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Abstract

Low-light conditions not only hamper human visual ex-
perience but also degrade the model’s performance on
downstream vision tasks. While existing works make re-
markable progress on day-night domain adaptation, they
rely heavily on domain knowledge derived from the task-
specific nighttime dataset. This paper challenges a more
complicated scenario with border applicability, i.e., zero-
shot day-night domain adaptation, which eliminates re-
liance on any nighttime data. Unlike prior zero-shot adap-
tation approaches emphasizing either image-level transla-
tion or model-level adaptation, we propose a similarity min-
max paradigm that considers them under a unified frame-
work. On the image level, we darken images towards mini-
mum feature similarity to enlarge the domain gap. Then on
the model level, we maximize the feature similarity between
the darkened images and their normal-light counterparts
for better model adaptation. To the best of our knowledge,
this work represents the pioneering effort in jointly optimiz-
ing both levels, resulting in a significant improvement of
model generalizability. Extensive experiments demonstrate
our method’s effectiveness and broad applicability on vari-
ous nighttime vision tasks, including classification, seman-
tic segmentation, visual place recognition, and video action
recognition. Our project page is available at https://
red-fairy.github.io/ZeroShotDayNightDA-
Webpage/.

1. Introduction

Deep neural networks are sensitive to insufficient illumi-
nation, and such deficiency has posed significant threats to
safety-critical computer vision applications. Intuitively, in-
sufficient illumination can be handled by low-light enhance-
ment methods [23,30,34,56,60,63], which aim at restoring
low-light images to normal-light. However, enhancement
models do not necessarily benefit downstream high-level vi-
sion tasks as they are optimized for human visual perception
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Figure 1. Left: Illustration of our similarity min-max framework
for zero-shot day-night domain adaptation. Right: Our framework
achieves state-of-the-art results on multiple downstream high-level
vision tasks without seeing real nighttime images during training.

and neglect the need for machine vision.
Much existing literature has focused on improving ma-

chine vision performance at night through domain adap-
tation. By aligning the distribution statistics between
the nighttime and daytime datasets through image transla-
tion [2, 12, 45], self-supervised learning [52, 53], or multi-
stage algorithms [10, 46, 47], these methods have greatly
improved models’ performance in nighttime environments.
The primary assumption of domain adaptation is that the
target domain data is readily available. Nevertheless, ob-
taining data from the task-specific target domain may be
challenging in extreme practical application scenerios such
as deep-space exploration and deep-sea analysis.

To reduce the requirement on target domain data, zero-
shot domain adaptation has emerged as a promising re-
search direction, where adaptation is performed without ac-
cessing the target domain. Regarding day-night domain
adaptation, the primary challenge is learning illumination-
robust representations generalizable to both day and night
modalities. To accomplish this goal under zero-shot con-
straints, Lengyel et al. [29] proposed a color invariant con-
volution for handling illumination changes. Cui et al. [8]
designed a Reverse ISP pipeline and generated synthetic
nighttime images with pseudo labels. However, image-level
methods simply consider synthetic nighttime as pseudo-
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labeled data and overlook model-level feature extraction;
model-level methods focus on adjusting model architecture
but neglect image-level nighttime characteristics. Neither is
effective enough capture the illumination-robust representa-
tions that could bridge the complex day-night domain gap.

From this point of view, we devise a similarity min-max
framework that involves two levels, as illustrated in Fig-
ure 1. On the image level, we generate a synthetic night-
time domain that shares minimum feature similarity with
the daytime domain to enlarge the domain gap. On the
model level, we learn illumination-robust representations
by maximizing the feature similarity of images from the two
domains for better model adaptation.

