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Abstract. Generative models, as a powerful technique for generation,
also gradually become a critical tool for recognition tasks. However, in
skeleton-based action recognition, the features obtained from existing
pre-trained generative methods contain redundant information unrelated
to recognition, which contradicts the nature of the skeleton’s spatially
sparse and temporally consistent properties, leading to undesirable per-
formance. To address this challenge, we make efforts to bridge the gap
in theory and methodology and propose a novel skeleton-based idempo-
tent generative model (IGM) for unsupervised representation learning.
More specifically, we first theoretically demonstrate the equivalence be-
tween generative models and maximum entropy coding, which demon-
strates a potential route that makes the features of generative models
more compact by introducing contrastive learning. To this end, we in-
troduce the idempotency constraint to form a stronger consistency reg-
ularization in the feature space, to push the features only to maintain
the critical information of motion semantics for the recognition task.
Our extensive experiments on benchmark datasets, NTU RGB+D and
PKUMMD, demonstrate the effectiveness of our proposed method. On
the NTU 60 xsub dataset, we observe a performance improvement from
84.6% to 86.2%. Furthermore, in zero-shot adaptation scenarios, our
model demonstrates significant efficacy by achieving promising results
in cases that were previously unrecognizable. Our project is available at
https://github.com/LanglandsLin/IGM.

Keywords: Self-supervised learning · skeleton-based action recognition
· contrastive learning

1 Introduction

Skeletons represent human joints through 3D coordinate locations, providing a
compact and efficient modality of representing human motion compared to RGB
videos and depth data. Owing to their simplicity and superior discriminative
capabilities for analysis, skeleton representations have been extensively employed
in the field of action recognition tasks [25,32,42,43,66,68].
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Supervised skeleton-based action recognition methods [4,37,39] have demon-
strated remarkable performance. However, they heavily rely on vast amounts of
labeled training data, the collection of which can be a costly and time-consuming
process. In order to reduce the reliance on fully supervised paradigms, self-
supervised learning approaches have been explored in the context of skeleton-
based action recognition [20,43,46,69].

In the context of self-supervised pretraining paradigms, most methods can
be broadly classified into two categories: generative learning-based [18, 43, 60]
and contrastive learning-based approaches. Generative learning-based methods
typically model the spatial-temporal correlations by predicting or reconstruct-
ing the masked skeleton data. With long-term global motion dynamics, Zheng
et al. [69] were the pioneers in introducing the concept of reconstructing masked
skeleton data. The structure of Masked Auto-Encoder (MAE) was used by Mao
et al. [28] to predict the velocity of the masked part thus obtaining motion in-
formation modelling. However, skeleton data is by nature spatially sparse and
temporal consistent while MAE’s feature preserves too much appearance infor-
mation, which will interfere with the recognition tasks.

On the other route, contrastive learning-based methods also have recently
demonstrated remarkable potential. These methods utilize skeleton transforma-
tions to generate positive pairs and aim to maintain consistency in the embedding
space. Rao et al. [34] introduced shearing and cropping as data augmentation
techniques. Guo et al. [11] extended these efforts by suggesting additional aug-
mentations, such as rotation, masking, and flipping, to further enhance the con-
sistency of contrastive learning. Contrastive learning, aimed at high-level tasks
like recognition, often requires data transformation to filter out task-irrelevant
information. This process results in a significant loss of information in the ex-
tracted features and hampers the ability to capture fine-grained motion details.

However, previous research has typically focused on these two paradigms
separately. Their ideas and technical advantages are complementary and can
be augmented, which is still under-explored. To address this gap, we first seek
theoretical inspiration about the relationship between generative models and
contrastive learning. In detail, we find that generative methods are equivalent
to maximum entropy coding. This fact naturally inspires building the generative
models with the related idempotent constraint to form a novel idempotent gen-
erative model, which is exactly equivalent to spectral contrastive learning but
with improved recognition capacities.

