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ABSTRACT
Diffusion models show impressive performances in image gener-
ation with excellent perceptual quality. However, its tendency to
introduce additional distortion prevents its direct application in
image compression. To address the issue, this paper introduces
a Consistency Guided Diffusion Model (CGDM) tailored for per-
ceptual image compression, which integrates an end-to-end im-
age compression model with a diffusion-based post-processing
network, aiming to learn richer detail representations with less
fidelity loss. In detail, the compression and post-processing net-
works are cascaded and a branch of consistency guided features
is added to constrain the deviation in the diffusion process for
better reconstruction quality. Furthermore, a Syntax driven Fea-
ture Fusion (SFF) module is constructed to take an extra ultra-low
bitstream from the encoding end as input, guiding the adaptive
fusion of information from the two branches. In addition, we de-
sign a globally uniform boundary control strategy with overlapped
patches and adopt a continuous online optimization mode to im-
prove both coding efficiency and global consistency. Extensive
experiments validate the superiority of our method to existing per-
ceptual compression techniques. Our project is publicly available
at: https://ellisonkuang.github.io/CGDM.github.io/.

CCS CONCEPTS
• Computing methodologies → Image compression.
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1 INTRODUCTION
Image compression technology plays a pivotal role in diverse fields,
e.g., multimedia, communications, and computer vision. Its objec-
tive is to efficiently minimize the storage space and bandwidth
requirements of digital images for their efficient storage and trans-
mission, while preserving the main content of the original images
and maintaining the visual quality. In today’s digital age, with the
ever-increasing demand for high-resolution and high-quality im-
ages from multimedia devices, the challenge of managing storage
and bandwidth resources has become paramount, and the demand
for more efficient and high-performance image compression meth-
ods is also growing rapidly.

Over the past decades, conventional image compression tech-
niques like JPEG [58], BPG [5] and JPEG2000 [42] have become the
common choice in image processing. These methods or standards
exhibit excellent encoding capabilities, adopting the route of trans-
form/hybrid coding framework for Rate-Distortion Optimization
(RDO) with key modules such as transformation, quantization, and
entropy coding, while being complemented by additional complex
predictive modes. Moreover, numerous efforts have been made to
improve the RDO of each input image by projecting the image sig-
nals into a manually designed specific subspace for more compact
representations, e.g. intra-prediction based on various directions

1622

https://ellisonkuang.github.io/CGDM.github.io/
https://doi.org/10.1145/3664647.3681336
https://doi.org/10.1145/3664647.3681336
https://doi.org/10.1145/3664647.3681336
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664647.3681336&domain=pdf&date_stamp=2024-10-28


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Haowei Kuang et al.

Ours 0.022 bpp

HiFiC 0.059 bpp

Original

ILLM: 0.038 bpp 

ELIC 0.032 bpp

BPG 0.026 bpp

OursELIC

Figure 1: Visual comparisons of different methods. The patch
is cropped from roberto-nickson-48063.png from CLIC pro-
fessional dataset [56]. Compared to previous methods, our
method achieves better or competitive perceptual quality at
a lower bitrate. In particular, our method achieves similar
perceptual quality using about half bitrate compared to the
milestone HiFiC [43]. [Zoom in for best view]

[58]. Nonetheless, these optimizations rely on human design, lack-
ing the capability for global optimization. As the number of manu-
ally designed strategies continues to grow, the framework of the
compression model becomes increasingly complicated, gradually
revealing its performance bottlenecks.

In recent years, deep learning technologies have made remark-
able advancements, prompting many researchers to explore image
compression methods with the immense capabilities of neural net-
works [4, 21, 27, 40, 59]. By leveraging vast datasets [1, 33, 38, 56] to
train neural networks, these methods excel in discovering the latent
relationships and underlying structures embedded within image
data. As a result, they attain a remarkable compression efficiency,
while ensuring minimal distortion, thereby surpassing traditional
techniques in terms of performance. In addition, there are some
implicit neural representation based efforts [7, 14, 36, 55] to store im-
ages in neural network parameters for image compression. While
these methods have achieved a notable level of image compres-
sion and reconstruction, they gradually encounter performance
bottlenecks: further improving the compression ratio resulting in
significantly degraded quality.

