-
tively extracts motion information and makes the features
more distinguishable. We utilize this semantic-aware fea-
ture pooling operation in the offline stream to provide accu-
rate anchor features.

Training Overview. In this part, we conclude our frame-
work of contrastive learning in detail:

1) Two encoders are pre-trained using MoCo v2 [10], an
online encoder fq(·) and an offline encoder fk(·). The
online encoder is updated via back-propagation gradi-
ents, while the offline encoder is a momentum-updated
version of the online encoder as described in Sec. 2.2.

2) The offline network fk(·) inputs the original data Xi

and we employ the unsupervised actionlet selection
module to generate actionlet regions Ai

tv in the offline
stream in Sec. 3.1.

3) We perform data transformation T to obtain two differ-
ent views Xi

q and Xi
k. And we apply motion-adaptive

transformation strategy (MATS) to enhance the diver-
sity of Xi

q in Sec. 3.2.

4) For feature extraction, in online stream, ziq = (gq ◦
GAP ◦ fq ◦MATS)(Xi

q), where gq(·) is an online pro-
jector and GAP is the global average pooling. To pro-
vide a stable and accurate anchor feature, we utilize
the semantic-aware feature pooling (SAFP) method in
Sec. 3.2 to generate offline features zik = (gk ◦SAFP◦
fk)(X

i
k), where gk(·) is an offline projector.

5) A memory bank M = {mi}Mi=1 is utilized to store
offline features. The offline features extracted from

the offline data in each batch are stored in the mem-
ory bank, and the bank is continuously updated using
a first-in first-out strategy.

6) Following recent works [20, 45], we exploit similarity
mining to optimize:

LKL(p
i
q,p

i
k) = −pi

k logp
i
q,

pi
q = SoftMax(sim(ziq,M)/τq),

pi
k = SoftMax(sim(zik,M)/τk),

(9)

where sim(ziq,M) = [sim(ziq,m
j)]Mj=1, which indi-

cates the similarity distribution between feature ziq and
other samples in M. For the elements pij

k of pi
k greater

than the elements pij
q of pi

q , these corresponding fea-
tures mj in the memory bank are positive samples.
This is because the network increases the similarity of
the output with these features.

4. Experiment Results
For evaluation, we conduct our experiments on the fol-

lowing two datasets: the NTU RGB+D dataset [17, 26] and
the PKUMMD dataset [18].

4.1. Datasets and Settings

• NTU RGB+D Dataset 60 (NTU 60) [26] is a large-scale
dataset which contains 56,578 videos with 60 action la-
bels and 25 joints for each body, including interactions with
pairs and individual activities.
• NTU RGB+D Dataset 120 (NTU 120) [17] is an exten-
sion to NTU 60 and the largest dataset for action recogni-
tion, which contains 114,480 videos with 120 action labels.
Actions are captured with 106 subjects with multiple set-
tings using 32 different setups.
• PKU Multi-Modality Dataset (PKUMMD) [18] covers
a multi-modality 3D understanding of human actions. The
actions are organized into 52 categories and include almost
20,000 instances. There are 25 joints in each sample. The
PKUMMD is divided into part I and part II. Part II pro-
vides more challenging data, because the large view varia-
tion causes more skeleton noise.

To train the network, all the skeleton sequences are tem-
porally down-sampled to 50 frames. The encoder f(·) is
based on ST-GCN [40] with hidden channels of size 16,
which is a quarter the size of the original model. The pro-
jection heads for contrastive learning and auxiliary tasks are
all multilayer perceptrons, projecting features from 256 di-
mensions to 128 dimensions. τq is 0.1 and τk is 0.04. We
employ a fully connected layer ϕ(·) for evaluation.

To optimize our network, Adam optimizer [21] is ap-
plied, and we train the network on one NVIDIA TitanX
GPU with a batch size of 128 for 300 epochs.
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Table 1. Comparison of action recognition results with unsupervised learning approaches on NTU dataset.

Models Stream NTU 60 xview NTU 60 xsub NTU 120 xset NTU 120 xsub

AimCLR [8] joint 79.7 74.3 63.4 63.4
ActCLR joint 86.7 80.9 70.5 69.0

AimCLR [8] motion 70.6 66.8 54.4 57.3
ActCLR motion 84.4 78.6 67.8 68.3

AimCLR [8] bone 77.0 73.2 63.4 62.9
ActCLR bone 85.0 80.1 68.2 67.8

3s-AimCLR [8] joint+motion+bone 83.8 78.9 68.8 68.2
3s-ActCLR joint+motion+bone 88.8 84.3 75.7 74.3

Table 2. Comparison of action recognition results with unsuper-
vised learning approaches on NTU 60 dataset. † indicates that
results reproduced on our settings of feature dimension size.

