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Abstract

Contrastive learning has been proven beneficial for self-
supervised skeleton-based action recognition. Most con-
trastive learning methods utilize carefully designed augmen-
tations to generate different movement patterns of skeletons
for the same semantics. However, it is still a pending issue to
apply strong augmentations, which distort the images/skele-
tons’ structures and cause semantic loss, due to their resulting
unstable training. In this paper, we investigate the potential of
adopting strong augmentations and propose a general hierar-
chical consistent contrastive learning framework (HiCLR) for
skeleton-based action recognition. Specifically, we first de-
sign a gradual growing augmentation policy to generate mul-
tiple ordered positive pairs, which guide to achieve the con-
sistency of the learned representation from different views.
Then, an asymmetric loss is proposed to enforce the hierar-
chical consistency via a directional clustering operation in the
feature space, pulling the representations from strongly aug-
mented views closer to those from weakly augmented views
for better generalizability. Meanwhile, we propose and eval-
uate three kinds of strong augmentations for 3D skeletons to
demonstrate the effectiveness of our method. Extensive ex-
periments show that HiCLR outperforms the state-of-the-art
methods notably on three large-scale datasets, i.e., NTU60,
NTU120, and PKUMMD. Our project is publicly available
at: https://jhang2020.github.io/Projects/HiCLR/HiCLR.html.

1 Introduction
Human action recognition is important for bridging arti-
ficial systems and humans in the real world. It has been
widely used in video understanding, human-robot interac-
tion, entertainment, etc. (Tang et al. 2020; Rodomagoulakis
et al. 2016; Shotton et al. 2011). Owing to the advantages
such as lightweight, robustness, and privacy protection, ac-
tion recognition based on 3D skeleton data has attracted a
lot of attention recently. There are many works targeted at
skeleton-based action recognition (Shi et al. 2019; Cheng
et al. 2020; Liu et al. 2020b; Chen et al. 2021), but most of
them are designed in a fully-supervised manner and require
a large amount of labeled data. Considering that annotation
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Figure 1: The proposed hierarchical consistent contrastive
learning compared with the traditional contrastive learning
pipelines. Instead of applying all augmentations directly, we
utilize a growing augmentation to generate multiple ordered
positive pairs that are augmented progressively. Then the
model performs a directional feature clustering operation to
constrain the consistency of adjacent positive samples.

of large-scale datasets is expensive and time-consuming, re-
cently more and more researchers pay attention to the study
of representation learning from unlabeled data (Lin et al.
2020; Li et al. 2021; Kim et al. 2022).

Among the various self-supervised learning methods,
contrastive learning is an effective one and has been shown
successful for skeleton-based action recognition (Rao et al.
2021; Thoker, Doughty, and Snoek 2021; Li et al. 2021). For
contrastive learning, augmentations have been proven to be
very crucial, introducing various movement patterns for the
same semantics and directly affecting the quality of feature
representations learned by the model (Tian et al. 2020; Guo
et al. 2022). However, it is still not fully investigated on what
augmentation to use and how to use it for skeleton data.

Compared to the RGB representation of human action, 3D
skeleton data is a more high-level modality representation,
which intensifies the sensitivity of contrastive learning to
the augmentations. This sensitivity leads to a cautious selec-
tion of augmentations, which becomes the bottleneck in de-
signing more advanced contrastive learning methods. On the
one hand, as shown on the right of Table 3, some augmenta-
tions like Random Mask cause the performance drop of the
baseline algorithm. Following (Bai et al. 2022), these aug-



mentations are called strong augmentations (also namely
heavy augmentations), which distort the images/skeletons’
structures and cause semantic loss, leading to unstable train-
ing. Some works have revealed the potential of using strong
data augmentations (Cubuk et al. 2020; Wang and Qi 2021).
However, it is still difficult to measure and constrain the con-
sistency, which is the base of contrastive learning, directly
and accurately from the strongly augmented views, as these
augmentations can cause serious semantic information loss.
On the other hand, most previous works based on contrastive
learning simply treat all augmentations fairly, ignoring the
differences in the importance of applied augmentations. Re-
cent works (Tian et al. 2020; Zhang and Ma 2022) have
shown that each augmentation has a different impact on the
downstream tasks, and hence learning from the invariance
after augmentation without distinction can inevitably cause
non-optimal representations for the downstream task.