Building upon this theoretical foundation, we propose a novel idempotent
generative model to promote consistency in the feature space. By enforcing idem-
potence at the feature and distribution levels, our model enriches features with
semantic motion information, thereby reducing the domain gap and adapting
the generative model better for recognition. Moreover, the features of genera-
tive models are span on principal components, which easily leads to dimensional
collapse, as recognition tasks primarily rely on descriminative local details. To
address this imbalance, we introduce an adapter that fuses encoder and gen-
erator features. This integration expands the effective feature dimension of the
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feature space, facilitating more robust and comprehensive representation. Our
model attains outstanding results through self-supervised learning in comparison
to contemporary state-of-the-art methods.

In summary, our contributions are three-folded:

– We propose an idempotent generative model to combine the benefits of gen-
erative pre-training and contrastive learning, which is inspired by the theo-
retical fact of their intrinsic correlation. This cooperation makes the model
focus on extracting more compact information related to motion semantics,
and obtain more powerful high-level representation within the generative
model framework.

– We further propose to utilize a multiple idempotency feature constraint.
Through feature and distribution idempotency constraints, the feature con-
sistency is improved, leading to not only improved recognition capture but
also the perceptual reconstruction quality of the generative model.

– We employ an adapter to fuse the features from the high-level semantic
encoder and low-level skeleton generator from different subspaces to expand
the representation dimension. Experiments show that our module improves
the effective dimension of the feature space and encodes rich information.

2 Related Work

2.1 Skeleton-Based Action Recognition

Skeleton sequences encode the motion trajectories of human joints, representing
rich information about human actions. Thus, skeleton data serves as a suitable
modality for human action recognition [25, 42, 66, 68]. Skeleton can be obtained
by applying pose estimation algorithms on RGB videos or depth maps [38].

Early studies focused on extracting hand-designed spatial and temporal do-
main features from skeleton sequences for human movement recognition [10,27,
49–51]. In later work, efforts were made to model the positional information
and higher-order temporal difference information of the human skeleton [44,49].
Additionally, graphical models were built by tracking the trajectory of human
joints to capture joint information in video sequences [52].

Recently, there has been a surge of interest in using graph structures for
learning models [52]. Graph Neural Network (GNN) is one such model capturing
intra-graph dependencies through information transfer between nodes. Various
approaches have been proposed, such as spatio-domain inference networks, re-
current neural networks (RNNs), and graph convolutional networks (GCNs), to
exploit graph structures for human action recognition [36, 40, 59]. These mod-
els automatically learn spatio-temporal patterns from skeleton data, facilitating
strong action generalization. Moreover, attention mechanisms, multiscale ag-
gregation schemes, and lightweight convolution operations have been integrated
into GCN-based models to enhance their effectiveness and reduce computational
costs [6, 25,41,66].



4 Lin et al.

2.2 Self-Supervised Learning

The self-supervised task aims to extract data features from a large amount of
unlabelled data [8]. It can be widely used in semantic segmentation, image classi-
fication, action recognition and many other tasks [17,31]. These tasks are mainly
classified into methods based on reconstruction and on contrastive learning.

Reconstruction based approach after masking part of the original data, the
network is used to reconstruct the masked part of the data. He et al . [14] pro-
posed Mased Auto-Encoder (MAE) to encode the visible patches and decode the
visible and masked patches. This approach has been extended to the video do-
main and has been used in several studies. These methods typically use a visual
Transformer as the backbone network in order to perform the mask reconstruc-
tion task. Feichtenhofer et al . [9] extended the image-based masked auto-encoder
to use spatio-temporal learning to randomly mask spatio-temporal segments of
a video and learn am auto-encoder for reconstruction at the pixel-level recon-
struction. Similarly, in MaskFeat, Wei et al . [55] used several video cubes and
utilized the model to predict them using the remaining information.

Contrastive learning pushes pairs of positive sample together while pushing
pairs of negative sample further apart. To generate negative samples, contrastive
learning pairs anchor frames with frames from other videos. There are various
ways of generating positive and negative samples, which is the main factor that
distinguishes different contrastive methods.

