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Abstract—The printing and dyeing industry requires periodic
and high-resolution patterns to ensure seamless designs on large
fabric sections and high-quality final products. However, current
manual approaches to pattern creation are time-consuming and
labor-intensive. Leveraging powerful image generative models,
such as Latent Diffusion Models (LDMs), offers a promising
alternative, but challenges persist in generating strictly periodic
and high-resolution patterns due to the inherent randomness and
high computational demands of LDMs. In this paper, we propose
a novel text-driven framework for generating periodic and high-
resolution patterns. We introduce a new training-free Splice-and-
Focus Mechanism, which enhances the model by constraining
latent features and modifying the attention mechanism to produce
natural and strictly periodic patterns. Additionally, we present
a ReLife Pipeline, which integrates super-resolution and guided
image synthesis to enhance pattern resolution while eliminating
artifacts and distortions. Experimental results demonstrate that
our framework produces patterns of superior quality.

I. INTRODUCTION

Printing and dyeing refer to the process of applying desired
patterns onto fabric, such as cloth or silk, among which pattern
design plays an esential role. Unlike ordinary designs, the
patterns used in the printing and dyeing industry have more
stringent requirements: periodicity and high resolution. First,
since printing and dyeing are typically done on large sections
of fabric, the pattern is expected to be composed of repeated
splicing of periodic units, ensuring the overall design remains
seamless and consistent across the entire surface. Second, the
pattern needs to be of high definition, as clear and sharp
designs are essential for producing high-quality final products.

Currently, printing and dyeing patterns are mainly created
manually, whether through traditional hand-painting or digital
drawing softwares. This results in significant time and labor
costs for producing diverse patterns. Leveraging generative
models to design patterns could dramatically reduce the costs.
Moreover, generative models offer customization and versa-
tility, allowing users to meet a wide range of design needs.
Latent Diffusion Models (LDMs) [1] have made significant
strides in the field of text-driven image generation, enabling
the creation of high-quality visuals from prompts [1]-[3].
Meanwhile, existing customization technologies [4]-[7] such

x Corresponding author. This work was supported in part by the National
Natural Science Foundation of China under Grant 62471009, in part by CCF-
Tencent Rhino-Bird Open Research Fund, and in part by the Key Laboratory
of Science, Technology and Standard in Press Industry (Key Laboratory of
Intelligent Press Media Technology).

as Low-Rank Adaptation (LoRA) [7] enable the fine-tuning of
LDMs tailored to specific styles based on curated datasets.

However, challenges remain in applying existing technolo-
gies to periodic and high-resolution pattern generation. While
fine-tuning a LDM on a dataset of periodic images and
incorporating “periodic” into the prompt as classifier-free
guidance [8] could drive the model to produce roughly periodic
patterns, the inherent randomness of LDM generation make it
hard to achieve strict periodicity.

Meanwhile, the high computing power and graphics mem-
ory requirements of LDMs make it unrealistic to directly
generate ultra-high-resolution patterns (e.g., about 3960-pixel
height for a US-Letter-sized pattern under 360 dpi). One solu-
tion is to alternatively apply super-resolution technologies [9]—
[11] as post-processing. However, these methods mainly focus
on faithfulness, assuming the correctness of the low-resolution
inputs, which is rarely true in our case. Artifacts and pattern
distortions are often produced during the diffusion process,
which cannot be repaired and would even be magnified under
high resolution by the aforementioned methods.

In this paper, we propose a novel text-driven periodic and
high-resolution pattern generation framework. We first design
a Splice-and-Focus Mechanism for LDMs that constrains
latent features and modifies the attention mechanism, enabling
the improved LDM to generate natural and periodic patterns.
Notably, this mechanism requires no training, offering an
elegant yet highly effective solution for generating patterns
strictly adhere to scalable periodicity. In addition, we propose a
new ReLife Pipeline. It combines super-resolution and guided
image synthesis technologies, to simultaneously enhance im-
age resolution and repair image elements to eliminate artifacts
and distortions while maintaining the required periodicity,
bringing the pattern details to life. Patterns processed through
our framework demonstrate superior quality to meet the stan-
dards of printing and dyeing applications.

The rest of the paper is organized as follows. Sec. II and
Sec. II introduce the proposed Splice-and-Focus Mechanism
and ReLife Pipeline, respectively. Sec. IV presents experimen-
tal results, and Sec. V provides concluding remarks.

II. SPLICE-AND-FOCUS MECHANISM FOR PERIODIC
PATTERN GENERATION

To meet the key requirement for scalable and periodic
pattern in design, printing and dyeing industries, this section
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Fig. 1. Illustration of the proposed framework for periodic high-resolution

image generation.
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Fig. 2. The extensible periodic image maintains continuity after extension.
The central valid area I remains unchanged, while the outer expanded
regions are constrained, transforming the challenge from realizing continuity
to keeping consistency.

focus on generating a primary periodic pattern. We would like
the generated primary pattern to be repeated seamlessly over
a large piece of canvas or fabric without any visible splicing.
Although diffusion models have shown powerful generative
abilities, they fail to synthesize strictly periodic even after fine-
tuning on real periodic images and using specific key words
in the prompt such as “periodic”.