To address the aforementioned issues, we are inspired to
explore a general contrastive framework that applies grow-
ing augmentations. In this paper, we propose a novel hier-
archical consistent contrastive learning framework (HiCLR)
that learns from the invariance of the hierarchical growing
augmentation and treats different augmentations in a dis-
tinguished manner. Compared to previous works (Li et al.
2021; Guo et al. 2022), we focus on how to better utilize and
benefit from multiple augmentations including strong aug-
mentations. Specifically, a growing hierarchical augmenta-
tion policy is proposed to construct multiple correlated pos-
itive pairs. Each of the pairs is generated via more augmen-
tations than the previous one and expands the feature distri-
bution. Then, to better utilize the novel patterns brought by
the strong augmentations, we propose an asymmetric hierar-
chical learning strategy. Instead of directly learning all aug-
mentation invariances at once, our objective suggests a hi-
erarchical consistent learning manner for different augmen-
tations as shown in Figure 1. Meanwhile, this asymmetric
design encourages the strongly augmented view to be sim-
ilar to the weakly augmented view, which helps the model
better generalize. Based on our new framework, we further
analyze and evaluate different choices for strong augmenta-
tions. Extensive experiments on both Graph Convolutional
Networks (GCNs) and transformers are conducted to verify
the effectiveness of our method.

Our contributions can be summarized as follows:

• We propose a hierarchical consistent contrastive learn-
ing framework, HiCLR, which successfully introduces
strong augmentations to the traditional contrastive learn-
ing pipelines for skeletons. The hierarchical design in-
tegrates different augmentations and alleviates the diffi-
culty in learning consistency from strongly augmented
views, which are accompanied by serious semantic in-
formation loss.

• We introduce the growing augmentation along with
asymmetric hierarchical learning that constrains the rep-
resentation consistency of the constructed positive pairs.
By virtue of these, the model further improves the rep-
resentation capacity by leveraging the rich information
brought by the strong augmentations.

• With the proposed framework, we further design and
analyze three strong augmentation strategies: Random
Mask, Drop/Add Edges, and SkeleAdaIN. Despite the
adverse effects observed when applying them directly,
they become significantly effective with our HiCLR and
exceed state-of-the-art performance.

2 Related Works
2.1 Skeleton-based Action Recognition
Skeleton-based action recognition aims to classify the ac-
tion categories using 3D coordinates data of the human
body. The current methods can be divided into recurrent
neural network (RNN)-based, convolutional neural network
(CNN)-based, GCN-based, and transformer-based styles.
The work in (Du, Wang, and Wang 2015) directly uses
RNN to tackle the skeleton sequence data. Song et al. (Song
et al. 2017, 2018a,b) propose to utilize the attention mech-
anism and multi-modal information. Some works (Ke et al.
2017; Liu, Liu, and Chen 2017) transform each skeleton se-
quence into image-like representations and apply the CNN
model to extract spatial-temporal information. Recently, in-
spired by the natural topology structure of the human body,
GCN-based methods have attracted more attention. Spatial-
temporal GCN (ST-GCN) (Yan, Xiong, and Lin 2018) first
explores the potential of modeling the spatial-temporal re-
lationship of skeleton data. Many works (Shi et al. 2019;
Cheng et al. 2020) based on it have achieved success by
virtue of the GCN’s strong representation capacity. Mean-
while, transformer-based models (Shi et al. 2020; Plizzari,
Cannici, and Matteucci 2021) also show remarkable results
by utilizing the long-range temporal dependencies, owing
to attention mechanism. We adopt the ST-GCN and DSTA-
Net (Shi et al. 2020) as backbones to evaluate our method.

2.2 Contrastive Representation Learning
Contrastive learning (He et al. 2020; Chen et al. 2020a,b) is a
popular and effective method for self-supervised learning. In
many works (Tian et al. 2020; Zhang and Ma 2022), the de-
sign of augmentations has been found essential for the suc-
cess of contrastive learning. Xiao et al. propose Leave-one-
out Contrastive Learning (Xiao et al. 2020), which projects
the input image into multiple embedding spaces correspond-
ing to invariance learning of different augmentation combi-
nations. The work (Zhang and Crandall 2022) proposes to
decouple spatial-temporal contrastive learning by applying
temporal and spatial augmentations separately.