Most of these methods generate positive and negative samples by different
ways in order to minimize and maximise the distance between them respectively.
In the image domain, positive samples are usually generated by enhancing the
image in different ways [1, 16, 47, 56, 62]. These enhancements include rotation,
cropping, random greyscale and colour change [2]. Scaling these methods in video
can be difficult because each video comparison increases the memory required, es-
pecially if multiple enhancements are used for multiple positive samples. Another
challenge is incorporating the temporal domain into the enhancement. Some
methods simply apply the same enhancement in the image to each frame [48].
Some methods include additional frame alignments that may be based on the
temporal domain [26]. Finally, some methods rely on motion and optical flow
maps as positive samples [33].

3 Idempotency Generation Network (IGN)

3.1 Self-Conditional Generative Models as Maximum Entropy
Coding

Self-conditional generative modeling [14] is frequently employed as a pre-training
task in self-supervised learning. It is generally structured as an auto-encoder.
Formally, given the input skeleton data x, the reconstruction loss is:

L = Ex∼px [D(g(z),x)] = Ex∼px

[
Ez∼pz|x [− log p(x|z)]

]
= H(x|z), (1)
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where z = f(T (x)), f(·) is the encoder, and T (·) is data transformation. g(·)
is the generator. D(·, ·) is the distance. px is the data distribution and pz|x is
the feature distribution given x. H(·|·) is the conditional entropy. In the context
of MAE, this data transformation represents masked data during training. Con-
versely, in denoising auto-encoders, this transformation signifies adding noise to
the input data.

In the context of mutual information, this loss function is equivalent to op-
timizing the mutual information I(z;x) between the extracted features z and
the input data x. Based on the relationship between mutual information and
entropy, we get

I(z;x) = H(x)−H(x|z) = H(z)−H(z|x). (2)

Since the entropy of x remains constant, decreasing the reconstruction loss is
akin to increasing the mutual information. Conversely, as the features z are de-
terministically derived from the data x by an encoder f(·), the entropy H(z|x)
tends towards zero. Hence, maximizing the mutual information I(z;x) is equiv-
alent to maximizing the entropy of the feature space H(z).

Estimating the true distributions p(z) of the representation space is exceed-
ingly challenging. Following works [24,63], we leverage lossy data coding, a com-
putationally feasible alternative, as a surrogate for the entropy of continuous
random variables H(z). This approach involves determining the minimal num-
ber of bits required to encode a set of samples Z = [z1, . . . , zm] ∈ Rd×m subject
to a distortion ε, as defined by the coding length function below [47, 72]:

L =

(
m+ d

2

)
log det

(
I+

d

mε2
ZTZ

)
, (3)

where ε is the upper bound of the expected decoding error between z ∈ Z and
the decoded ẑ. det(·) is the determinant of a matrix. d is the dimension of the
feature space. Utilizing the identity det(exp(A)) = exp(Tr(A)), we derive L =
Tr
(
µ log

(
I+ λZTZ

))
, where Tr denotes the trace of the matrix and µ = m+d

2 ,
λ = d

mε2 . Finally, we apply a Taylor series expansion to the logarithm of the
matrix to obtain:

L = Tr

(
µ

∞∑
n=1

(−1)n−1

n

(
λZTZ

)n)
, (4)

because the features z are projected into spherical space Sd−1, Tr
(
µλZTZ

)
=

mµλ. Hence, the first term does not contribute to the reconstruction learning. In
essence, self-conditional generation primarily diminishes the inter-data similarity
within the feature space:

L = −µλ2

2
Tr
((

ZTZ
)2)−R = −µλ2

2

m∑
i=1

m∑
j=1

(zTi zj)
2 −R, (5)

where R =
∑∞

n=3
(−1)nµλn

n Tr
((
ZTZ

)n).
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3.2 Idempotent Generative Models as Spectral Contrastive
Learning

The idempotence of a self-conditional generative model refers to its stability
in re-encoding [57]. More precisely, if we denote the original data as x, the
encoder as f(·), the encoded feature as z = f(x), the decoder as g(·), and
the reconstruction as x̂ = g(z), then the self-conditional generative model is
considered idempotent:

f(x̂) = z or g(f(x̂)) = x̂. (6)