Some researches [6, 61] indicate that the distortion of images
does not align with human perception of subjective image quality.
Due to the inherent trade-off between image quality and storage
efficiency, perceptual image compression techniques [43, 47, 62] are
proposed. These technologies strive to protect the quality in terms
of human visual perception rather than focusing on fidelity mea-
surement. To enhance the subjective visual quality of images, many
generative models [20, 35, 57] skill at producing visually appealing
details such as GANs are seamlessly integrated into image compres-
sion methods [43, 47, 64] resulting in a significant improvement in
perception quality. However, the development of these methods
is constrained by the inherent limitations of generative models,

including the frequent lack of diversity in the images produced by
GAN models and so on, thereby posing significant challenges in
their further advancement.

In recent years, diffusion models [24, 39, 53] have emerged as a
powerful tool in the field of image generation, exhibiting remark-
able capabilities in producing images with exceptional perceptual
quality. These models, developed according to the formulation of
diffusion processes, have demonstrated their ability to capture in-
trinsic details and generate realistic images. However, despite their
remarkable success in image generation, it has been established in
many practices that vanilla diffusion models tend to reconstruct
images with richer visual details at a cost of significantly impaired
fidelity [50], due to the random nature of the process of progressive
adding or removing noise. Applying the diffusion models directly
to the image compression task may take on risks of a synchronous
drop of both visual quality and fidelity. Thus, until now, how to ap-
ply diffusion models to image compression remains under-explored.

To address the issue of utilizing the power of diffusion models
while avoiding their generated artifacts, this paper proposes to reg-
ularize the diffusion models with global consistency guidance. In de-
tail, we propose a novel approach called the Consistency Guided
Diffusion Model (CGDM), which incorporates additional consis-
tent guidance into the network structure of the diffusion model.
This approach aims to constrain deviations in the diffusion process
for improving the quality of the reconstructed image. Furthermore,
we propose a Syntax driven Feature Fusion (SFF) strategy. This
strategy encodes an additional ultra-low bitstream obtained from
the encoding stage, providing semantic prior information about
the image. By leveraging this prior information, we can reduce the
ambiguity in the inference target during the post-processing phase,
leading to more accurate and faithful reconstructions. To achieve
the same objective of reducing randomness in the diffusion process
and effectively leveraging image semantic information, we apply a
globally consistent edge control strategy into our model’s inference
phase. Additionally, we adopt a continuous online optimization
mode to further enhance the model’s performance. These efforts
not only reduce the stochasticity associated with diffusion process-
ing but also entourage the model to capture rich semantics from
the input images, thereby leading to improved overall performance.

Our contributions are summarized as follows:

• We develop a Consistency Guided Diffusion Model (CGDM)
for perceptual image compression, which incorporates an ad-
ditional consistent guidance with a diffusion-based network,
aiming to constrain the deviation in the diffusion process for
learning richer detail representations with less fidelity loss.

• We devise a Syntax driven Feature Fusion (SFF) module that
takes an extra ultra-low bitstream from the encoding end as
input, guiding the adaptive fusion of information from the
two branch.

• We design a globally uniform boundary control strategy,
and adopt continuous online optimization mode to further
improve both coding efficiency and global consistency.

Experimental results show that our proposed method achieves
a BD-rate [19] savings of 9.227% in perception and 6.251% in dis-
tortion compared to the current state-of-the-art perceptual image
compression method ILLM [47].
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2 RELATEDWORKS
2.1 Generative Model
Generative models aim to learn the overall distribution of data
and generate data within the same distribution, which have been
a central focus of research in recent years, leading to significant
advancements in multimedia generation and processing. With the
rapid development of deep learning, one of the milestone and the
most notable generative models is the Generative Adversarial Net-
works (GANs) [20], which consist of two competing networks, a
generator and a discriminator. The adversarial training process
results in highly realistic and diverse generations. Subsequent work
built upon GANs such as Conditional GAN [46], StyleGAN [28, 29]
further enhances its ability to generate high-quality images based
on given conditions. Beyond GANs, there has also been a surge of
interest in other types of generative models, including autoregres-
sive models [17], variational autoencoders (VAEs) [32], normalizing
flow models [12], energy-based models [13], score-based model
[54], flow-based model [31] and so on.