Intuitive as it seems, solving this bi-level optimization
problem is untrivial. Directly solving it may yield unsat-
isfactory results, e.g., meaningless images filled with zero
values or identical features given all inputs. Therefore, we
develop a stable training pipeline that can be considered a
sequential operation on both the image and the model. Re-
garding the image, we propose an exposure-guided module
to perform reliable and controllable nighttime image syn-
thesis. Regarding the model, we align the representation
of images from day and night domains through multi-task
contrastive learning. Finally, our model achieves day-night
adaptation without seeing real nighttime images.

Our framework can serve as a plug-and-play remedy to
existing daytime models. To verify its effectiveness, we
conduct extensive experiments on multiple high-level night-
time vision tasks, including classification, semantic seg-
mentation, visual place recognition, and video action recog-
nition. Results on various benchmarks demonstrate our su-
periority over the state-of-the-art.

Our contributions are summarized as follows:

• We propose a similarity min-max framework for zero-
shot day-night domain adaptation. Feature similar-
ity between the original and darkened images is min-
imized by image-level translation and maximized by
model-level adaptation. In this way, model’s perfor-
mance in nighttime is improved without accessing real
nighttime images.

• We develop a stable training pipeline to solve this bi-
level optimization problem. On the image level, we
propose an exposure-guided module to perform reli-
able and controllable nighttime image synthesis. On
the model level, we align the representation of images
from day and night domains through multi-task con-
trastive learning.

• Our framework universally applies to various night-
time high-level vision tasks. Experiments on classi-
fication, semantic segmentation, visual place recogni-
tion, and video action recognition demonstrate the su-
periority of our method.

2. Related Works

Low-Light Enhancement. A straightforward approach to
improve the model’s performance in low light is brighten-
ing the test low-light images. Early non-learning practices
exploit image processing tools such as histogram equal-
ization [40] or image formation theories such as Retinex
Theory [44]. Recent literature mainly takes advantage of
the advance in deep learning. Trained on paired day-night
data, some methods [33, 55, 56] simulate the image decom-
position process of Retinex Theory. Others introduce ad-
versarial learning [23] to support unpaired training. Zero-
DCE [16,30] designs a curve-based low-light enhancement
model and trains in a zero-reference way. Advanced tech-
niques, including frequency decomposition [24], feature
pyramids [60, 63], and flow models [54] are also adopted
in recent papers.

Day-Night Domain Adaptation. Nighttime high-level vi-
sion has attracted increasing attention in recent years. Apart
from pre-processing with enhancement models, day-night
domain adaptation is also a viable solution. YOLO-in-the-
dark [47] introduces the glue layer to mitigate the day-night
domain gap. MAET [8] exploits image signal processing
(ISP) for nighttime image generation and uses both syn-
thetic and real nighttime images for training. HLA-face [52]
proposes a joint high-low adaptation framework driven by
self-supervised learning. Others [2, 37, 45, 46, 57] employ
Generative Adversarial Network (GAN) to transfer labeled
daytime data to nighttime.

Zero-Shot Day-Night Domain Adaptation. Beyond Con-
ventional adaptation, zero-shot approaches consider an
even stricter condition where real nighttime images are in-
accessible. For general tasks, existing methods either draw
supports from extra task-irrelevant source and target do-
main data pairs [39, 51] or require underlying probability
distribution of the target domain [20], which are inappli-
cable to our settings. For the day-night task, Lengyel et
al. propose the Color Invariant Convolution (CIConv) [29]
to capture illumination-robust features. MAET [8] can be
viewed as zero-shot when real nighttime images are dis-
carded during finetuning. Besides, domain generalization
methods [1, 6, 19, 26, 31, 38, 62] also apply to our settings
since they do not know target domains, but they are too gen-
eral to handle the complex day-night domain gap.

Despite these advances, low-light enhancement concen-
trates on human vision and disregards downstream night-
time vision tasks. Conventional adaptation methods require
task-specific nighttime datasets, which creates extra bur-
dens on data collection and limits their generalizability to
multiple tasks. Prior zero-shot adaptation methods fail to
consider image-level and model-level jointly. In this pa-
per, we propose a novel similarity min-max framework that
could outperform existing methods by a large margin.
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3. Similarity Min-Max Optimization
This section introduces our approach for zero-shot day-

night domain adaptation. We first explain our motivation,
then introduce the overall framework and detailed designs.