Idempotence is frequently employed in the generative domain to augment the
perceptual loss of generated images. The idempotent loss is formulated as:

Lide = ∥f(x̂)− z∥2 = −2f(x̂)T f(x), (7)

where zT z = 1 because we normalize the feature space. Therefore, the idempo-
tent generative model maximizes the entropy of the feature space while simul-
taneously minimizing the feature distance between the data and the generated
data. The total loss of the idempotent generative model is expressed as:

L = Lide − L = −2
∑
x,x̂

p(x, x̂)f(x̂i)
T f(xi) +

∑
x,x′

p(x)p(x′)
(
f(x)T f(x′)

)2
+R

= −2E(x,x̂)∼p(x,x̂)

[
f(x̂)T f(x)

]
+ E(x,x′)∼p(x)p(x′)

[(
f(x)T f(x′)

)2]
+R

= −2Tr
(
FAFT

)
+ Tr

((
FTF

)2)
+R = 2Tr

(
FLFT

)
+ Tr

((
FTF

)2)
+R+ const

= ∥A− FTF∥2F +R+ const,
(8)

where A ∈ Rm×m is the adjacency matrix defined by the data generation.
F = Zdiag(

√
p(x)) The weights Ax,x̂ = p(x,x̂)√

p(x)p(x̂)
. L = I − A is the Lapla-

cian matrix. This demonstrates its equivalence to spectral contrastive learning.
And the advantage of our approach over spectral contrastive learning is that we
additionally optimise the residual term R to capture higher order information.

Further, we exploit data idempotence and feature idempotence to enhance
representation learning and action generation. The unified generative-perceptual
model contains both an encoder f(·) and generator g(·). And our idempotency
constraints pay attention to both the data and the feature distributions, which
improves both generation and feature learning.

(g ◦ f)(x) = x and (f ◦ g)(z) = z. (9)

3.3 Relationship to Masked Auto-Encoder

As mentioned in Eq. 2, the generative network without idempotent constraints
has a conditional entropy H(z|x) of 0 because the encoding process is determin-
istic. Idempotent generative networks, on the other hand, treat features z as a
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random variable sampled from the distribution of features across all of the gen-
erated data x̂ for the same data x, thus transforming into a non-deterministic
process:

z = f(x̂), x̂ ∼ G(x), (10)
where G(·) is the generation process. Therefore, idempotent constraints are es-
sentially about diminishing conditional entropy H(z|x), which in turn maximizes
the mutual information between features and data.

In contrast, methods like MAE implicitly prioritize maximizing feature sim-
ilarity across masked samples of the same data:

z = f(x̂), x̂ ∼ M(x), (11)

where M(·) is the random masking process. Consequently, features from two
distinct data that undergo similar transformed or generated data are clustered
into the same class. However, the data obtained through data transformation
may not be the real data and thus far from the real data distribution.

3.4 Relationship to Downstream Tasks

Through the analysis of previous work [7, 12, 13, 54, 67] on spectral contrastive
learning, the error rate Pe = P [ϕ(x) ̸= yx] of the downstream linear evaluation
ϕ(·) can be bounded by the generated adjacency matrix A and clustering error
probabilities α = P [yx ̸= yx̂]:
Theorem 1. If λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of A, and if the
clustering purity is 1− α, we obtain:

Pe ≤ c1

m∑
i=d+1

λ2
i + c2α, (12)

where c1, c2 are some constants.

This theorem illustrates the constraints on accuracy imposed by the purity 1−α.
A large purity and a small number of clusters result in a low error rate. When
the diversity in the generated data is insufficient, the sum of small singular
values of the adjacency matrix become large, resulting in less tightly clustered
groups. Conversely, excessive diversity in the generated data may compromise the
preservation of motion information, thereby increasing the error rate in clustering
and undermining overall clustering effectiveness.

