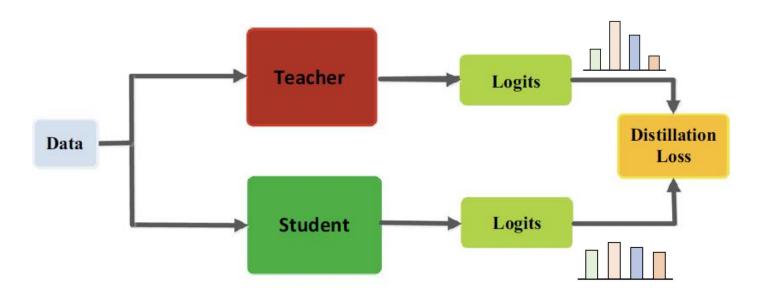
STRUCT

Curriculum Temperature for Knowledge Distillation

AAAI 2023

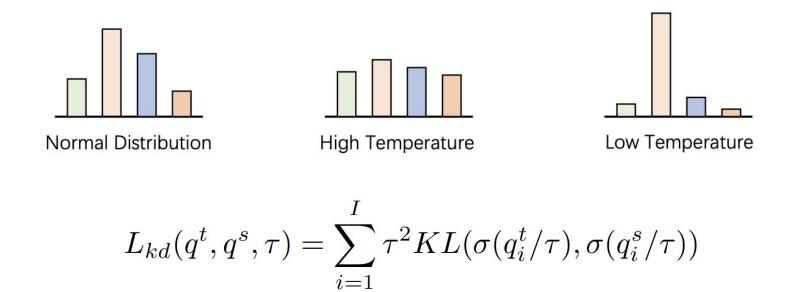
Zheng Li, Xiang Li, Lingfeng Yang, Borui Zhao, Renjie Song, Lei Luo, Jun Li, Jian Yang


Presented by Yuzhang Hu 2023.1.15

Outline

- Authorship
- Background
- Method
- Experiment
- Conclusion

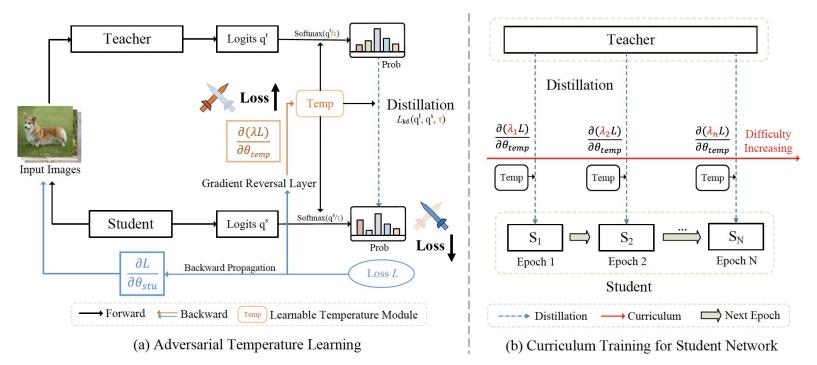
Background


Knowledge Distillation

- Transfer the knowledge from a heavy teacher to a lightweight student
- Minimize distillation loss between two predictions

Distillation Temperature

- Control the discrepancy between two distributions
- Determine the difficulty level of the distillation task

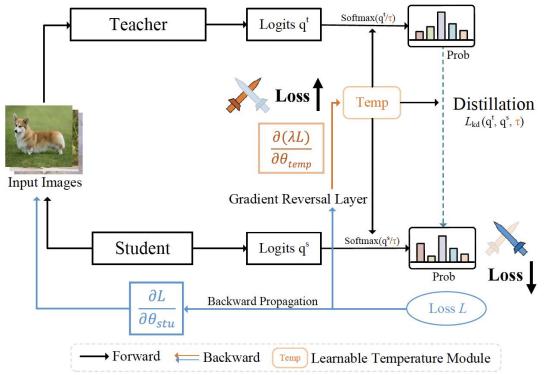

Background

Fixed Temperature

Method	FitNet	AT	SP	Snapshot	SSKD	FRSKD
	(ICLR 15)	(ICLR 17)	(ICCV 19)	(CVPR 19)	(ECCV 20)	(CVPR 21)
Temperature	3	4	4	2 or 3	4	4
Method	DML	ONE	OKDDip	KDCL	BYOT	DCM
	(CVPR 18)	(NIPS 18)	(AAAI 20)	(CVPR 20)	(ICCV 19)	(ECCV 20)
Temperature	1	3	3	2	1	1