3.1. Motivation

Existing methods, generally categorized into Operator-
based and Darkening-based as shown in Figure 2, come
across troubles in the day-night domain adaptation prob-
lem. Operator-based methods [29] rely on the manually
designed operators at the model level to handle illumina-
tion variations, which are not adaptive to real complex sce-
narios. Darkening-based methods transfer labeled daytime
data to nighttime by ISP [8] or GAN [2, 28, 45, 46] only at
the image level. However, the former is sensor-dependent
and cannot generalize across devices and datasets, while the
latter requires data from the task-specific nighttime domain
and thus fails to generalize to our zero-shot setting.

Intrinsically, the most critical issue of existing methods
is their ignorance of the mutual effect between pixels and
features. In our work, we make the first systematic in-
vestigation on this issue and propose a similarity min-max
framework that thoroughly exploits the information from
two sides. In detail, at the pixel (image) level, we minimize
the feature similarity between original and darkened images
by day-to-night translation. While at the feature (model)
level, we maximize the feature similarity by representation
alignment. This joint optimization leads to representations
more robust to illumination changes.

We formulate our framework as follows. Denote the fea-
ture extractor of the downstream model as F (·). Being ro-
bust to illumination requires the extracted feature of a day-
time image I and its nighttime version D(I) to be similar,
where D(·) represents a darkening process. The limitation
of existing darkening-based methods is that their D does not
consider the co-effect of F . So we introduce additional con-
straints on D: we require D to minimize the similarity be-
tween the day feature F (I) and the night feature F (D(I)).
This way, we guide the darkening process with high-level
vision, forming a unified framework of D and F . At this
point, we can integrate D and F as a min-max optimization
problem:

max
θF

min
θD

Sim(F (I), F (D(I))), (1)

where θD and θF denote the parameters in D and F , and
Sim(·, ·) measures the similarity between features.

However, trivial solutions exist in Eq. (1), such as D
generating entirely black images and F extracting identi-
cal features for all inputs. We add regularizations to D and
F accordingly to address this problem:

max
θF

min
θD

Sim(F (I), F (D(I)))+RD(θD)−RF (θF ), (2)
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Figure 2. Comparison between different learning paradigms. D
and N denote the daytime and nighttime domains, respectively. (a)
Operator-based. (b) Darkening-based. (c) Our method.

where RD and RF are intended to prevent model collapse.
How to design RD and RF properly is the key to solving

Eq. (2). The following will introduce how we design RD

and RF and build up the whole learning framework.

3.2. Image-Level Similarity Minimization

This section describes our design for the darkening mod-
ule D. We want D to satisfy three properties:

• Stability. First and foremost, we need to prevent the
similarity min-max optimization from collapsing, i.e.,
applying proper RD in Eq. (2).

• Generalization. D should represent a generalized
darkening process so the downstream model can learn
useful knowledge from D(I) to handle unseen night-
time scenes.

• Flexibility. We additionally expect flexible control
over the degree of darkening, which could enable us
to create diverse inputs beneficial for optimizing F .

We design an exposure-guided pixel-wise mapping al-
gorithm to satisfy the above properties. Unlike widely-used
image-to-image darkening approaches [2, 28, 46] that rely
heavily on real nighttime images, pixel-wise mapping ad-
justs images using a pre-selected function with learnable
parameters. We empirically found that, by setting proper
constraints on the mapping function, we can naturally avoid
obtaining trivial solutions in the similarity min-max opti-
mization (stability) and guarantee D follows a typical low-
light process (generalization). Finally, we add an exposure
guidance mechanism for better flexibility. The detailed de-
sign will be illustrated as follows.
Darkening Process. We first define a general function for
tone mapping. Given an image I ∈ [0, 1]C·H·W , we use
a non-linear mapping f : [0, 1] → [0, 1] and a pixel-wise
adjustment map A ∈ [0, 1]C·H·W to process the image:

D0(I) = f(I,A). (3)
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Figure 3. Our proposed similarity min-max framework for zero-shot day-night domain adaptation. (a) We first train a darkening module D
with a fixed feature extractor to generate synthesized nighttime images that share minimum similarity with their daytime counterparts. (b)
After obtaining D, we freeze its weights and maximize the day-night feature similarity to adapt the model to nighttime.