Therefore, to make the feature space of the idempotent generative model
more capable of clustering, it is necessary to increase the diversity of the gen-
erated data for a stronger feature consistency constraint. However, a paradox
is demonstrated here. Ordinary generative processes result in limited diversity
under self-conditional generation due to constraints on the distance between
the generated data and the original data. So in order to simultaneously obtain
diverse and motion semantics preserving generated data, we propose an idempo-
tent self-conditional generation model based on the diffusion generation model.
The diversity of the generated data is provided by the noise sampling process of
the diffusion model.
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Fig. 1: We perform data augmentations on the data first and then obtain the con-
ditional features through the encoder f(·). The noise skeleton is then obtained using
Diffusion Sampling. The noise skeleton and conditions are fed into the generator g(·)
for denoising. The adapter h(·) plays a pivotal role in projecting and fusing the features
extracted by the encoder f(·) into the generator’s feature space for use as conditions.
In the adapter, (a) involves computing similarity using spatio-temporal tokens within
the sequence. (b) calculates similar tokens based on the similarity of each token. (c)
entails de-correlation by subtracting similar tokens. This integration expands the effec-
tive feature dimension of the feature space, facilitating more robust and comprehensive
representation. We utilize two losses in our model: Diffusion’s noise prediction loss and
idempotent feature constraints, which respectively constrain feature similarity and dis-
tributional similarity. Thus, the feature consistency is improved, leading to not only
improved recognition capture but also the perceptual reconstruction quality of the
generative model.

3.5 Idempotent Diffusion Generation Model

Our model consists of three parts, an encoder f(·), a generator g(·) and an
adapter h(·). The encoder f(·) extracts features z as conditions for the generator
g(·) and also as inputs to the downstream task classifier ϕ(·). And the generator
g(·) reconstructs the skeleton data based on the features. The adapter h(·),
in turn, is responsible for projecting and fusing the features extracted by the
encoder f(·) into the generator’s feature space to be used as conditions.
Encoder f(·): We start by applying some data augmentations to the data x
to obtain data x̃ for increasing diversity. Then, spatio-temporal position em-
beddings Pt and Pv are added after projection to the feature space by linear
projection:

z = LinearProj(x̃) + Pt + Pv. (13)

Following that, layers of vanilla transformer blocks are employed to extract latent
representations z. Each block consists of a multi-head self-attention (MSA) mod-
ule and a feed-forward network (FFN) module. Residual connections are utilized
within each module, which are then followed by layer normalization (LN).
Generator g(·): The generator g(·) and encoder f(·) maintain the same struc-
ture. But the input is the noise data xt obtained by sampling in the diffusion.
The generator g(·) predicts the noise magnitude by taking noise data xt and
feature conditions z as inputs.
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Adapter h(·): The adapter h(·) merges the features extracted by the encoder
f(·) into the generator g(·). This is necessary because high-level tasks like recog-
nition operate in a different feature space compared to low-level tasks like gen-
eration. Recognition tasks necessitate capturing high-frequency action move-
ments while generation primarily focuses on optimizing principal component
space (with large singular values), such as walking or waving, which rely more
on bottom component subspace like velocity. Thus, we introduce a feature fu-
sion method that decouples principal and bottom component subspace, allowing
the encoder features to focus more on high-frequency information, making them
more suitable for high-level tasks such as action recognition. These features are
then injected into the bottom component feature space of the generator.
• Manifold Decoupled Feature Fusion Module: To derive discriminative
features for use as semantic guides, we draw inspiration from negative samples
in contrastive learning. We assume that regions with motion semantics have the
lowest similarity to other regions in the same sequence. z = [z1, . . . , zl] ∈ Rd×l,
where l is the length of tokens of z. The uniformity loss in contrastive learning
is:

Luni = Ezi

[
logEzj

[
exp

(
zi

T zj
)]]

= Tr
(
log
(
deg

(
exp(zT z)

)))
, (14)

the derivative of Luni is as follows:

ẑ ⇐ z− η
∂Luni

∂z
= z− ηD′−1

A′z, (15)

where A′ = exp(zT z) and D′ = deg(A′). D′−1
A′ = SoftMax(zT z). ẑ removes

low-frequency information. Based on this analysis, we extract the high-frequency
information of the features as semantic information:

ẑ ⇐ (1 + η)z− ηSoftMax(zT z)z. (16)

Through this high-pass filtering, we filter out some low-frequency information
of principal component space such as the mean value in the sequences, which is
not very meaningful for recognition, and retain the semantic information, which
is more important for recognition. This module also mitigates dimensionality
collapse, making features more informative.