Recently, diffusion models [24, 39, 53] have emerged as powerful
generative models that define the forward and reverse diffusion
processes for data noise addition and removal, respectively. Their
generations often exhibit superior quality and diversity, and there
have been many studies attempting to use diffusion-based models
for image generation [10, 65], enhancement [15, 41, 48, 63] and so
on. In our work, we apply the diffusion-based generation model
to image compression, and obtain the image with higher quality
through the guidance of a semantic stream.

2.2 Learned Image Compression
With the significant advancements in deep learning, recent years
have witnessed deep learning based image compression methods
outperforming classical methods in striking a balance between bit
rate and reconstruction quality. Initially, Ballé et al. [2, 3] pioneered
the utilization of neural network to establish lossy image compres-
sion autoencoders, sparking a surge in learning-based image com-
pressionmethods [44, 45]. In addition to transformations, numerous
studies have focused on entropy coding of latent representations
based on learned probability models, including hyperpriors [4] and
context models [8, 37]. Furthermore, the employment of Gaussian
Mixture Models and attention-based modules in transformations
has further enhanced image compression performance [9].

Facing the trade-off between image quality and storage efficiency,
a range of perceptual image compression methods have been pro-
posed, which aim to enhance the perceptual quality of compressed
images and align themmore closely with human perception. Agusts-
son et al. [1] introduced the concept of using GANs [20] as decoders
for image compression. This approach allows for the generation
of reconstructed images with rich details. Subsequently, He et al.
[22] further enhanced these GAN-based methods by incorporat-
ing advanced perception models. Recently, with the great success
of diffusion models, some efforts [18, 25, 62] have been made to
study perceptual image compression. However, as we have stated
previously, due to the lack of fidelity caused by the uncertainty of
the diffusion process, this area needs to be further explored. In this
paper, we propose a solution for this issue through an additional
consistent guidance and a neural syntax driven strategy.

3 METHOD
In this part, we first describe general information of diffusion mod-
els while outlining our motivations in Section 3.1, followed by a
detailed elaboration on our proposed consistency guided diffusion
model in Section 3.2. Then, we further propose our syntax driven
feature fusion module in Section 3.3. The globally uniform bound-
ary control strategy and continuous online optimization during
inference is introduced in Section 3.4. Finally, our training strategy
is described in Section 3.5.

3.1 Preliminaries and Motivations
We start with the characteristic analysis of the diffusion model.
As a generative model, diffusion models have been demonstrated
to effectively create images with excellent perceptual quality by
leveraging a conditional model that incorporates latent features.

Simultaneously, there are numerous works [15, 41, 48, 63] that
employ the diffusion models as a post-processing or enhancement
module. Generally, these works utilize the degraded image 𝑥 as a
condition and construct a conditional model that aims to learn the
data distribution 𝑝 (𝑥 |𝑥) through a fixed multi-step chain of length
𝑇 . The diffusion process is defined by a forward process 𝑞 through
adding Gaussian noise. Formally, the distribution of the forward
process can be expressed as:

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;𝛼𝑡𝑥0, 𝜎2𝑡 I),
𝑞(𝑥𝑇 ) = N(𝑥𝑇 ; 0, I),

(1)

where 𝛼𝑡 and 𝜎2𝑡 are hyper-parameter functions of 𝑡 [39].
Meanwhile, the inference process can be conducted as a reverse

process from Gaussian noise 𝑞(𝑥𝑇 )∼ N (0, I) to a target 𝑥0, which
can be expressed as:

𝑝 (𝑥𝑇 ) = N(𝑥𝑇 |0, I),
𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥) = N(𝑥𝑡−1 |𝜇𝜃 (𝑥, 𝑥𝑡 , 𝑡), 𝜎2𝑡 I),

(2)

where the 𝜇𝜃 (𝑥, 𝑥𝑡 , 𝑡) denotes the mean value of the conditional
distribution 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑥), and the diffusion model is trained to
learn the conditional distributions by parametric approximation to
the distribution. For the neural network, mostly existing diffusion
post-processing frameworks directly feed the condition 𝑥 and noise
𝑥𝑡 , along with the timestamp 𝑡 , into the U-Net backbone, similar to
the vanilla DDPM and output the predicted noise 𝜖𝑡 at each step.

However, there are two notable issues with this paradigm:

• This approach often leads to the final reconstructed image
𝑥0 deviating from the condition 𝑥 , amplifying the distortion
of 𝑥 and results in simultaneous degradation of both fidelity
and perceived quality.

• As the condition 𝑥 represents a degraded image with some
information loss, there can exist multiple images that lead
to the same 𝑥 . That means, the optimized probability distri-
bution target 𝑝 (𝑥 |𝑥) is ambiguous, making it challenge to
ensure that the reconstructed image is more similar to the
original image.

In our work, we aim to adopt a novel framework to address both
of these issues:

1624



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Haowei Kuang et al.

D

E

AD

Syntax
Generator

�

The Overall Process of Diffusion Denoising Process

Consistency Guided Diffusion ModelEnd-to-End Compression

�0 �1 ��−1 ��

�0 ��−2 ��−1 ��

��

��−1
�1

�0

…

……

� � � �

SFF SFF SFF SFF

…

AE

�� �� ��−1 �0

… …
Diffusion
Features

Consistency
Features

Fusion
Features

E Encoder AE Arithmetic Encode

AD Arithmetic DecodeDecoderD

�

�

Figure 2: The entire framework of our proposed method. For an image 𝑥 to be encoded, we first perform lossy compression using
a standard end-to-end image compression network, resulting in an output degraded image 𝑥 . Then, we extract a syntax vector
from the original image 𝑥 using a syntax generator. This syntax vector is then used to guide the fusion of consistency features 𝑒
and diffusion features 𝑑 in a Consistency Guided Diffusion Model with Neural Syntax. After a complete diffusion process, we
obtain a higher-quality reconstructed image 𝑥0. The consistent guidance architecture, neural syntax driven mechanism lead the
diffusion model to stably reconstruct high-quality images, making the final output excellent in terms of perception and fidelity.

• For the first issue, we propose to incorporate an additional
consistent guidance into the network structure of the dif-
fusion model, called consistency guided diffusion model,
constraining the deviation in the diffusion process and im-
proving the quality of the reconstructed image.

• For the second issue, we propose a syntax driven feature
fusion strategy to encode an additional ultra-low bitstream 𝑠

from the encoding stage to provide semantic prior informa-
tion of the image, thereby alleviating the ambiguity in the
inference target of post-processing.

In the following sections, we describe our method in detail.

3.2 Consistency Guided Diffusion Model
On a high level, our compression process consists of two parts, an
end-to-end image compression model and a diffusion-based post-
processing model called consistency guided diffusion model, with
structure shown in Fig. 2.
End-to-end image compression model. Firstly, we utilize a stan-
dard end-to-end image compression network to perform lossy com-
pression on the original image 𝑥 , obtaining an image 𝑥 with some
detailed information lost:

𝑥 = D(Q(E(x))), (3)

where Q(·) means quantizer and E(·), D(·) represents the pre-
trained autoencoder. Here, we utilize the recently proposed ILLM
[47] as the end-to-end autoencoder, which is the current state-of-
the-art perception-oriented end-to-end compression method.

Diffusion-based post-processing model. Our diffusion-based
post-processing model follows the encoder-decoder architecture
with skip connections [49] as the denoising model similar to [16],
which includes two encoders and one decoder.