Typically, f should be monotonically increasing to preserve
contrast and satisfy f(1, α) = 1 for all α to avoid informa-
tion loss (e.g., gamma correction). However, the latter con-
straint f(1, α) = 1 no longer holds for darkening. There-
fore, we propose an auxiliary pixel-wise adjustment using
a monotonic increasing function g: [0, 1] → [0, 1] parame-
terized by another adjustment map B ∈ [0, 1]C·H·W . Note
that g only serves as a complement and should be simple
to avoid taking over the role of f . The overall darkening
process is formulated as:

D(I) = g−1(f(g(I,B),A),B). (4)

Both A and B are estimated by a mapping estimator condi-
tioned on the input image I .

To guarantee D represents a darkening process (i.e.,
D(I) < I), f should additionally satisfy convexity. Specif-
ically, we let f be the iterative quadratic curve [16]:
f(x) = h(8)(x), h(x, α) = αx2 + (1 − α)x, and g be the
dividing operation: g(x, β) = x/β in our implementation.
Other kinds of curve forms are also considered and tested.
Still, we empirically found that quadratic curves could bring
slightly better results (results in Sec. 4.2).

Besides, to enable flexible control over the exposure
level, we feed an exposure map E to the mapping esti-
mator with I , yielding the corresponding darkened image
D(I, E). During training, the darkening module is encour-
aged to align the pixel value of E and D(I, E). We use
D(I) and D(I, E) interchangeably for simplicity.

Similarity Minimization. The training objective of mod-
ule D involves two parts: similarity minimization and reg-
ularization. For the former, we directly reduce the distance

between features:

Lsim
D =

⟨F (I), F (D(I))⟩
||F (I)||2 · ||F (D(I))||2

, (5)

where ⟨·, ·⟩ is the inner product between two vectors.
The regularization term consists of four losses. Besides

a color consistency loss Lcol [16] that corrects color devia-
tions, three additional losses are proposed to regularize D:

Firstly, conditional exposure control is adopted to align
the exposure map with the corresponding generated image:

Lc−exp =
∑

1≤i≤H,1≤j≤W

|D̂i,j(I, E)− Ei,j |, (6)

where D̂(I, E) is the channel-wise average of D(I, E).
During training, each exposure map E has identical entries
uniformly sampled between [0, 0.5].

Then we add constraints on A. Intuitively, A represents
the degree of illumination reduction. Illumination usually
varies slowly across a scene but encounters rapid variations
from object to object. Following this property, we apply a
loose total variance loss:

Lltv(A) =
∑

c∈{R,G,B}

(h(|∇xAc|)2 + h(|∇yAc|)2), (7)

h(x) = max(α− |x− α|, 0), (8)

where ∇x,∇y are gradient operations along the horizontal
and vertical axis, respectively, and α is a hyperparameter.
Compared with the original total variance loss where h is
the identity function, our loose version allows the network
to predict values of greater difference for adjacent pixels,
which is common on objects’ boundaries.

Finally, we adopt Lflex(B) = 1 − B to avoid model
fitting to the exposure solely by g.
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The overall training objective for D is:

LD = λsim
D Lsim

D +RD, (9)
RD = λc−expLc−exp + λcolLcol + λltvLltv + λflexLflex.

(10)

3.3. Model-Level Similarity Maximization

The darkening module D grants us access to a synthetic
nighttime domain. In this section, we exploit D to learn
illumination-robust representations.