We then fuse the features into the generator by replacing LayerNorm (LN)
with Adaptive LayerNorm (AdaLN) with the following equation:

AdaLN(h, ẑ, t) = ẑs · (ts · LN(h) + tb) + ẑb (17)

where h represents the hidden representation of the generator, (ts, tb) and (ẑs, ẑb)
are obtained from linear projection of timestep embedding t and high-frequency
condition ẑ, respectively. Through AdaLN layers, the condition ẑ guides the
denoising process by scaling and shifting the normalized hidden representation.
Idempotence Generation Loss: Our loss function comprises two components:
the noise prediction loss of the diffusion model and the idempotency constraint.
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• Noise Prediction Loss: The diffusion model is trained by predicting the
noise from the input noise data:

Lgen = ∥g(xt, h(z), t)− ε∥2,
xt =

√
ᾱtx+

√
1− ᾱtε, ε ∼ N (0, I).

(18)

• Idempotence Constraint: To obtain consistency constraints on features,
we adopt two types of idempotency losses, feature idempotency constraint and
distribution idempotency constraint.
1) Feature idempotency constraint performs on features. We use the pre-
dicted noise to perform a step of de-noising to get the estimated generated data
x0:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱg(xt, h(z), t)

)
. (19)

Therefore, the feature idempotency constraint based on this generated data x0

is formulated as:

Lide_feat = −f(x)T f(x0, zt′ , t, t
′),

zt′ =
√
ᾱt′z+

√
1− ᾱt′ε, ε ∼ N (0, I).

(20)

Since the generated data may be noisy, we input the noisy features and the
number of time steps as auxiliary information.
2) Distribution idempotency constraint aims to align the feature distribu-
tions of the generated and original data. It is essential to maintain the manifold
structure of the generated data consistent with the manifold of the original data.
We capture the feature manifold structure through inter-feature similarity:

P(x0) = f(x0)
T f(X0) =

[
f(x0)

T f(x1
0), . . . , f(x0)

T f(xm
0 )
]
, (21)

where xi
0 is i-th token data. We align it to the feature structure of the original

ground truth data:
Lide_dist = D(P(x0),P(x)), (22)

where D(·, ·) is the distance metric between two distributions. The feature idem-
potency constraint captures richer structural information and allows for the
construction of tighter clusters. This is because the adjacency matrix not only
connects different generated data of the same data but also connects different
data with similar features. Based on this idempotent alignment, we enhance the
generative power of the model for stronger perceptual performance, while the en-
coder learns stronger feature consistency. This results in reduced singular values∑m

i=d+1 λ
2
i of the adjacency matrix and better downstream task performance.

4 Experiment Results

To evaluate the effectiveness of our approach, we conducted experiments on
two benchmark datasets: the NTU RGB+D dataset [23,35] and the PKUMMD
dataset [22].
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Table 1: Comparison of action recognition results with unsupervised learning ap-
proaches on NTU dataset.

Models Architecture NTU 60 NTU 120

xview xsub xset xsub

Contrastive Learning:
3s-AimCLR [11] GCN 83.4 77.8 66.7 67.9
3s-CPM [64] GCN 84.9 78.7 69.6 68.7
3s-CMD [29] GRU 90.9 84.1 76.1 74.7
GL-Transformer [18] Transformer 83.8 76.3 68.7 66.0
3s-ActCLR [21] GCN 88.8 84.3 75.7 74.3

Generative Learning:
3s-Colorization [61] DGCNN 87.2 79.1 70.8 69.2
SkeletonMAE [58] GCN 77.7 74.8 73.5 72.5
MAMP [28] Transformer 89.1 84.9 79.1 78.6

Contrative Learning & Generative Learning:
CRRL [53] GRU 73.8 67.6 57.0 56.2
PCM3 [65] GRU 90.4 83.9 77.5 76.3

IGM (Ours) Transformer 91.2 86.2 81.4 80.0

Table 2: Comparison of action
recognition results under KNN eval-
uation on NTU 60.