Recent works have shown more and more interests in
strong augmentations. Contrastive learning with stronger
augmentations (CLSA) (Wang and Qi 2021) shows the im-
provements of strong augmentations in contrastive learning.
The work in (Zhang and Ma 2022) proposes to apply more
augmentations in different depths of the encoder to learn
the augmentation invariances non-homogeneously. Bai et
al. (Bai et al. 2022) explore a directional self-supervised ob-
jective for heavy image augmentations. These works provide
an important basis for our research.

For contrastive learning in skeleton-based action recogni-
tion, AS-CAL (Rao et al. 2021) directly applies the current



contrastive learning framework (He et al. 2020) for skeleton.
Li et al. (Li et al. 2021) explores the cross-stream knowl-
edge for contrastive learning. Recently, abundant informa-
tion mining for self-supervised action representation (Aim-
CLR) (Guo et al. 2022) migrates CLSA to skeleton data and
uses more augmentations. However, these works still lack
effective design for the use of strong augmentations, and
leave the potential of strong augmentations underutilized.
To this end, we propose a hierarchical consistent contrastive
learning framework that can effectively borrow the knowl-
edge of strong augmentations.

3 Proposed Method: HiCLR
3.1 Contrastive Learning for Skeleton
We first give a unified formulation of the contrastive learn-
ing (Bai et al. 2022) for skeleton following the recent works:
• Data augmentation module containing the augmenta-

tion strategy set T to generate the different views of the
original data which are regarded as the positive pairs.

• Query/key encoder f(·) for mapping the input to the
latent feature space.

• Embedding projector h(·) for mapping the latent fea-
ture into an embedding space where the self-supervised
loss is applied.

• Self-supervised loss that performs the feature clustering
operation in the embedding space.

SkeletonCLR (Li et al. 2021) follows the recent con-
trastive learning framework, MoCov2 (Chen et al. 2020b),
and is used as the baseline algorithm of our method. Specif-
ically, given a skeleton sequence s, the positive pair (x, x′)
is constructed via T . Subsequently, we can obtain the cor-
responding feature representations (z, z′) via the query/key
encoder f(·) and embedding projector h(·), respectively. A
memory queue M is maintained storing lots of negative sam-
ples for contrastive learning. The whole network is opti-
mized by InfoNCE loss (Oord, Li, and Vinyals 2018):

LInfo = − log
exp(z · z′/τ)

exp(z · z′/τ) +
∑M

i=1 exp(z ·mi/τ)
, (1)

where mi is the feature in M corresponding to the i-th neg-
ative sample, M is the number of negative features and τ is
the temperature hyper-parameter. After each training step,
all samples in a batch will be updated to M as negative
samples in a first-in, first-out policy. The key encoder is a
momentum-updated version of the query encoder that is up-
dated via gradients. Concretely, denoting the parameters of
query encoder and key encoder as θq and θk respectively, the
key encoder is updated as: θk ← mθk + (1 −m)θq, where
m ∈ [0, 1) is a momentum coefficient.

3.2 Hierarchical Consistent Contrastive Learning
Traditional contrastive learning works directly apply the
augmentation sets at once to generate positive pairs. When
strong augmentations are applied, these positive samples
heavily suffer from semantic information loss, sharing less
correlation. However, it is quite difficult to learn useful in-
formation from the consistency constraint of these degraded

pairs. To address this problem, we propose a hierarchi-
cal consistent contrastive learning framework. We gener-
ate a series of highly correlated positive pairs progressively
via gradually growing augmentations. Therefore, these pairs
provide hierarchical guidance of the feature similarity and
benefit the model in learning the knowledge from strong
augmentations with consistency of different views.

We first give an overview of our method. As shown in
Figure 2, HiCLR has multiple branches to extract features
and mainly comprises two components: (1) A gradual grow-
ing augmentation policy which constructs multiple posi-
tive pairs corresponding to the different augmentations. (2)
Asymmetric hierarchical learning constraint of the represen-
tation consistency from strongly augmented views. Next, we
will introduce each component in detail.
1) Gradual growing augmentation. To facilitate the learn-
ing process to achieve better augmentation invariance, a
gradual growing augmentation policy is introduced. The
augmentation policy consists of multiple augmentation sets,
each of which is an extended version of the existing one. By
virtue of this, multiple ordered positive pairs with increasing
distortion are generated.

Here we give a formal description of our growing aug-
mentation pipeline. The proposed growing hierarchical aug-
mentation policy constructs the following augmentation
sets: T0, T1, ... , Tk−1, where k is the total number of differ-
ent augmentation sets. T0 contains the basic augmentation
strategy, and each set adopts more augmentation instances
than the previous one. These sets can be formulated as:

T0 = {a0,0} ,
T1 = {a0,1, a1,1} ,

...