Contrastive learning [5, 17] is a self-supervised learn-
ing paradigm that contrasts positive and negative image
pairs. However, images of the same class in classification
or adjacent scenes in segmentation will form false negative
pairs, thus hurting the model’s performance. To alleviate
these burdens, BYOL [15] proposes a non-negative vari-
ant that only aligns the feature between positive image pairs
{v, v+}:

LBYOL(v, v
+) = 2− 2 · ⟨z(q(F (v))), q′(F ′(v+))⟩

||z(q(F (v)))||2 · ||q′(F ′(v+))||2
,

(11)
where q, q′ are projection heads, and z is the prediction
head. Both of them are MLPs with a single hidden layer.
Note that F ′ and q′ share the same architecture and weight
initialization with F and q but receive no gradient and are
updated by exponential moving average (EMA).
Similarity Maximization. Motivated by BYOL, we max-
imize the feature similarity between synthetic nighttime
and daytime domains by non-negative contrastive learning.
Given a daytime image I and an exposure map E, we for-
mulate the training objective as follows:

Lsim
F = LBYOL(I,D(I, E)) + LBYOL(D(I, E), I). (12)

Note that the measure of feature similarity is different be-
tween Eq. (5) and Eq. (12). Directly applying Eq. (5) to
train F brings poorer results due to potential feature degen-
eration. In comparison, the asymmetric projection head and
stop gradient policies prevent the feature extractor F from
collapsing, i.e., working as the regularization RF in Eq. (2)
together with the task loss (introduced below).

Moreover, different from E in Eq. (6), we use a com-
pound exposure map E′ instead. E′ is first initialized
with identical entries uniformly sampled between [0, 0.2]
for simulating nighttime illumination. This range is the
same for all downstream tasks, which does not introduce
task-relevant prior. Then, we add pixel-wise noise z1 and
patch-wise noise z2 to E to simulate exposure discrepancy.
Overall, E′ can be represented as:

E′ = U(0, 0.2) + z1 + z2. (13)

See the supplementary for details on noise injection.

(a) Original Model (b) Adapted Model

Day

Synthetic
Night

Real
Night

Figure 4. t-SNE [50] visualization of images’ feature extracted
by the original daytime model and our adapted model on CO-
DaN [29]. Red, green, and blue dots represent the feature of day-
time, synthesized nighttime, and real nighttime images, respec-
tively. We only color the instances from the “Car” category for
better visual quality. Additional visualization results are shown in
the supplementary.

Besides Lsim
F , we add task-specific supervision Ltask on

both the original daytime and synthetic nighttime domain.
The final training objective for F is:

LF = λsim
F Lsim

F + λtaskLtask. (14)

3.4. Overall Training Pipeline

Having introduced the image-level similarity minimiza-
tion (Section 3.2) and model-level similarity maximization
(Section 3.3), this section discusses the overall pipeline, as
shown in Figure 3.

An intuitive idea is training D and F alternately like
GAN [13, 64]. Nevertheless, balancing D and F increases
the difficulty of parameter tuning and makes the optimiza-
tion process unstable. We adopt a simple but effective two-
step strategy to solve this problem: we first train D and keep
F frozen, then train F and keep D frozen. Compared with
the alternate strategy, our step-wise approach improves the
performance on nighttime image classification (elaborate in
Section 4.2) from 63.84% to 65.87%.

We could also explain the merits of our min-max frame-
work from the perspective of adversarial training [14, 35].
Module D first produces the worst-case examples regard-
ing feature similarity. Then, our model could learn the
illumination-robust features by learning on these cases
through similarity maximization. This technical common-
ality further justifies our motivation to build the similarity
min-max framework.