Models xview xsub

Contrastive Learning:
AimCLR [11] 71.0 63.7
SkeleMixCLR [5] 72.3 65.5

Generative Learning:
LongT GAN [69] 48.1 39.1
MAMP [28] 70.0 62.0

IGM w/o Lide 67.2 64.7
IGM w/ Lide_feat 70.7 68.4
IGM w/ Lide_dist 72.1 69.0
IGM (Ours) 72.6 69.3

Table 3: Comparison of the transfer learn-
ing performance on PKUMMD II dataset with
linear evaluation pretrained on NTU 60.

Models xview xsub

Finetune:
LongT GAN [69] - 44.8
MS2L [20] - 45.8
ISC [46] - 51.1
Hi-TRS [3] - 55.0
3s-CrosSCLR [19] - 51.3
3s-AimCLR [11] 42.4 51.6

Linear:
3s-ActCLR [21] 44.5 55.9
MAMP [28] 42.0 53.0
IGM (Ours) 45.3 59.8

4.1 Datasets and Settings

NTU RGB+D Dataset 60 (NTU 60) [35] comprises a comprehensive com-
pilation of 56,578 videos, covering 60 unique action labels. Every video includes
annotations detailing the positions of 25 joints for each body, illustrating inter-
actions among pairs and individual activities.
NTU RGB+D Dataset 120 (NTU 120) [23] is one of the most compre-
hensive datasets for recognizing actions. Encompassing 114,480 videos, it spans
120 unique action categories. This dataset documents the performance of actions
by 106 individuals across diverse environments, employing 32 distinct recording
configurations.
PKU Multi-Modality Dataset (PKUMMD) [22] encompasses 52 action
classes and nearly 20,000 instances, with each sample comprising 25 joints,
thoroughly tackling the multi-modal 3D comprehension of human actions. The
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Table 4: Action recognition accuracy for corruptions of test-time adaptation with
single domain shift on NTU-C 60 xsub dataset.

Method Joint Noise (p, σ2) Part Occlusion

(1.0, 0.1) (1.0, 0.05) (0.5, 0.1) Right Arms

AimCLR [11] 6.3 16.6 22.0 28.1
ActCLR [21] 12.7 33.5 28.6 30.3
MAMP [28] 2.4 6.1 5.8 10.7
IGM (Ours) 58.7 63.0 65.3 56.9

dataset is partitioned into two segments, with Part II showcasing more demand-
ing data owing to heightened view diversity, resulting in skeleton noise.

For enhancing network training, all skeleton sequences undergo temporal
downsampling to 120 frames. The encoder f(·) and generator g(·) are built using
the Transformer architecture [59], employing hidden channels configured to a
dimension of 256. To assess performance, we employ a fully connected layer ϕ(·).

To refine our network, we employ the Adam optimizer [30]. Training is ex-
ecuted on a single NVIDIA GeForce RTX 4090, employing a batch size of 128,
and the network undergoes training for 400 epochs.