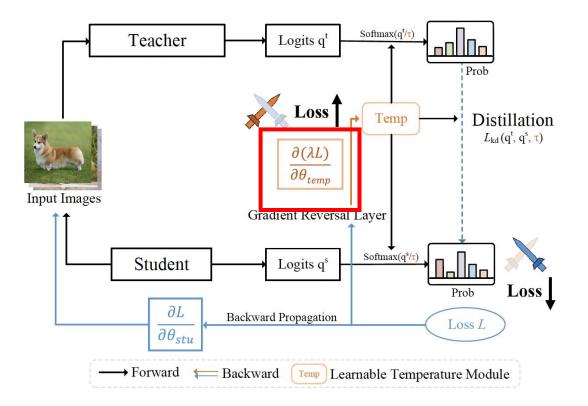
- Fixed temperature is sub-optimal
- Finding optimal temperature is time-consuming

Overall pipeline

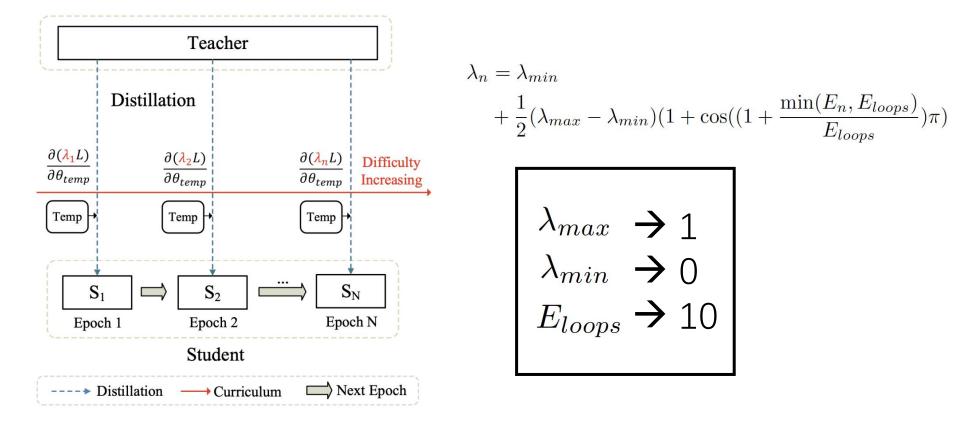

- Adversarial Learning for dynamic temperature
- Curriculum Training for Easy-to-hard learning