Tk−1 = {a0,k−1, a1,k−1, ... , ak−1,k−1} ,

(2)

where ai,j represents the instances sampled from the i-th
augmentation strategy belonging to the j-th augmentation
set. Note that we re-sample the instances of each augmen-
tation strategy in each augmentation set, which means that
ai,j ̸= ai,j′ , j ̸= j′. The re-sampling strategy further ex-
pands the feature distribution, enabling the model to learn a
more distinguishable feature space for the downstream task.

Resorting to this module, we construct k−1 ordered posi-
tive pairs (v0, v1), ... , (vk−2, vk−1), where vi = Ti (s). Dif-
ferent from the previous works, the augmentations applied to
one positive pair are different, which allows the model to be
directional in its feature clustering. Meanwhile, we can also
obtain the basic positive pair as described in Section 3.1,
(v0, v

′
0) via T0 (for query and key). The gradual growing

augmentation policy enables the model to treat augmenta-
tions differently by adjusting their applied branches and de-
coupling the learning of different augmentations.
2) Asymmetric hierarchical learning. Previous works
based on contrastive learning utilize InfoNCE loss in Equa-
tion (1) for the representation learning. However, it often
leads to performance drop when applying strong augmen-
tations, which is caused by the little mutual information
among different augmented views. To this end, a hierarchi-
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Figure 2: The overview architecture of the proposed HiCLR. There are k branches sharing the same query encoder weights
corresponding to the hierarchical learning of different augmentations. The augmented view vi is fed into the query encoder fθq
and the embedding projector hθq to obtain zi. Similarly, z′0 is obtained by the key encoder fθk and the embedding projector
hθk . Meanwhile, a hierarchical self-supervised loss is proposed to align the feature distributions of adjacent branches, which is
optimized jointly with the InfoNCE loss.

cal self-supervised learning objective is proposed to learn
the representation consistency of multiple augmented views.

As shown in Figure 2, the positive pairs are first encoded
to the feature embeddings. Formally, for a skeleton sequence
s, we construct the positive pairs (v0, v1), ... , (vk−2, vk−1)
and (v0, v

′
0) as discussed above. Then, the query encoder fθq

and the MLP head hθq are applied successively to extract the
feature representations:

zi = hθq

(
fθq (vi)

)
, i = 0, 1, ... , k − 1. (3)

Similarly, we can obtain the feature representation z′0 via the
key encoder fθk and the MLP hθk :

z′0 = hθk (fθk (v
′
0)) . (4)

The model optimizes the feature similarity of differ-
ent augmented views (vi−1, vi) to learn the representation
consistency among adjacent branches. Since these adjacent
views share more augmentation strategies, it allows the tar-
get features to converge more smoothly to the center of the
latent cluster. However, according to the previous work (Bai
et al. 2022), it may lead to performance drop when the
strongly augmented view is used as a mimic target due to
the serious distortions. Therefore, we design an asymmetric
loss to unilaterally pull the features closer. The hierarchical
self-supervised learning objective is computed by the feature
similarity of adjacent branches and can be formulated as:

Lh =

k−1∑
i=1

sim (zi, stopgrad (zi−1)) . (5)

Here, we utilize the stop-gradient (stopgrad) operation to
take a more confident target for similarity learning. The
strongly augmented view zi is constrained to reduce the fea-
ture distance from the weakly augmented view zi−1, but
not vice versa. sim(·) can be any function that measures
the similarity between two feature embeddings, such as co-
sine similarity and Kullback–Leibler (KL) divergence (Kull-
back and Leibler 1951). This can be viewed as an asymmet-
ric design of representation consistency learning, which is

adopted in Simsiam (Chen and He 2021), BYOL (Grill et al.
2020), and CO2 (Wei et al. 2020). Through the asymmetric
hierarchical learning from multiple positive pairs, the model
exploits the rich information brought by the strong augmen-
tations and further improves the generalization capacity to
downstream tasks.
3) Instantiation. We next give an instantiation of our
method. For the asymmetric hierarchical learning, we use
KL divergence as the sim(·) function. One problem is that
it is difficult to calculate an ideal accurate distribution of fea-
ture zi. Inspired by (Wang and Qi 2021), we obtain the con-
ditional distribution of feature zi with the positive feature
output by the key encoder and numerous negative features
maintained in M. Specifically, the conditional distribution
for zi is given as follows:

p (z|zi) =
exp(z · zi/τ)

exp(z′0 · zi/τ) +
∑M

i=1 exp(mi · zi/τ)
. (6)