The upper branch in Fig. 2 encodes the noisy image into 𝑁 multi-
resolution diffusion feature maps 𝑑𝑖 with different scales, where
𝑁 is the depth of the U-Net backbone and 𝑖 ∈ {0, ..., 𝑁 }, while the
lower branch extracts feature maps 𝑒𝑖 of corresponding scales from
the image 𝑥 . Then, we introduce a syntax driven feature fusion
module guided by an ultra-low semantic information bitstream
𝑠 in the decoder part of the U-Net, which is expounded in the
following section. Initially, the feature 𝑑𝑁 and 𝑒𝑁 are fused to
obtain the feature𝑢𝑁 . Then, at each layer, the corresponding layer’s
feature 𝑢𝑖+1 and 𝑒𝑖 are adaptively fused to produce 𝑢𝑖 , which can
be expressed as:

𝑢𝑖 = SFFi (ui+1, ei, s), (4)

where SFFi means the syntax driven feature fusion module and 𝑠
is a compact syntax vector. This process is repeated layer by layer,
with adaptive fusion and upsampling of features performed at each
step, ultimately generating the predicted output noise.

By taking this approach, during the denoising diffusion process
of the diffusion post-processing model, we consistently inject a con-
stant guidance feature derived from the degraded image, guiding
its inference process to stay close to the conditional distribution
𝑥 . This approach enables the final output to enhance the percep-
tual quality while maintaining the similarity to the original image,
achieving a better trade-off between fidelity and perceptual quality.
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3.3 Syntax Driven Feature Fusion
As we mentioned in section 3.1, the target optimized probability
distribution of the post-processing module 𝑝 (𝑥 |𝑥) is ambiguous. To
mitigate the ambiguity to ensure the reconstructed image 𝑥0 similar
to original image 𝑥 , we proposed to send a compact syntax vector
extracted from the original image 𝑥 and decoded image 𝑥 which
costs ultra-low bitstream to provide the syntax information of the
original image. Based on this idea, inspired by [59], we encode
the syntax information of the original image into a compact and
discrete one-dimensional vector by a syntax generator which serve
as a dynamic convolution kernel in the syntax driven feature fusion
module. By decoding the syntax vector into dynamic convolution
kernels and performing convolution operations on the features to be
fused, syntax information is transmitted in a neural representation-
like manner. The structure of the syntax generator module and
syntax driven feature fusion module is illustrated in Fig. 3.
Syntax Generator. The syntax generator’s structure follows the
design of [59], which contains a multi-scale network on the basis of
hyper-priors entropy model [4, 26]. During syntax extraction, the
features at each scale are globally average pooled and concatenate
to a compact one-dimensional vector. This approach effectively
utilizes multi-scale information while ensuring global consistency
of the semantic information.
Syntax Driven Feature Fusion. The syntax driven feature fusion
module takes the features 𝑑𝑖 , 𝑒𝑖 , the obtained syntax vector 𝑠 , and
the timestamp 𝑡 of the current step as inputs. After getting the
syntax vector 𝑠 and timestamp 𝑡 , we concatenate them and utilize a
fully connected network to map them to two convolutional kernels
𝑊 𝑖

𝑒 ,𝑊 𝑖
𝑑
. These two sample-adaptive dynamic convolutional kernels

separately perform convolution on the two input features, achieving
adaptive fusion of features at each layer:

𝑢𝑖 =𝑊 𝑖
𝑒 ∗ 𝑒𝑖 +𝑊 𝑖

𝑑
∗ 𝑑𝑖 , (5)

where ∗ denotes convolution. Since the semantic vector used for
generating these two convolutions is highly dependent on the in-
put original image, the fusion process can effectively capture the
characteristics of the original image, enabling the more adaptive
fusion of the two streams of features during the generation process
to obtain a better reconstructed image.