Across all downstream tasks, the feature extractor and
task module are initialized by daytime pre-trained models.
We first freeze the feature extractor and train the darkening
module (image-level translation). Then, we keep the dark-
ening module fixed and train the feature extractor and task
module jointly (model-level adaptation).
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3.5. Empirical Justifications on Darkening Module

Simulating nighttime conditions without accessing real
nighttime images is the key to our framework. Particularly,
nighttime conditions bring semantic changes in addition to
illumination changes, e.g., the dark environment with arti-
ficial lights on the second real nighttime image in Figure 4.
However, an accurate simulation is extremely difficult since
our prior knowledge is limited to “low illumination”. For-
tunately, unlike typical day-to-night image synthesis pro-
cesses [41] which target the human visual experience, ours
only care about the distribution of darkened images in the
feature space. Leaving aside visual quality, we are pleased
to find that the feature distribution of our synthesized night-
time domain is similar to that of the real nighttime domain
as visualized in Figure 4(a). This observation demonstrates
that our darkening process can characterize the night do-
main from the model-level perspective.

Thanks to this property, the feature discrepancy between
daytime and real nighttime domain is significantly reduced
after model-level adaptation (red and blue dots in Figure 4).
This discovery is consistent with the Maximum Mean Dis-
crepancy (MMD) between the feature distribution of day
and night modalities, which is 0.020 and 0.014 for the orig-
inal and adapted models, respectively. We provide imple-
mentation details and additional empirical analysis using
saliency maps in the supplementary.

4. Experiments
This section provides the implementation details, bench-

marking results, and ablation analysis of our method.

4.1. Implementation Details

Our framework widely applies to various nighttime vi-
sion tasks. In the following, we evaluate our method with
four representative tasks: image classification, semantic
segmentation, visual place recognition, and video action
recognition. Only daytime data are accessible for training
and validation, while nighttime data are only used during
evaluation. We benchmark our method with three categories
of methods that require no dataset-specific target domain
data: low-light enhancement, zero-shot day-night domain
adaptation, and domain generalization. For low-light en-
hancement, enhancement models are trained on their origi-
nal datasets. Then we adopt them as a pre-processing step
to assist the daytime baseline. The results of our method is
the average of three independent trails. Additional details
are provided in the supplementary.

4.2. Nighttime Image Classification

We first consider one of the most fundamental vision
tasks: image classification. CODaN [29] is a 10-class
dataset containing a training set of 10000 daytime images

Table 1. Top-1 classification accuracy on the CODaN nighttime
test set [29]. † denotes our re-implementation with both the origi-
nal and synthesized image fed into the task module.

Method Top-1 (%)

ResNet-18 [18] 53.32

Low-Light Enhancement

EnlightenGAN [23] 56.68
LEDNet [63] 57.40
Zero-DCE++ [30] 57.96
RUAS [33] 58.36
SCI [34] 58.68
URetinexNet [56] 58.72

Domain Generalization

MixStyle [62] 53.12
IRM [1] 54.52
AdaBN [31] 54.25

Zero-Shot Day-Night Domain Adaptation

MAET† [8] 56.48
CIConv [29] 60.32
Ours 65.87

and a test set with 2500 daytime and nighttime images, re-
spectively. We validate models on the daytime test set and
evaluate them on the nighttime test set. The backbone is
ResNet-18 [18].

Benchmarking results are shown in Table 1. Enhance-
ment methods restore input low-light images from the hu-
man visual perspective while keeping the model untouched,
resulting in limited performance gains. Domain general-
ization methods are designed for general tasks and perform
poorly in unseen nighttime environments. MAET [8] relies
on degrading transformation with sensor-specific parame-
ters, which suffers from poor generalizability. CIConv [29]
adopts learnable color invariant edge detectors, which are
not robust to the complex illumination variation in real sce-
narios. In contrast, our method outperforms state-of-the-art
methods by a large margin (60.32% v.s. 65.87%), demon-
strating our unified framework could obtain features more
robust to illumination shifts.
Ablation Studies. We conduct ablation studies to justify
our framework design in Table 2. Firstly, we study how to
design the darkening module D given Lsim

D . The model-
level adaptation stage (Section 3.3) remains the same for
fair comparisons. Firstly, we replace our darkening module
with heuristic image adjustment approaches, such as bright-
ness adjustment (Brightness in PIL1) and gamma cor-
rection (D(I) = Iγ). We implement these two approaches
using a fixed darkening hyperparameter chosen after multi-

1https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html
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Table 2. Ablation studies for module D and similarity losses. We
report the Top-1 accuracy on the CODaN [29] nighttime test set.