To address this challenge, we introduce a novel plug-and-
play splice-and-focus mechanism of periodic constraints into
the LDMs to ensure precise repetition. As shown in Fig. 2,
the key idea is to expand the periodic image unit / outwards
to a large image I'. Then the seamless alignment of the left
and right edges, as well as the top and bottom edges of I
can be naturally equivalent to the consistency between the
expanded regions and their corresponding regions within I.
In other words, if these corresponding regions of I’ are the
same (e.g., e; = €} and ¢; = ¢}), then I is strictly periodic.
To realize this, we propose novel spatial constraints of Latent
Splice and FocAttention, from the aspects of latent features
and attentions respectively.

Latent Splice. LDMs project images to latent features [12]
and generate in the latent space. To generate periodic images
is to generate periodic latent features, which is equivalent to
ensuring uniformity across different sections in the latent space
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Fig. 3. [Illustration of our FocAttention. K and V are clipped to focus

attention on the valid region. For ease of understanding, we omit the process
of reshaping tensors into vectors.

after our region expansion. Specifically, we begin by sampling
a random latent feature X ~ N(0,1), whose resolution
corresponds to I’ after projecting back to the image space.
Then, we define a substitution function S, which operates in
the latent space of the LDMs:

X, = 8(Xy), (D

where X; is the noisy latent feature of LDMs at the time step
t. As illustrated in Fig. 2, S splices x; and directly copies the
valid central part of X; to the corresponding overlapped outer
regions to ensure hard consistency. The resulting X} is then
used in the next denoising step to obtain x;_1, until ¢ = 0,
when the fully denoised latent feature is generated [13]. As we
will demonstrate in Sec. IV, this operation requires no training
and does not compromise the efficiency of image generation.

FocAttention. FocAttention enforces a soft consistency by
constraining the valid attention regions to ensure a smoother
stitching effect in the generation process. Our experiments find
that hard latent substitutions may result in unnatural seams.
Since the valid portion of the final image is the central region,
we aim to improve LDMs’ standard self-attention mechanism:

QK"
Vi

To focus on the valid region, we modify the K and V
vectors to retain only the center valid area. These modified
vectors are denoted as K’ and V', respectively. This adjusted
mechanism, we call it FocAttention, does not alter the attention
calculation process, which is now expressed as:

QK/T
vy,

FocAttention modifies attention mechanism efficiently yet
enables the model to focus on the valid region in the center, as
illustrated in Fig. 3. In the experimental section of Sec. IV, we
demonstrate that by incorporating Eq. (3) into the denoising
process, we can generate natural periodic images.

Notably, our method requires no additional training, offering
an elegant yet highly effective solution for constraining the
generative process, thus enabling the creation of scalable
periodic images.

Self-Attention(Q, K, V') = softmax ( ) V. (2

FocAttention(Q, K, V') = softmax < ) V. (3
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Fig. 4. One single unit of our ReLife Pipeline.

ITII. RELIFE FOR SUPER-RESOLUTION AND REFINEMENT

This section super-resolves and refines the primary periodic
pattern generated in Sec. II, to meet the resolution standards
for printing and dyeing. Current super-resolution methods
excel at restoring images [9]-[11] or enriching texture de-
tails [14]-[16], but they mainly focus on fidelity rather than
generation. They tends to keep the artifacts and defects of
the input’s structures or textures. Thus, these methods cannot
automatically repair artifacts or regenerate clear structures,
such as replacing broken flower branches with realistic ones.

To address this unique challenge, we design a specialized
ReLife Pipeline, as shown in Fig. 4, to simultaneously enhance
image resolution and reconstruct image elements to meet the
stringent quality requirements of printing and dyeing. Our
pipeline is composed of two key stages: one dedicated to
super-resolution, and the other to generation for defect cor-
rection. These stages are alternated to ensure optimal results.

Super-resolution Stage. We apply the pre-trained latent
diffusion-based upscalerl, which reliably increases the resolu-
tion of the original image by upsampling the latent code. Then,
we segment the high-resolution image into overlapped sub-
images to ensure each sub-image remains within processing
capacity of LDMs in the next stage.

Generation Stage. We utilize SDEdit [17] for image-guided
image synthesis. Specifically, SDEdit introduces noise into
the super-resolved sub-image and then denoises and refines
its content under the guidance of text prompts. In addition,
we employ LoRA [7] to fine-tune the model with resolution-
specific datasets, to ensure that the model can generate struc-
tures and details at the target resolution.