Adversarial Temperature Learning

Fixed T

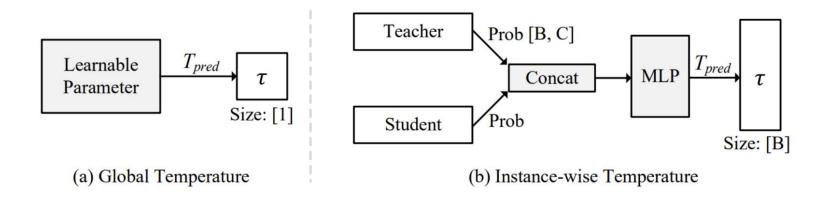

$$\begin{split} \min_{\theta_{stu}} L(\theta_{stu}) &= \min_{\theta_{stu}} \sum_{x \in D} \alpha_1 L_{task} \left(f^s(x; \theta_{stu}), y \right) \\ &+ \alpha_2 L_{kd} \left(f^t(x; \theta_{tea}), f^s(x; \theta_{stu}), \tau \right) \\ \end{split} \\ \end{split} \\ Dynamic T \\ \begin{aligned} & \underset{\theta_{stu}}{\min} \max_{\theta_{temp}} L(\theta_{stu}, \theta_{temp}) \\ &= \min_{\theta_{stu}} \max_{\theta_{temp}} \sum_{x \in D} \alpha_1 L_{task} \left(f^s(x; \theta_{stu}), y \right) \\ &+ \alpha_2 L_{kd} \left(f^t(x; \theta_{tea}), f^s(x; \theta_{stu}), \theta_{temp} \right) \\ \end{split}$$

Adversarial Temperature Learning



- GRL reverse the gradient of temperature module
- Update temperature module and student together

Curriculum Temperature Training


• Easy-to-hard curriculum via scaling temperature gradient

Curriculum Temperature Training

- Increase learning difficulty by gradually increasing $\boldsymbol{\lambda}$

Learnable Temperature Module

- **Global Temperature**: one value for all stances
- Instance-wise Temperature: takes two predictions as input and outputs a temperature for all instances

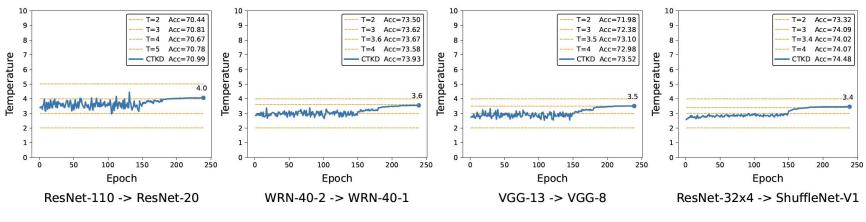
Quantitative Evaluation

Teacher	RN-56	RN-110	RN-110	WRN-40-2	WRN-40-2	VGG-13	WRN-40-2	VGG-13	RN-50	RN-32x4	RN-32x4
Acc	72.34	74.31	74.31	75.61	75.61	74.64	75.61	74.64	79.34	79.42	79.42
Student	RN-20	RN-32	RN-20	WRN-16-2	WRN-40-1	VGG-8	SN-V1	MN-V2	MN-V2	SN-V1	SN-V2
Acc	69.06	71.14	69.06	73.26	71.98	70.36	70.50	64.60	64.60	70.50	71.82
Vanilla KD	70.66	73.08	70.66	74.92	73.54	72.98	74.83	67.37	67.35	74.07	74.45
CTKD	71.19	73.52	70.99	75.45	73.93	73.52	75.78	68.46	68.47	74.48	75.31
	(+0.53)	(+0.44)	(+0.33)	(+0.53)	(+0.39)	(+0.54)	(+0.95)	(+1.09)	(+1.12)	(+0.41)	(+0.86)