Category Method Top-1 (%)

Baseline Vanilla ResNet-18 53.32

Module D Brightness adjustment 57.96
Heuristic Gamma correction 63.96

Module D Reciprocal curve 62.60
Learnable Gamma curve 64.16

Similarity
w/o Lsim

D and Lsim
F 64.08

Loss
w/o Lsim

D 64.56
w/o Lsim

F 64.88

Full version - 65.87

ple trials and report the best score.
Next, we test other possible curve forms for f . Both

gamma curve (f(x, α) = x
1
α , α ∈ (0, 1]) and reciprocal

curve (f(x, α) = (1−α)·x
1−α·x , α ∈ [0, 1)) bring slightly worse

results than the iterative quadratic curve. Please refer to the
supplementary for implementation details of these ablations
and additional results on the segmentation task.

Finally, we test our framework’s performance when one
or both of the similarity loss is absent. We find that either
similarity loss alone can boost the model’s nighttime per-
formance while combining them achieves the best result.

4.3. Nighttime Semantic Segmentation

Next, we explore a more challenging nighttime vision
task: semantic segmentation. We adopt RefineNet [32] with
ResNet-101 backbone as the baseline. The daytime train-
ing dataset is Cityscapes [7], containing 2975 images for
training and 500 images for validation, all with dense anno-
tations. The nighttime testing datasets are Nighttime Driv-
ing [9] and Dark-Zurich [46]. These two datasets contain
50 coarsely annotated and 151 densely annotated nighttime
street view images.

We benchmark our method in Table 3. Low-light en-
hancement methods yield worse results than the baseline
because they perform poorly on street scenes with complex
light sources. Domain generalization methods fail to mit-
igate the huge day-night domain gap, leading to unsatis-
factory results. Note that RobustNet [6] adopts DeepLab-
v3 [4] architecture, which is superior to RefineNet [32]
adopted in our implementation. Among zero-shot adapta-
tion methods, MAET [8] injects too much noise into im-
ages, leading to severe performance degradation. CIConv
yields better results, but the improvement is limited. In
comparison, our approach improves the mIoU scores to
44.9% on Nighttime Driving and 40.2% on Dark-Zurich.

Figure 5 shows qualitative segmentation results on two
nighttime datasets. Low-light enhancement methods per-

Table 3. Semantic segmentation results on Nighttime Driving [9]
and Dark-Zurich [46], reported as percentage mIoU scores.

Method Nighttime Driving Dark-Zurich

RefineNet [32] 34.3 30.6

Low-Light Enhancement

EnlightenGAN [23] 25.2 24.9
Zero-DCE++ [30] 32.7 28.3
RUAS [33] 25.1 23.4
SCI [34] 28.6 25.7
URetinexNet [56] 28.1 24.0
LEDNet [63] 27.6 26.6

Domain Generalization

AdaBN [31] 37.2 31.1
RobustNet [6] 33.0 34.5
SAN-SAW [38] 28.1 16.0

Zero-Shot Day-Night Domain Adaptation

MAET [8] 28.1 26.4
CIConv [29] 41.2 34.5
Ours 44.9 40.2

Table 4. Visual place recognition results on Tokyo 24/7 [49].