Models Architecture xview xsub

Single-stream:
LongT GAN [49] GRU 48.1 39.1
MS2L [16] GRU - 52.5
AS-CAL [24] LSTM 64.8 58.5
P&C [32] GRU 59.3 56.1
SeBiReNet [22] SeBiReNet 79.7 -
ISC [34] GCN & GRU 78.6 76.3
AimCLR [8] GCN 79.7 74.3
CMD† [20] GRU 81.3 76.8
GL-Transformer [14] Transformer 83.8 76.3
CPM [45] GCN 84.9 78.7
ActCLR GCN 86.7 80.9

Three-stream:
3s-Colorization [41] DGCNN 83.1 75.2
3s-CrosSCLR [15] GCN 83.4 77.8
3s-AimCLR [8] GCN 83.8 78.9
3s-CMD† [20] GRU 85.0 79.9
3s-SkeleMixCLR [5] GCN 87.1 82.7
3s-CPM [45] GCN 87.0 83.2
3s-ActCLR GCN 88.8 84.3

4.2. Evaluation and Comparison

To make a comprehensive evaluation, we compare our
method with other methods under variable settings.

1) Linear Evaluation. In the linear evaluation mechanism,
a linear classifier ϕ(·) is applied to the fixed encoder f(·) to
classify the extracted features. We adopt action recognition
accuracy as a measurement. Note that this encoder f(·) is
fixed in the linear evaluation protocol.

Compared with other methods in Tables 1, 2 and 3, our
model shows superiority on these datasets. We find that the
transformation that 3s-CrosSCLR [15] and 3s-AimCLR [8]
design in the contrastive learning task is unified for different
regions, which makes the data transformation interfere with

Table 3. Comparison of action recognition results with unsuper-
vised learning approaches on NTU 120 dataset. † indicates that
results reproduced on our settings of feature dimension size.

Models Architecture xset xsub

Single-stream:
AS-CAL [24] LSTM 49.2 48.6
AimCLR [8] GCN 63.4 63.4
CMD† [20] GRU 66.0 65.4
GL-Transformer [14] Transformer 68.7 66.0
CPM [45] GCN 69.6 68.7
ActCLR GCN 70.5 69.0

Three-stream:
3s-CrosSCLR [15] GCN 66.7 67.9
3s-AimCLR [8] GCN 68.8 68.2
3s-CMD† [20] GRU 69.6 69.1
3s-SkeleMixCLR [5] GCN 70.7 70.5
3s-CPM [45] GCN 74.0 73.0
3s-ActCLR GCN 75.7 74.3

the motion information. On the contrary, our method adopts
MATS for semantic-aware motion-adaptive data transfor-
mation. Thus, the features extracted by our method main-
tain better action information which is more suitable for
downstream tasks.

2) Supervised Finetuning. We first pretrain the encoder
f(·) in the self-supervised learning setting, and then fine-
tune the entire network. We train the encoder f(·) and clas-
sifier ϕ(·) using complete training data.

Table 4 displays the action recognition accuracy on the
NTU datasets. This result confirms that our method extracts
the information demanded by downstream tasks and can
better benefit action recognition. In comparison with state-
of-the-art supervised learning methods, our model achieves
better performance.

3) Transfer Learning. To explore the generalization abil-
ity, we evaluate the performance of transfer learning. In
transfer learning, we exploit self-supervised task pretrain-

2368



Table 4. Comparison of action recognition results with supervised learning approaches on NTU dataset.

Models Params NTU 60 xview NTU 60 xsub NTU 120 xset NTU 120 xsub

Single-stream:
ST-GCN [40] 0.83M 88.3 81.5 73.2 70.7
SkeletonCLR [15] 0.85M 88.9 82.2 75.3 73.6
AimCLR [8] 0.85M 89.2 83.0 76.1 77.2
CPM [45] 0.84M 91.1 84.8 78.9 78.4
ActCLR 0.84M 91.2 85.8 80.9 79.4

Three-stream:
3s-ST-GCN [40] 2.49M 91.4 85.2 77.1 77.2
3s-CrosSCLR [15] 2.55M 92.5 86.2 80.4 80.5
3s-AimCLR [8] 2.55M 92.8 86.9 80.9 80.1
3s-SkeleMixCLR [5] 2.55M 93.9 87.8 81.2 81.6
3s-ActCLR 2.52M 93.9 88.2 84.6 82.1

Table 5. Comparison of the transfer learning performance on
PKUMMD dataset with linear evaluation pretrained on NTU 60.

Models PKU I xview PKU II xview

3s-AimCLR [8] 85.3 42.4
3s-ActCLR 91.6 44.5

Models PKU I xsub PKU II xsub

LongT GAN [49] - 44.8
MS2L [16] - 45.8
ISC [34] - 51.1
Hi-TRS [4] - 55.0
3s-CrosSCLR [15] - 51.3
3s-AimCLR [8] 85.6 51.6
3s-ActCLR 90.0 55.9

ing on the source data. Then we utilize the linear evalua-
tion mechanism to evaluate on the target dataset. In linear
evaluation, the encoder f(·) has fixed parameters without
fine-tuning.

As shown in Table 5, our method achieves significant
performance. Our method employs MATS to remove irrele-
vant information, and SAFP to retain information related to
downstream tasks. This allows our encoder f(·) to obtain
stronger generalization performance.