Equation (6) depicts the similarity distribution of feature
zi measured by positive features and negative features. Ac-
cording to Wang and Qi’s discovery (Wang and Qi 2021),
the distributions of p (z|zi) and p (z|zi−1) are similar via a
randomly initialized network. It inspires us to optimize the
distribution distances between p (z|zi) and p (z|zi−1), i.e.,
DKL (stopgrad(p (z|zi−1)), p (z|zi)) as sim(·), to learn
the consistency between different augmented views. Also,
we apply the LInfo on the basic positive pairs (z0, z′0) and
jointly optimize the model. The overall loss is given by:

L = LInfo + λhLh, (7)

where λh is the weight for hierarchical self-supervised loss.
For augmentations, the model is instantiated as k=3 with

Basic Augmentation Set (for a0,∗), Normal Augmentation
Set (for a1,∗) and Random Mask (for a2,∗). We will discuss
more about strong augmentations including Random Mask
in the next Section.



3.3 Strong Augmentation for Skeleton
We first introduce the Basic Augmentation Set and Normal
Augmentation Set following the previous works (Li et al.
2021; Guo et al. 2022; Rao et al. 2021):
• Basic Augmentation Set (BA) contains a spatial transfor-

mation Shear and a temporal transformation Crop.
• Normal Augmentation Set (NA) contains the following

augments: Spatial Flip, Rotation, Gaussian Noise, Gaus-
sian Blur, and Channel Mask.

In addition to the augmentations above, we consider the
strong augmentations targeted at skeleton data to introduce
more novel patterns for the representation learning. The aug-
mentations for the skeleton are divided into three categories:
• Semantic-Dependent Augmentation. Since human

skeleton sequences have natural semantic information,
we can perform linear transformations (e.g., rotation,
scaling) or nonlinear transformations (e.g., joint replace-
ment, flip) on 3D skeleton data to keep the essential se-
mantic unchanged and computationally available.

• Feature-Wise Augmentation. We can apply the distur-
bance to the features of graph nodes which is the human
joints for skeleton data. It enables the model to obtain
more robust representations for the noise in collecting
data, such as the error caused by the camera view.

• Structure-Wise Augmentation. Considering the topol-
ogy of the human body, we hope that the model can out-
put consistent semantic information under a slight pertur-
bation of the joint adjacency graph. It is because human
action is often global and slight structural perturbations
can be compensated by the information aggregation at
other joints.

Based on this categorization, we propose the following
three strong augmentation strategies as our Strong Augmen-
tation Set for skeleton:
• Random Mask. A random mask for the spatial-temporal

3D coordinate data of the joints. It can be viewed as a
random perturbation of the joint coordinates.

• Drop/Add Edges (DAE). We randomly drop/add connec-
tions between different joints in each information aggre-
gation layer. The target to be augmented is the predefined
or learnable adjacency matrix for the graph convolution
layer and the attention map for the transformer block.

• SkeleAdaIN. Inspired by the practice of style trans-
fer (Huang and Belongie 2017; Karras, Laine, and Aila
2019), we exchange statistics of two skeleton samples
on the spatial-temporal dimension, i.e., the mean and the
variance of the style sample are transferred to the con-
tent sample, to generate the augmented views. Since this
transformation does not change the relative order of joint
coordinates, we maintain the semantics of skeleton se-
quences unchanged.

More details can be found in the Appendix. These aug-
mentations cause varying degrees of performance degrada-
tion when applied directly as shown on the right of Table 3.
Therefore, we regard these augmentations as the examples
of strong augmentations for the skeleton.