3.4 Inference Time Optimization
Furthermore, we propose that due to the excellent sample adapt-
ability of our method, a more refined design during the inference
process can more fully tap into the performance potential of our
proposed method and achieve better performance. Specifically, dur-
ing the inference process, we employ a globally uniform boundary
control strategy and a sample-adaptive continuous online optimiza-
tion mechanism for different resolutions and styles of images to be
compressed, respectively, to further enhance the performance.
Globally Uniform Boundary Control. During model training,
we used patches of a fixed size. However, directly feeding images of
different resolutions into the diffusion model during inference can
cause performance degradation due to distribution discrepancies.
Therefore, we chose to use a tiling approach to adapt to images
of arbitrary resolutions. To mitigate the potential block artifacts
that may arise from piece-by-piece tiling, we employ the following

two strategies. Firstly, we overlap the patches with surrounding
ones to a certain extent, so that the pixels at the edge position are
predicted by multiple patches, which makes the transition of the
edge position smoother.

In addition, we observe that the initial noise 𝑥𝑇 of the diffusion
model can be viewed as the boundary condition of the diffusion
ordinary differential equation, which affects the stylistic charac-
teristics of the sampled images [41]. Recognizing that a complete
image should exhibit consistent stylistic features, we set the initial
noise for all patches to a fixed distribution. This ensures consistent
image style, further mitigates block artifacts, and enhances the per-
formance of encoding and decoding images at arbitrary resolutions.
Specifically, for a given patch size, we commence by randomly se-
lecting a boundary condition (just a Gaussian noise). Subsequently,
we maintain this noise as a uniform boundary condition and tile it
across the entire image, resulting in a boundary condition 𝑥𝑇 , that
spans the entire image. Using 𝑥𝑇 as the starting, we then employ
our CGDM to initiate the diffusion process. Through this process,
we ultimately reconstruct a high-quality image, X0, that exhibits a
stable and consistent style.
Sample-Adaptive Continuous Online Optimization. Similar to
[40, 59], the approach of using a syntax generator to extract global
syntax information from images inherently brings the potential
for online optimization in the encoding phase during inference.
This process is analogous to the mode decision process in tradi-
tional hybrid coding frameworks, where the best mode is selected
from a discrete set of candidates. However, employing iterative
optimization allows for continuous selection of the best option
from an infinite set, greatly enhancing the flexibility of this online
optimization strategy.

Specifically, during the inference process for each image, we
iteratively optimize the encoder parameters of the syntax generator
on randomly selected patches. This enables the generator to produce
syntax vectors that more closely align with the image’s semantics.
For the iterative optimization process during inference, we set an
optimization objective consistent with the fine-training process,
which is detailed in the next section.

3.5 Training Strategy
Following the training strategy proposed by [60], we use a coarse-
to-fine two-stage training strategy. Training at the coarse level aims
to train the diffusion model to constrain noise, while training at the
fine level further optimizes the diffusion model to further enhance
the model performance by constraining the sampled clean images
with fixed steps and corresponding ground truth ones.

Our coarse training is analogous to existing conditional diffusion
models, which aim to estimate noise. The difference is, that we
introduce an additional bitrate control term to constrain the bit cost
of syntax vectors. Consequently, the loss function for the coarse
training is as follows:

L𝑐𝑜𝑎𝑟𝑠𝑒 = E𝑡∼[1,𝑇 ],𝑥0,𝜖𝑡 ∥𝜖𝑡 − 𝜇𝜃 (𝑥𝑡 , 𝑥, 𝑠, 𝑡)∥2 + 𝜆𝑐𝑅, (6)

where 𝜇𝜃 denotes our noise prediction network, 𝜖𝑡 means the adding
noise at step t in the forward process, 𝑅 means the bitrate and 𝜆𝑐 is
the hyper-parameter to trade-off between rate and distortion.
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Figure 3: The structure of Syntax Generator and Syntax driven Feature Fusion module (SFF). The Syntax Generator module is
responsible for extracting global syntax vectors from images during the encoding process, while the syntax driven feature
fusion module adaptively integrates consistency features with diffusion features within the diffusion framework.