4.2 Evaluation and Comparison

For a comprehensive assessment, we conduct comparative analysis of our ap-
proach with other methodologies across diverse scenarios.
Linear Evaluation. In the linear evaluation framework, we utilize an encoder
f(·) to process the extracted features and a linear classifier ϕ(·) for action clas-
sification. The evaluation metric employed is the accuracy of action recognition.
Notably, the encoder f(·) remains unchanged throughout the linear evaluation
protocol. Our model demonstrates superior performance on the datasets outlined
in Table 1 compared to other methodologies.
KNN Evaluation. In the K-Nearest Neighbors (KNN) evaluation setup, where
the fixed encoder fq(·) extracts features without any trainable parameters, our
model showcases superiority in action recognition accuracy on the presented
datasets. Table 2 highlights the effectiveness of our approach compared to other
methods in this evaluation mechanism.
Transfer Learning. In the transfer learning scenario, we assess the general-
ization capability of our model by pretraining it on the source data using a
self-supervised task. We then evaluate the model’s performance on the target
dataset using the linear evaluation mechanism, with the encoder f(·) maintain-
ing fixed parameters without additional fine-tuning. Our approach demonstrates
superior performance in the transfer learning setting, as illustrated in Table 3.
Zero-Shot Domain Generalization. By applying 4 types of corruption to
the validation sets of all datasets, we assess the generalization of our proposed
method compared to baseline approaches. For joint noise, we add noise with a
probability of p with a variance of σ2 to some joints. We leverage the generative
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Table 5: Comparison of mask prediction results on NTU 60 xsub.

Method DDPM [15] MDM [45] SkeletonMAE [58] IGM (Ours)

MPJPE (mm)↓ 130.2 87.6 329.7 79.2
FID↓ 1.78 1.26 2.69 1.18

Table 6: Analysis of module combinations on NTU 60 xsub dataset with the joint
stream. “FFM” means Feature Fusion Module.

Module KNN Linear
FFM h(·) Lide_feat Lide_dist

64.7 83.3
✓ 67.6 85.1
✓ ✓ 68.4 85.5
✓ ✓ 69.0 86.0
✓ ✓ ✓ 69.3 86.2

capability of our model, enabling us to denoise noisy skeleton data at test time.
Subsequently, we utilize the generated skeleton data for recognition, significantly
enhancing the generalization ability of our model. In Table 4, our proposed
approach shows consistent and substantial performance improvements.
Reconstruction Evaluation. In this section, we implement IGM for mask pre-
diction tasks. We input the masked data into the encoder to extract features as
conditions for generation, noting that the reconstruction task does not require
adding data transformations to the conditions. Our method is compared with
diffusion-based methods DDPM and MDM in Table 5. Figs 3 and 4 show visu-
alizations and feature visualizations of both the generated data and the ground
truth data. Despite sharing the same feature distribution, the generated samples
exhibit some diversity due to the noise introduced in the conditions.

4.3 Ablation Study

Here’s the modified text for the ablation experiments:
Analysis of Module Combination. We investigate the performance of various
combinations of modules and observe that each module contributes to a certain
degree of improvement. Optimal performance is attained when all three modules
are combined. As depicted in Table 6, each module enhances performance.
Analysis of Mitigating Dimensional Collapse. The analysis points out
that the feature space of the generated model is susceptible to dimensionality
collapse, resulting in the extracted features losing the information needed for
recognition. Fig. 2 shows the feature space of the encoder trained using the
generative model and the feature space after Adapter. The token after removing
similarity by Adapter network has higher feature values, i.e., the dimension
collapse phenomenon is mitigated.
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Fig. 2: Curve of singular values with
the singular value index.

Fig. 3: Visualisation of features in
ground truth data and generated data.

Fig. 4: Visualisations of ground truth data and generated data. Above is the ground
truth data, and below is the generated data. The conditions provided by the encoder
are incorporated with data transformation, resulting in generated data that maintain
similar motion information while exhibiting some diversity.

5 Conclusions

In this research, we propose the skeleton-based idempotent generative model
(IGM) for unsupervised representation learning, presenting a novel framework
that maximizes the potential of generative models for representation learning. By
implementing idempotence at both the feature level and distribution, our model
enriches features with semantic information about motion, making them more
suitable for recognition tasks. Additionally, as the generative model primarily
focuses on the principal component space, it is more susceptible to dimensional
collapse. Conversely, recognition tasks rely more on the bottom subspace. To
address this imbalance, we design an adapter that fuses encoder and generator
features from different subspaces, thereby enhancing the effective feature dimen-
sion of the feature space.
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