4) Unsupervised Action Segmentation. To explore the ex-
traction of local features by our method, we used unsuper-
vised action segmentation as an evaluation metric. We pre-
train the encoder f(·) on the NTU 60 dataset. Then we uti-
lize the linear evaluation mechanism to evaluate the results
on the PKUMMD dataset. In linear evaluation, the encoder
f(·) has fixed parameters without fine-tuning.

As shown in Table 6, our method achieves significant
performance. Because our method focuses on the main oc-
currence region of the action, it is possible to locate the ac-
tions out of the long sequence.

Table 6. Comparison of the action segmentation performance on
PKUMMD II xview dataset with linear evaluation pretrained on
NTU 60 xview dataset.

Models Stream
PKUMMD II xview

ACC MACC FWIoU mIoU

AimCLR [8] joint 39.77 28.68 26.79 15.67
ActCLR joint 51.29 31.97 35.24 21.38

AimCLR [8] motion 42.32 26.65 29.92 15.92
ActCLR motion 56.69 39.45 41.34 27.73

AimCLR [8] bone 54.22 39.52 39.41 27.36
ActCLR bone 59.09 41.14 41.54 28.89

4.3. Ablation Study

Next, we conduct ablation experiments to give a more
detailed analysis of our proposed approach.

1) Analysis of Motion-Adaptive Data Transformation.
Data transformation is very important for consistency learn-
ing. To explore the influence of motion-adaptive data trans-
formations, we test the action recognition accuracy under
different data transformations. As shown in Table 7, the
motion-adaptive transformation can obtain better perfor-
mance than full region (the whole skeleton data) in differ-
ent noise settings. It is also observed that when the noise
strength increases, our performance degradation is much
smaller than that of full region. This indicates that the de-
sign is more robust to data transformation.

To explore the influence of different data transformations
on the contrastive learning effect, we test the action recog-
nition accuracy under different data transformation combi-
nations. As shown in Table 8, the consistency of the feature
space is further enhanced with more data transformations.
Thus, the performance of the downstream task is improved.
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Table 7. Analysis of motion-adaptive data transformation on NTU
60 xview dataset with the joint stream.

Transformation Region KNN Linear

Noise 0.01
Non-Actionlet 77.63 86.46

Full Area 76.51 85.91

Noise 0.05
Non-Actionlet 78.04 86.79

Full Area 75.28 84.20

Noise 0.1
Non-Actionlet 77.31 86.12

Full Area 74.19 83.69

Skeleton Mix
Non-Actionlet 78.04 86.79

Full Area 73.24 83.05

Table 8. Analysis of data transformation combinations on NTU 60
xview dataset with the joint stream. T is all the transformations.
Tact is actionlet transformations. Tnon is non-actionlet transforma-
tions. AdaIN refers to Skeleton AdaIN.

Modules KNN Linear

w/o T 67.50 79.98
w/o (AdaIN + Tnon) 69.75 81.80
w/o Tnon 73.63 83.27
Full Version 78.04 86.79

Table 9. Analysis of semantic-aware feature pooling on NTU 60
xview dataset with the joint stream.

Modules KNN Linear

w/o SAFP 76.38 85.69
offline w/ SAFP 78.04 86.79
online w/ SAFP 76.02 85.25
online + offline w/ SAFP 76.71 85.92

2) Analysis of Semantic-Aware Feature Pooling. To ex-
plore the semantic-aware feature pooling, we perform this
pooling on different streams. Table 9 shows the results of
accuracy of action recognition under different settings. We
note that better performance is obtained with offline, as it
makes offline to generate better positive sample features for
contrastive learning. Using this module in online reduces
the benefits exposed by the non-actionlet transformation.

3) Analysis of Actionlet and Non-Actionlet Semantic De-
coupling. In Fig. 3, we show the performance of extracting
only actionlet region information and non-actionlet region
information for action recognition. The accuracy of the ac-
tionlet region for action recognition is comparable to the
accuracy of the whole skeleton data. In contrast, the per-
formance of the features of non-actionlet regions for action
recognition is much lower. This shows that the actionlet

Figure 3. Action recognition accuracy of actionlet regions and
non-actionlet regions.

Figure 4. Visualization of the average motion. No obvious action
takes place in the average motion sequence and can therefore be
considered as a static anchor.

Figure 5. Visualization of the actionlet for a “throw” sequence.
The yellow joints are the actionlet. Note that hand movements are
mainly selected, indicating that the actionlet is reasonable.

area does contain the main motion information.

4) Visualization of Average Motion and Actionlet. Fig. 4
shows a visualization of the average motion and actionlet
respectively. The average motion has no significant mo-
tion information and serves as a background. The actionlet,
shown in Fig. 5, selects the joints where the motion mainly
occurs. Our actionlet is spatio-temporal, because the joints
with motion may change when the action is performed.

5. Conclusions

In this work, we propose a novel actionlet-dependent
contrastive learning method. Using actionlets, we design
motion-adaptive data transformation and semantic-aware
feature pooling to decouple action and non-action regions.
These modules make the motion information of the se-
quence to be attended to while reducing the interference of
static regions in feature extraction. In addition, the similar-
ity mining loss further regularizes the feature space. Experi-
mental results show that our method can achieve remarkable
performance and verify the effectiveness of our designs.
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