During the fine training stage, we fixed the sampling strategy
to the 9-step DDIM sampling and imposed constraints on the gen-
erated sampled images 𝑥0 to compensate for the unsatisfactory
results from the coarse training. The loss function we used for the
constraints is as follows:

L𝑓 𝑖𝑛𝑒 = 𝜆𝑑L𝑑 (𝑥0, 𝑥) + 𝜆𝑝L𝑝 (𝑥0, 𝑥) + 𝜆𝑓 𝑅, (7)

where L𝑑 denotes the distortion loss and we use L1 loss during
training, L𝑝 denotes the perception loss and we utilize three kinds
of perceptual objective functions DISTS [11], Alex-based [34] and
VGG-based [52] LPIPS [66] in the experiments. 𝜆𝑑 , 𝜆𝑝 and 𝜆𝑓 are
the hyper-parameters.

4 EXPERIMENTS
4.1 Implementation
Network Implementation.We implement our diffusion model
based on the architecture of [16] with fewer parameters. In addition,
for further reduce the video memory consumption, we also remove
the self-attention module. The detailed structure and hyperparame-
ters are shown in the supplementary material.
Training Details.We utilize the DIV2K [1] dataset as our training
dataset, which comprises 800 natural images with an average res-
olution of 2K. To enable our model to adapt to images of various
resolutions, we perform downsampling on the images to half their
original resolution, serving as an augmentation of the training data.
During the training process, we randomly crop 256 × 256 patches
from each image.

Our training process uses the Adam optimizer [30] and the learn-
ing rate is set to 1×10−4. We train 6 models with different compres-
sion rates using different bit rates end-to-end compression model
parameters. The hyper-parameter 𝜆𝑐 on the coarse training stage
is set to 100 and the hyper-parameter 𝜆𝑑 , 𝜆𝑝 and 𝜆𝑓 are set to 1, 0.3
and 20 separately on the fine training stage. Each model is trained
for 38k iterations on the coarse training stage and 32k iterations
on the fine training stage.
Inference Details. During inference, the patch size used is 256 ×
256, and the overlap range is 8 pixels close to the edge. Our method
applies the continuous mode decision on inference. For each image,
based on the pre-trained network weights, we additionally employ
the Adam optimizer with a learning rate 5 × 10−5 to finetune the

encoder for 250 iterations, and the optimization target is the same
as L𝑓 𝑖𝑛𝑒 .
Evaluation Protocol.We evaluate our method on the Kodak image
dataset [33] and the professional subset of the CLIC validation
dataset [56]. The Kodak image dataset consists of 24 images, each
with a resolution of 768 × 512. The CLIC professional validation
dataset comprises 41 images with higher resolutions of about 1800×
1200. Evaluating on it demonstrates the performance of our method
on images with higher resolutions.

To demonstrate the superiority of our method in terms of dis-
tortion and perceptual quality, we utilize a set of diverse metrics.
For distortion, we employ PSNR, VIF [51], and MS-SSIM [61]. And
for perceptual quality, we used VGG-based [52] LPIPS [66], DISTS
[11], and FID [23]. The R-D curves and BD-rate [19] on different
evaluation metrics are illustrated to compare different methods.

4.2 Quantitative Comparison
We compare our method with existing conventional transform-
based methods BPG [5], end-to-end learning-based image com-
pression methods optimized for MSE like ELIC [21], and image
compression methods optimized for perceptual quality including
HiFiC [43], ILLM [47], and CDC [62]. Fig. 4 presents the R-D curves
of various metrics on the CLIC and Kodak datasets for our pro-
posed method and comparison methods. Evidently, our approach
demonstrates superior performance across different perceptual mea-
sures compared to other perceptual image compression methods,
meanwhile achieving a more favorable distortion effect. Among the
comparison methods, only CDC surpasses our approach in terms
of the perception metrics. However, its performance in the distor-
tion metrics is significantly inferior to other methods, resulting in
an overall performance that remain below ours. This underscores
the excellent balance our method achieves between fidelity and
perceptual quality, highlighting its superiority.