4 Experiment Results
4.1 Dataset
1) NTU RGB+D Dataset 60 (NTU60) (Shahroudy et al.
2016) is a large-scale dataset that contains 56,578 samples
with 60 action categories and 25 joints. We follow the two
recommended protocols: a) Cross-Subject (xsub): the data
for training and testing are collected from different subjects.
b) Cross-View (xview): the data for training and testing are
collected from different camera views.
2) NTU RGB+D Dataset 120 (NTU120) (Liu et al. 2019)
is an extension to NTU60. 114,480 videos are collected
with 120 action categories. Two recommended protocols are
adopted: a) Cross-Subject (xsub): the data for training and
testing are collected from 106 different subjects. b) Cross-
Setup (xset): the data for training and testing are collected
from 32 different setups.
3) PKU Multi-Modality Dataset (PKUMMD) (Liu et al.
2020a) is a large-scale dataset covering a multi-modality
3D understanding of human actions with almost 20,000 in-
stances and 51 action labels. Two subsets are divided: Part I
is an easier version; Part II provides more challenging data
caused by large view variation and the cross-subject protocol
is adopted.

4.2 Implementation Details and Evaluation
We evaluate the performance of our method on both ST-
GCN (Yan, Xiong, and Lin 2018) and DSTA-Net (Shi
et al. 2020) as backbones. The experimental settings of pre-
training are following the previous works (Li et al. 2021;
Guo et al. 2022) for a fair comparison. All skeleton data
are pre-processed into 50 frames. We reduce the number of
channels in each graph convolution layer to 1/4 of the origi-
nal setting for ST-GCN and 1/2 for DSTA-Net, respectively.
The dimension of the final output feature is 128 and the size
of the memory bank M is set to 32,768. The model is trained
for 300 epochs with a batch-size of 128 using the SGD op-
timizer. λh is set to 0.5. A multi-stream fusion strategy is
adopted following the previous works, i.e., a weighted fu-
sion of joint, bone, and motion streams. We adopt the fol-
lowing protocols to give a comprehensive evaluation:
1) KNN Evaluation. We apply a K-Nearest Neighbor
(KNN) classifier which is a non-parametric supervised
learning method. It directly reflects the quality of the fea-
ture space learned by the encoder.
2) Linear Evaluation. A linear classifier is applied to the
fixed encoder for linear evaluation. The classifier is trained
to predict the corresponding label of the input sequences.
3) Semi-supervised Evaluation. In semi-supervised evalu-
ation, we pre-train the encoder with all unlabeled data, and
then train the whole model with randomly sampled 1%, 10%
of the training data.
4) Supervised Evaluation. We fine-tune the whole model
after pre-training the encoder. Both the encoder f(·) and
classifier are trained for the downstream task.

4.3 Ablation Study
We first conduct ablation studies to give a more detailed
analysis of our method. All results reported in this section



Augmentation Stream xsub (%) xview (%)

Baseline

Joint

68.3 76.4
Random Mask 77.6 82.0
DAE 77.2 81.7
SkeleAdaIN 77.3 82.4
Baseline

Bone

69.4 67.4
Random Mask 73.9 78.0
DAE 76.9 80.5
SkeleAdaIN 75.3 79.2

Baseline

Motion

53.3 50.8
Random Mask 69.1 74.3
DAE 68.0 72.2
SkeleAdaIN 69.5 71.8

Baseline

Ensemble

75.0 79.8
Random Mask 80.4 85.5
DAE 79.8 84.9
SkeleAdaIN 80.4 84.4

Table 1: Ablation studies on the strong augmentations. En-
semble represents the fusion of joint-bone-motion streams.

are under linear evaluation on NTU60 dataset.
1) Strong Augmentation Analysis. We set BA, NA as the
hierarchical augmentation set of the first and the second
branch, and give an analysis when introducing the differ-
ent strong augmentations as the extra augmentation for the
third branch. The linear evaluation results are shown in Ta-
ble 1. Compared with the baseline, the model performance is
significantly improved by applying the proposed strong aug-
mentations with our HiCLR. Meanwhile, we also find some
interesting results:

(a) Different streams correspond to the different optimal
augmentation methods. For example, DAE performs signif-
icantly better than the other two augmentations on the bone
stream. This may be relative to the association between in-
variances and streams, i.e., the bone view of the skeleton
data implies the topological information of the human body
structure, which can be more robust to DAE augmentation.

(b) The performance of the same augmentation strategy
can have a marked difference under different protocols. As
shown in Table 1, SkeleAdaIN gives better results under
cross-subject protocol than those under cross-view proto-
col. This is because SkeleAdaIN can be regarded as a linear
transformation of the action sequences under the same view,
and the statistics which usually contain information about
the performer’s body shapes and range of motions are ex-
changed. Therefore, better robustness can be obtained under
a cross-subject evaluation protocol.