Top-1 accuracy of the student network on CIFAR-100

Top-1 accuracy improvement when applied to existing distillation methods

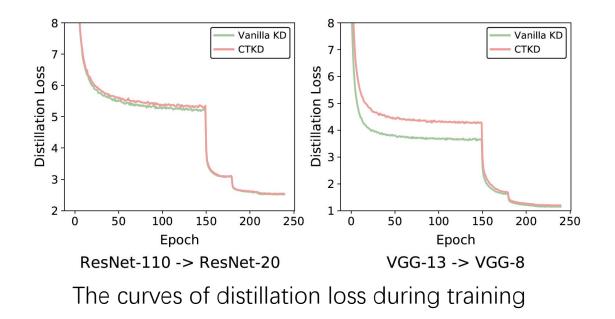
Teacher Acc	ResNet-56 72.34	ResNet-110 74.31	ResNet-110 74.31	WRN-40-2 75.61	WRN-40-2 75.61	ResNet32x4 79.42	ResNet32x4 79.42
Student Acc	ResNet-20 69.06	ResNet-32 71.14	ResNet-20 69.06	WRN-16-2 73.26	WRN-40-1 71.98	ShuffleNet-V1 70.70	ShuffleNet-V2 71.82
PKT +CTKD	$\begin{array}{c} 70.85 \pm 0.22 \\ 71.16 \pm 0.08 \text{ (+0.31)} \end{array}$	73.36 ± 0.15 73.53 ± 0.05 (+0.17)	$\begin{array}{c} 70.88 \pm 0.16 \\ 71.15 \pm 0.09 \text{ (+0.27)} \end{array}$	$\begin{array}{c} 74.82 \pm 0.19 \\ 75.32 \pm 0.11 \text{ (+0.52)} \end{array}$	74.01 ± 0.23 74.11 ± 0.20 (+0.10)	$\begin{array}{c} 74.39 \pm 0.16 \\ 74.68 \pm 0.16 \text{ (+0.29)} \end{array}$	75.10 ± 0.11 75.47 ± 0.19 (+0.37)
SP +CTKD	$\begin{array}{c} 70.84 \pm 0.25 \\ 71.27 \pm 0.10 \text{ (+0.43)} \end{array}$	$\begin{array}{c} 73.09 \pm 0.18 \\ 73.39 \pm 0.11 \text{ (+0.30)} \end{array}$	$\begin{array}{c} 70.74 \pm 0.23 \\ 71.13 \pm 0.13 \ \textbf{(+0.39)} \end{array}$	$\begin{array}{c} 74.88 \pm 0.28 \\ 75.33 \pm 0.14 \text{ (+0.45)} \end{array}$	$\begin{array}{c} 73.77 \pm 0.20 \\ 74.00 \pm 0.15 \text{ (+0.23)} \end{array}$	$\begin{array}{c} 74.97 \pm 0.28 \\ 75.37 \pm 0.17 \text{ (+0.40)} \end{array}$	$\begin{array}{c} 75.59 \pm 0.15 \\ 75.82 \pm 0.18 \text{ (+0.23)} \end{array}$
VID +CTKD	$\begin{array}{c} 70.62 \pm 0.08 \\ 70.75 \pm 0.11 \text{ (+0.13)} \end{array}$	$\begin{array}{c} 73.02 \pm 0.10 \\ 73.38 \pm 0.24 \text{ (+0.36)} \end{array}$	$\begin{array}{c} 70.59 \pm 0.19 \\ 71.09 \pm 0.24 \text{ (+0.50)} \end{array}$	$\begin{array}{c} 74.89 \pm 0.16 \\ 75.22 \pm 0.20 \text{ (+0.33)} \end{array}$	$\begin{array}{c} 73.60 \pm 0.26 \\ 73.81 \pm 0.24 \text{ (+0.21)} \end{array}$	$\begin{array}{c} 74.81 \pm 0.17 \\ 75.19 \pm 0.14 \text{ (+0.38)} \end{array}$	$\begin{array}{c} 75.24 \pm 0.05 \\ 75.52 \pm 0.11 \text{ (+0.28)} \end{array}$
CRD +CTKD	$\begin{array}{c} 71.69 \pm 0.15 \\ 72.11 \pm 0.15 \text{ (+0.42)} \end{array}$	$\begin{array}{c} 73.63 \pm 0.19 \\ 74.10 \pm 0.20 \text{ (+0.47)} \end{array}$	$\begin{array}{c} 71.38 \pm 0.04 \\ 72.02 \pm 0.10 \text{ (+0.64)} \end{array}$	$\begin{array}{c} 75.53 \pm 0.10 \\ 75.75 \pm 0.27 \text{ (+0.22)} \end{array}$	$\begin{array}{c} 74.36 \pm 0.10 \\ 74.69 \pm 0.05 \text{ (+0.33)} \end{array}$	$\begin{array}{c} 75.13 \pm 0.33 \\ 75.47 \pm 0.22 \text{ (+0.34)} \end{array}$	$\begin{array}{c} 75.90 \pm 0.15 \\ 76.21 \pm 0.19 \text{ (+0.31)} \end{array}$
SRRL +CTKD	71.13 ± 0.18 71.45 ± 0.15 (+0.32)	$\begin{array}{c} 73.48 \pm 0.16 \\ 73.75 \pm 0.30 \text{ (+0.27)} \end{array}$	$\begin{array}{c} 71.09 \pm 0.21 \\ 71.48 \pm 0.14 \text{ (+0.39)} \end{array}$	$\begin{array}{c} 75.69 \pm 0.19 \\ 75.96 \pm 0.06 \text{ (+0.27)} \end{array}$	$\begin{array}{c} 74.18 \pm 0.03 \\ 74.40 \pm 0.13 \text{ (+0.22)} \end{array}$	$\begin{array}{c} 75.36 \pm 0.25 \\ 75.70 \pm 0.22 \text{ (+0.34)} \end{array}$	$\begin{array}{c} 75.90 \pm 0.09 \\ 76.00 \pm 0.22 \text{ (+0.10)} \end{array}$
DKD +CTKD	$71.43 \pm 0.13 \\ 71.65 \pm 0.24 \text{ (+0.27)}$	$\begin{array}{c} 73.66 \pm 0.15 \\ 74.02 \pm 0.29 \text{ (+0.36)} \end{array}$	$\begin{array}{c} 71.28 \pm 0.20 \\ 71.70 \pm 0.10 \text{ (+0.42)} \end{array}$	$\begin{array}{c} 75.70 \pm 0.06 \\ 75.81 \pm 0.14 \ (\text{+0.11}) \end{array}$	$\begin{array}{c} 74.54 \pm 0.12 \\ 74.59 \pm 0.08 \ \tiny{(+0.05)} \end{array}$	75.44 ± 0.20 75.93 ± 0.29 (+0.49)	$\begin{array}{c} 76.48 \pm 0.08 \\ 76.94 \pm 0.04 \text{ (+0.46)} \end{array}$