To provide a more intuitive comparison of the overall perfor-
mance of our method with other benchmark methods across all
evaluation metrics, we compute the BD-rate [19] for each indica-
tor. Using our method as the anchor, Table 1 presents the average
BD-rate achieved by each method across all distortion and percep-
tion metrics on both CLIC and Kodak datasets anchored on our
method. It is evident from the table that the overall performance of
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Figure 4: Tradeoffs between bitrate (x-axes, in bpp) and different metrics (y-axes) for various models tested on Kodak and CLIC.
We consider both perceptual (LPIPS, DISTS, FID) and distortion metrics (PSNR, VIF, MS-SSIM). The upper 2 rows (black frame)
are the performance on Kodak datasets and the lower 2 rows (blue frame) are on CLIC professional dataset.

Table 1: Average BD-rate for different methods on both CLIC and Kodak datasets anchored on our method.

Datasets Kodak CLIC

Methods Distortion Perception Average Distortion Perception Average

HiFiC [43] +14.6366 +45.1822 +29.9094 +43.4935 +113.7039 +78.5987
ILLM [47] +5.5011 +11.4812 +8.4912 +6.9765 +14.1819 +10.5792
CDC [62] +52.0296 +0.5460 +26.2878 +65.2966 -21.5621 +21.8673
ELIC [21] -31.6699 +77.8194 +23.0748 -22.2319 +2288.3859 +1133.0770
BPG [5] -1.5526 +84.3209 +41.3842 +3.0902 +4872.2267 +2437.6585
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Figure 5: Visual comparisons with state-of-the-art methods on Kodak dataset. We provide further analysis that focuses on
subjective results in the main text. As can be seen, compared to the baseline used in our method (ILLM), we achieve a significant
improvement in subjective performance at the cost of extremely low additional bitstreams. [Zoom in for best view]
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Figure 6: Visual comparisons with state-of-the-art methods on CLIC dataset. [Zoom in for best view]

all other methods under all evaluation indicators falls below that
of our proposed approach.

4.3 Qualitative Comparison
To further underscore the perceptual quality of our results, we
present several illustrative cases comparing different image com-
pression methods in Fig. 1, 5 and 6. In Fig. 5, it is clearly observed
that traditional compression methods such as BPG [5] and MSE-
optimized compression methods like ELIC [21] produce overly
smooth images with significant loss of detail information. Among
the perception-oriented optimization methods, ILLM [47] intro-
duces numerous continuous and repetitive artifacts in the decoded
images, and the details in HiFiC [43] are not as clear as those in our
method though its bitrate is much higher than ours. Fig. 6 shows the
results on high-resolution images, whose subjective performance
is generally consistent with that on the Kodak. Evidently, the re-
constructed images using our method exhibit richer visual details,
and less artifact while utilizing fewer or comparable bits.

4.4 Ablation Studies
We conduct extensive ablation studies for our proposed network
architecture on the Kodak dataset. By replacing the syntax driven
feature fusion module with direct element-wise addition, the model
fuses information directly without syntax guided adaptive fusion

(w/o SFF). By replacing the consistent boundary with random noise
and inferring by pre-trained model parameters without online fine-
tuning, the optimization during inference is moved (w/o Infer. Op-
tim.). We do the above substitutions in turn and observe a per-
formance drop as Table 2 shows, though the model sizes are kept
almost the same. Hence, all of the components in our design con-
tribute to performance improvement.

Table 2: Average BD-rates of the ablation studies.

w/ SFF w/ Infer. Optim. Distortion Perception Average

✓ ✓ — — —
✓ × -0.6501 +1.7797 +0.5648
× × +0.8688 +2.4148 +1.6418

5 CONCLUSION
In this work, a novel consistency guided diffusion model with neu-
ral syntax is proposed, introducing a diffusion model for perceptual
image compression. The consistency guidance architecture, neural
syntax driven mechanism and inference time optimization strategy
lead the diffusion model to reconstruct high-quality images, mak-
ing the final output excellent in terms of perception and fidelity.
Experimental evaluation shows the superiority of our methods.
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