These results indicate that as a high-level representation,
skeleton data faces more challenges in contrastive learning
research. More efforts are needed in the design of augmen-
tations for the skeleton data. To make our method more gen-
eral, we finally adopt the Random Mask augmentation in the
third branch of our implementation.
2) Data Augmentation Arrangement. Table 2 shows the
results of different augmentation arrangements, where BA,
NA, and Mask represent the Basic, Normal Augmentation
Set, and Random Mask augmentation, respectively. As we
can see, different arrangements can have a marked influence
on the results which demonstrates the necessity of making

Arrangement k xsub (%) xview (%)

[BA, NA, Mask] 3 77.6 82.0
[NA, BA, Mask] 3 77.8 80.3
[Mask, BA, NA] 3 74.7 79.7
[BA+NA, Mask] 2 74.0 79.0
[BA, NA+Mask] 2 76.7 79.4

Table 2: Ablation studies on the data augmentation arrange-
ment of the single joint stream.

sim(·) Acc.

Cosine 75.8%
L1 73.6%
KL div. 77.6%

Augmentation Baseline Ours

[BA] 68.3% -

[BA, NA] 72.9% 76.8%
[BA, NA, Mask] 56.7% 77.6%
[BA, NA, DAE] 65.5% 77.2%
[BA, NA, AdaIN] 13.2% 77.3%

Table 3: The accuracy is reported under cross-subject proto-
col. Left: The effect of different similarity functions in hier-
archical self-supervised loss. Right: Ablation studies of the
hierarchical design when applying different augmentations.

a discriminate treatment for different augmentations. It is
found that the optimal method approximates a kind of ar-
rangement from weak augmentations to strong augmenta-
tions. This also proves that strong augmentation is not suit-
able as the basic augmentation strategy, confirming our hier-
archical learning ideas from easy to difficult.
3) Hierarchical Consistent Learning. As shown on the
left of Table 3, KL divergence gives the best results as
sim(·) function, indicating that the distribution of p (z|zi)
and p (z|zi−1) should be similar for a well-pre-trained
model (Wang and Qi 2021). It can be regarded as a soft
version of InfoNCE loss, which introduces more samples
to measure and constrain the consistency of different aug-
mented views. Meanwhile, the results when more and strong
augmentations are applied are shown on the right of Table 3.
As we can see, HiCLR can bring a consistent improvement
even though some augmentations such as Random Mask,
DAE, and SkeleAdaIN show adverse effects on the baseline
algorithm, verifying the effectiveness of HiCLR.

4.4 Comparison with State-of-the-art Methods
We compare our method with the state-of-the-art methods
for self-supervised skeleton-based action recognition under
different evaluation protocols.
1) Linear Evaluation Results. We use both GCNs and
transformers as our backbone to comprehensively demon-
strate the effectiveness of our approach. First, compared
with other GCN-based methods (Zheng et al. 2018; Lin
et al. 2020; Su, Liu, and Shlizerman 2020; Rao et al. 2021;
Thoker, Doughty, and Snoek 2021; Nie, Liu, and Liu 2020;
Li et al. 2021; Guo et al. 2022; Yang et al. 2021), HiCLR has
achieved the best performance on NTU datasets as shown in
Table 4. By virtue of the hierarchical design, our method
benefits better from strong augmentations and significantly
outperforms the results of other methods. Compared with
AimCLR (Guo et al. 2022), which also considers the strong
augmented views, we obtain a notable improvement on both



Method Backbone Params NTU60 NTU120
xsub (%) xview (%) xsub (%) xset (%)

LongT GAN (AAAI 18) GRU 40.2M 39.1 48.1 - -
MS2L (ACM MM 20) GRU 2.28M 52.6 - - -
P&C (CVPR 20) GRU - 50.7 76.3 42.7 41.7
AS-CAL (Information Sciences 21) LSTM 0.43M 58.5 64.8 48.6 49.2
ISC (ACM MM 21) GRU+GCN+CNN 10.0M 76.3 85.2 67.1 67.9
SeBiReNet (ECCV 20) GRU 0.27M - 79.7 - -

3s-CrosSCLR (CVPR 21) ST-GCN 0.85M 77.8 83.4 67.9 66.7
3s-AimCLR (AAAI 22) ST-GCN 0.85M 78.9 83.8 68.2 68.8
Ours ST-GCN 0.85M 80.4 85.5 70.0 70.4
H-Transformer (ICME 21) Transformer >100M 69.3 72.8 - -
GL-Transformer (ECCV 22) Transformer 214M 76.3 83.8 66.0 68.7
Ours Transformer 1.56M 78.8 83.1 67.3 69.9

Table 4: Linear evaluation results on NTU60 and NTU120 datasets.