Quantitative Evaluation

Comparison of global and instance-wise CTKD

Teacher	ResNet-56	ResNet-110	WRN-40-2
Acc	72.34	74.31	75.61
Student	ResNet-20	ResNet-32	WRN-40-1
Acc	69.06	71.14	71.98
Vanilla KD	70.66	73.08	73.54
MACs	41.6M	70.4M	84.7M
Time	10s	15s	17s
Global-T	71.19	73.52	73.93
MACs	41.6M	70.4M	84.7M
Time	10s	15s	17s
Instance-T	71.32	73.61	74.10
MACs	41.7M	70.5M	84.8M
Time	11s	17s	18s

- Global Temperature: no extra complexity
- Instance-wise Temperature: negligible extra complexity and better performance


Curve Visualization

The learning curves of temperature during training

- Dynamic curriculum temperature outperforms the static method
- Temperature increase in the training process

Curve Visualization

The adversarial distillation technique makes the optimization process harder than the vanilla method as expected

Hyper-parameter Discussion

E_{loops}	$[\lambda_{min}, \lambda_{max}]$						
L_{loops}	[0, 1]	[0, 2]	[0, 5]	[0, 10]	[1, 10]		
10 Epoch	73.52	73.16	73.12	73.05	72.58		
20 Epoch	73.44	73.48	73.01	73.00	72.88		
40 Epoch	73.26	73.40	73.50	73.15	72.95		
80 Epoch	73.35	73.46	73.52	73.41	73.12		
120 Epoch	73.31	73.39	73.16	73.36	73.04		
240 Epoch	73.23	73.29	73.20	73.42	73.08		

Distillation performance under different Range of dynamic curriculum

Two trends to hurt the distillation performance

- Directly start with a fixed high-difficulty temperature
- Increase temperature in a short time

Conclusion

- Adversarially learn a Dynamic Temperature during the distillation process
- Organize the distillation task from easy to hard with the curriculum temperature training scheme

Thanks!