Method mAP (%)

Zero-Shot Day-Night Domain Adaptation

EdgeMAC [42] 75.9
U-Net jointly [21] 79.8
GeM [43] 85.0
CIConv-GeM [29] 88.3
Ours-GeM 90.4

Day-Night Domain Adaptation
(night images are available for training)

U-Net jointly [21] 86.5
EdgeMAC + CLAHE [21] 90.5
EdgeMAC + U-Net jointly [21] 90.0

form poorly on nighttime street scenes. Our method better
extracts information hidden by darkness and thus generates
more accurate semantic maps.

4.4. Visual Place Recognition at Night

Then we explore visual place recognition, which aims to
retrieve images that illustrate the same scene of a query im-
age from an image pool. Unlike classification and segmen-
tation, place recognition methods are not end-to-end dur-
ing inference. We extend our method based on GeM [43]
with ResNet-101 backbone. In GeM, the network receives
a tuple of images {p, q, n1, · · · , nk} as input, in which
the query q only matches p. The network is trained on
a contrastive loss, similar to the model-level stage in our
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Figure 5. Semantic segmentation results. For each group, the first row: Nighttime Driving [9], the second row: Dark-Zurich [46].

(a) Query (c) Ours(b) GeM

Figure 6. Qualitative visual place recognition results. (a) A night
query from the Tokyo 24/7 dataset [49]. (b) Image retrieved by
GeM [43]. (c) Image retrieved by our method.

framework. We retain the image-level stage and modify the
model-level stage in our implementation. We first train the
darkening module D as usual. Then, we consider D(p)
as an additional matching for p, i.e., an input tuple con-
tains two positive samples (instead of one) and k nega-
tive samples. We train our network on the Retrieval-SfM
dataset [43] and evaluate it on the Tokyo 24/7 dataset [49],
which contains city views in multiple illumination condi-
tions and viewing directions.

Performance is reported as mean Average Precision
(mAP) in Table 4. Results of comparison methods are bor-
rowed from [21] and [29]. Our method outperforms all
zero-shot methods and is comparable to conventional do-
main adaptation methods. As shown in Figure 6, the base-
line method gets fooled by the night’s appearance, while our
model finds the correct daytime image.

4.5. Low-Light Video Action Recognition

Although initially designed for images, our method also
applies to video tasks. Here we consider an 11-class low-

Table 5. Video action recognition results on ARID [58].

Method Top-1 (%)

I3D [3] 47.02

Low-Light Video Enhancement

StableLLVE [59] 45.08
SMOID [22] 47.27
SGZ [61] 46.42

Domain Generalization &
Zero-Shot Day-Night Domain Adaptation

AdaBN [31] 46.17
Ours 51.52

light video action recognition task. Normal light train-
ing data consists of 2.6k normal light video clips from
HMDB51 [27], UCF101 [48], Kinetics-600 [25], and Mo-
ments in Time [36]. We evaluate our model on the official
test split of the ARID dataset [58]. The action recognizer is
I3D [3] based on 3D-ResNet [11].

We extend our method to video as follows. When train-
ing the darkening module, we input frames extracted from
video clips. A and B in Eq. (4) is estimated for every indi-
vidual frame. We calculate Lsim

D between video clips and
other losses between frames. When generating low-light
videos, frames are separately fed into the curve estimator
while sharing the same exposure map E′.

We report the results as Top-1 accuracy. As shown
in Table 5, video enhancement methods StableLLVE [59],
SMOID [22], and SGZ [61] yield a limited performance
gain. Meanwhile, our approach boosts models’ perfor-
mance by 4.38%, demonstrating our superiority on videos.
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5. Conclusion

In this paper, we propose a novel approach for zero-
shot day-night domain adaptation. Going beyond a simple
focus on the image-level translation or model-level adap-
tation, we observe a complementary relationship between
two aspects and build our framework upon the similarity
min-max paradigm. Our proposed method can significantly
boost the model’s performance at nighttime without access-
ing the nighttime domain. Experiments on multiple datasets
demonstrate the superiority and broad applicability of our
approach.
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