Method Stream NTU60 (%) PKUMMD
xsub xview Part I (%)

SkeletonCLR
Joint

56.1 61.7 68.9
AimCLR 62.0 71.5 72.0
Ours 67.3 75.3 73.8
SkeletonCLR

Motion
37.4 41.6 51.0

AimCLR 50.8 56.9 60.6
Ours 55.3 60.7 63.8

Table 5: KNN evaluation results of different streams.

Method 1% data 10% data
xsub xview xsub xview

ASSL (20) - - 64.3 69.8
MCC (21) - - 55.6 59.9
3s-CrosSCLR (21) 51.1 50.0 74.4 77.8
3s-Colorization (21) 48.3 52.5 71.7 78.9
3s-AimCLR (22) 54.8 54.3 78.2 81.6
Ours (GCN) 58.5 58.3 79.6 84.0
3s-Hi-TRS (22) 49.3 51.5 77.7 81.1
Ours (Transformer) 54.7 53.7 82.1 84.8

Table 6: Semi-supervised results on NTU60 dataset.

the single joint stream (77.6% vs. 74.3% on xsub and 82.0%
vs. 79.7% on xview) and the fusion results.

We also compare the latest works using transform-
ers (Cheng et al. 2021; Kim et al. 2022) as shown in Table 4.
HiCLR uses only one percent of the model parameters to
achieve comparable or better performance than others, indi-
cating the efficiency and effectiveness of our method.
2) KNN Evaluation Results. The KNN evaluation is a di-
rect reflection of the quality of the feature space (Wu et al.
2018). In Table 5, we can see that our method outperforms
the SkeletonCLR and AimCLR by a large margin on both
the joint and motion streams. It indicates that a higher qual-
ity feature space is learned by the model owing to the intro-
duction of more strong augmentations.
3) Semi-supervised Evaluation Results. The semi-
supervised results are presented in Table 6. Our method can
significantly improve the performance in semi-supervised
learning compared with GCN-based methods (Si et al. 2020;
Su, Lin, and Wu 2021), especially when there is little train-
ing data available. Meanwhile, a remarkable gain is ob-

Method Params Protocol

NTU60 Dataset xsub xview
3s-CrosSCLR (CVPR 21) 0.85M 86.2 92.5
3s-AimCLR (AAAI 22) 0.85M 86.9 92.8
Ours (GCN) 0.85M 88.3 93.2
3s-Hi-TRS (ECCV 22) 7.05M 90.0 95.7
Ours (Transformer) 1.56M 90.4 95.7
NTU120 Dataset xsub xset
3s-CrosSCLR (CVPR 21) 0.85M 80.5 80.4
3s-AimCLR (AAAI 22) 0.85M 80.1 80.9
Ours (GCN) 0.85M 82.1 83.7
3s-Hi-TRS (ECCV 22) 7.05M 85.3 87.4
Ours (Transformer) 1.56M 85.6 87.5

Table 7: Supervised results on NTU dataset.

served when using transformers as the backbone. Compared
with Hi-TRS (Chen et al. 2022), HiCLR improves the semi-
supervised results by a large margin, verifying the strong
representation ability of our method.
4) Supervised Evaluation Results. We conduct supervised
evaluation experiments and the results are shown in Table 7.
Compared with other GCN-based methods, HiCLR consis-
tently outperforms other methods, especially on NTU120
dataset. Moreover, for the latest transformer-based method,
our method can exceed Hi-TRS (Chen et al. 2022) with
fewer parameters and renews the state-of-the-art score.

5 Conclusion
In this paper, we propose a new hierarchical contrastive
learning framework, HiCLR, to fully take advantage of the
strong augmentations. Instead of learning all augmentations
without distinction, HiCLR learns from hierarchical con-
sistency with growing augmentations, alleviating the diffi-
culty in learning consistency from the strongly augmented
views. An asymmetric loss is applied to align the feature ex-
tracted from the strongly augmented view to the one from
the weakly augmented view. Extensive experiments verify
the effectiveness of HiCLR for GCNs and transformers as
backbones. HiCLR can generate a more distinguishable fea-
ture space and outperforms the state-of-the-art methods un-
der various protocols.
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