Finally, we stitch the segmented image. To ensure seamless
and consistent stitching, we constrain the corresponding areas
in subsequent sub-images based on the generated result of
the previous sub-image. As shown in Fig. 5, at each step
of the generation process, the latent features are replaced by
a combination of the constrained part and the original part,
ensuring consistency in the corresponding positions.

By alternating these steps, we are able to generate periodic
patterns while preserving the artistic style and improving
image resolution.

IV. EXPERIMENTAL RESULTS

Experiment Setup. We incorporate our Splice-and-Focus
Mechanism and ReLife Pipeline into the Stable Diffusion
1.5 model, and customize the model with LoRA on a cu-
rated dataset containing 100 printing and dyeing patterns. We

Thttps://huggingface.co/stabilityai/sd-x2-latent-upscaler
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Fig. 6. In Splice-and-Focus mechanism, the periodic regions are spliced and
extended. The central image is a seamless periodic pattern.

employed DDIM [18] for image generation and evaluation.
Full experimental results are provided in our project page
https://dongfengzy.github.io/SFaR/.

A. High-Resolution Periodic Pattern Generation

Figure 6 illustrates the stitching effect of the periodic pattern
generated by our method. The results qualitatively demonstrate
that our approach is capable of producing seamless periodic
patterns while maintaining the intended style.

Figure 7 presents the result of our ReLife pipeline applied to
an image, where we also compare it with one single upscaler.
This process effectively corrects blurry defects and enhances
the pattern resolution while preserving the original style.

B. Comparison with State-of-the-Art Methods

To demonstrate the advantages of our approach in generat-
ing high-quality periodic patterns, we compare our model with

(a) Low-resolution (c) ReLife
Fig. 7. Comparison direct super-resolution with our ReLife pipeline. Local
regions are enlarged for better visual comparison. The red arrows indicate the
confusing structures are corrected by our method.
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Fig. 8. Qualitative comparisons with (a) SDXL-Turbo [19], (b) FLUX.1 and
(c) the proposed method.

two state-of-the-art models, SDXL-Turbo [19] and FLUX.12.
To assess the generation of periodicity, we introduce the word
“periodic” to the prompts for all models. For each set of
prompts, we generate 100 images using our model, SDXL-
Turbo and FLUX.1 for comparison.

Qualitative Analysis. Figure 8 presents qualitative results
that illustrate the performance of each model under two prompt
conditions. While all models generate patterns aligned with the
text prompts, only our model consistently produces patterns
that strictly adhere to periodicity, exhibiting superior quality
and artistic value. Additionally, our model excels in the finer
details of pattern generation.

Quantitative Analysis. For quantitative evaluation, we uti-
lize the Fréchet Inception Distance (FID) [20] to measure
the quality and naturalness of the generated images. We also
conducted user study to evaluate the quality and periodicity
of the results. Specifically, we asked users to select from the
results from three methods the one with the highest visual
quality and the one with the best periodicity. We report the

Zhttps://github.com/black-forest-labs/flux

TABLE I
QUANTITATIVE ANALYSIS

Prompt Group ~ Method FID| QualityT  Periodicity?
SDXL-Turbo  266.00 0.03 0.02

Prompt 1 FLUX.1 259.87 0.20 0.01
Ours 164.13 0.77 0.97
SDXL-Turbo ~ 229.39 0.02 0.01

Prompt 2 FLUX.1 255.78 0.17 0.01
Ours 142.65 0.81 0.98

(b) w/o FocAttention

(a) w/o Latent Splice

(c) Full

Fig. 9. Ablation study of Latent Splice and FocAttention.

percentage of user selections in Table I over 20 users on
10 cases. It can be clearly seen that our model consistently
designs higher-quality and strictly periodic images.

C. Ablation Study

We conducted ablation studies on different components of
our method to evaluate their impact on the generated results.
Figure 9 presents the images generated using identical prompt
words and noise seeds, with the omission of Latent Splice and
FocAttention, respectively.

« Latent Splice. Latent variable splicing is fundamental to
ensuring the periodicity of the generated images. Without
this component, the resulting images fail to maintain the
desired periodicity.

o FocAttention. Removing FocAttention leads to a signif-
icant drop in image quality. Without this mechanism,
the model performs rigid stitching without adjusting
attention, causing over-repetitiveness and, in some cases,
visible seams.

o ReLife. The impact of omitting ReLife is shown in Fig. 7.
The ReLife pipeline enhances image quality. Its removal
clearly results in lower image quality.

V. CONCLUSION

This paper presents a novel framework for generating peri-
odic and high-resolution patterns tailored to the printing and
dyeing industry. We propose a novel training-free Splice-and-
Focus mechanism to ensure strict periodicity and seamless
pattern generation when integrated with LDMs. Additionally,
a ReLife Pipeline is proposed to enhance image resolution
while effectively correcting artifacts. Experimental results
demonstrate that our method outperforms existing techniques.
By eliminating the need for manual design and training, our
framework provides an efficient solution to the challenges of
pattern generation.
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