Target-Free Text-guided Image Manipulation

Wan-Cyuan Fan, Cheng-Fu Yang, Chiao-An Yang, Yu-Chiang Frank Wang

STRUCT Group Seminar Presenter: Yexiang Cheng 2023.01.29

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

BACKGROUND: Text-guided image manipulation

Object-centric image editing

- Modify visual attributes of particular objects in the image, or change its style to match the given description.
- Related works
 - ControlGAN
 - ManiGAN
 - TediGAN

BACKGROUND: Text-guided image manipulation

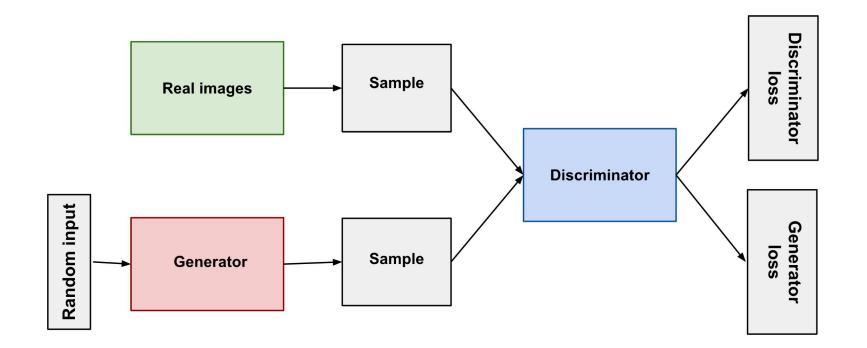
Scene-level image manipulation

- Reorganize the composition of input image based on the given instruction.
- Related works
 - GeNeVa
 - TIM-GAN
 - ASE

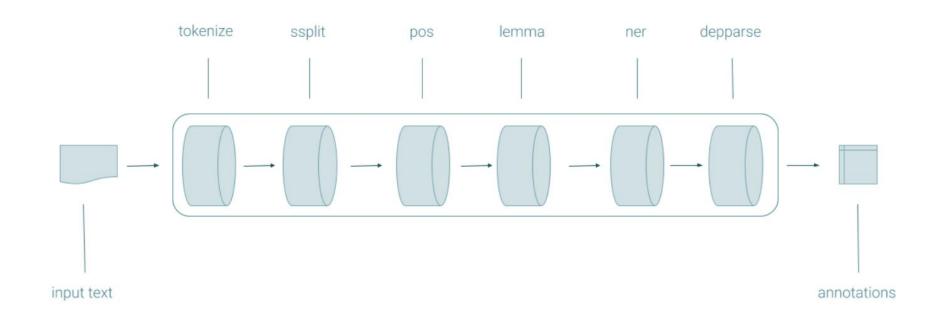
BACKGROUND: Text-guided image manipulation

Methods		In	put data		Manipulation type			
Methods	Instruction	Description	GT image	Auxiliary info	Change visual attribute	Remove object	Add object	
ManiGAN (Li et al. 2020a)	-	\checkmark	No	, a	\checkmark	s. 		
TediGAN (Xia et al. 2021a)	-	\checkmark	No	_]2	\checkmark	-	-	
ASE (Shetty, Fritz, and Schiele 2018)	-	-	No	Image-level labels		\checkmark	-	
GeNeVa (El-Nouby et al. 2019)	\checkmark	-	Yes	-	-	-	\checkmark	
TIM-GAN (Zhang et al. 2021)	\checkmark	1. 	Yes	a .k	\checkmark	\checkmark	\checkmark	
Ours	\checkmark	-	No	Image-level labels	\checkmark	\checkmark	\checkmark	

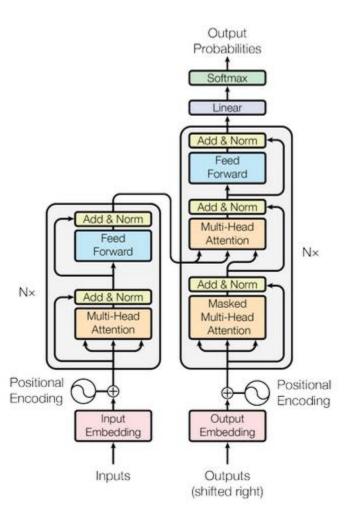
BACKGROUND: GAN



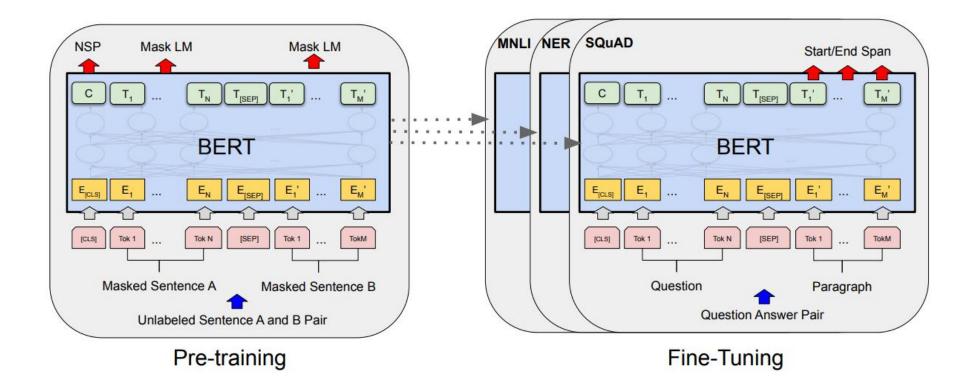
BACKGROUND: CoreNLP



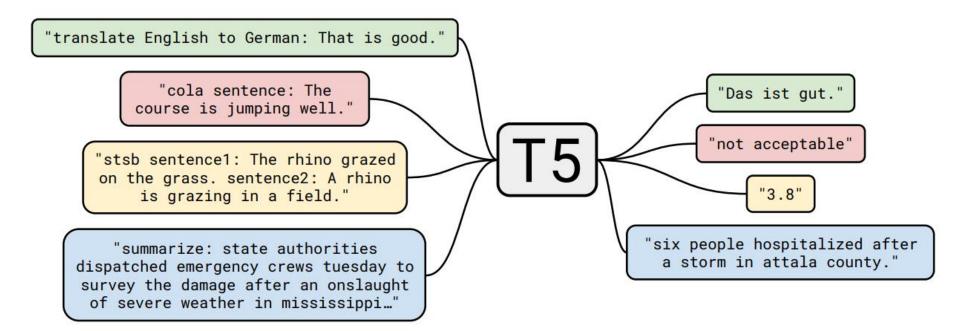
BACKGROUND: Transformer



BACKGROUND: BERT



BACKGROUND: T5

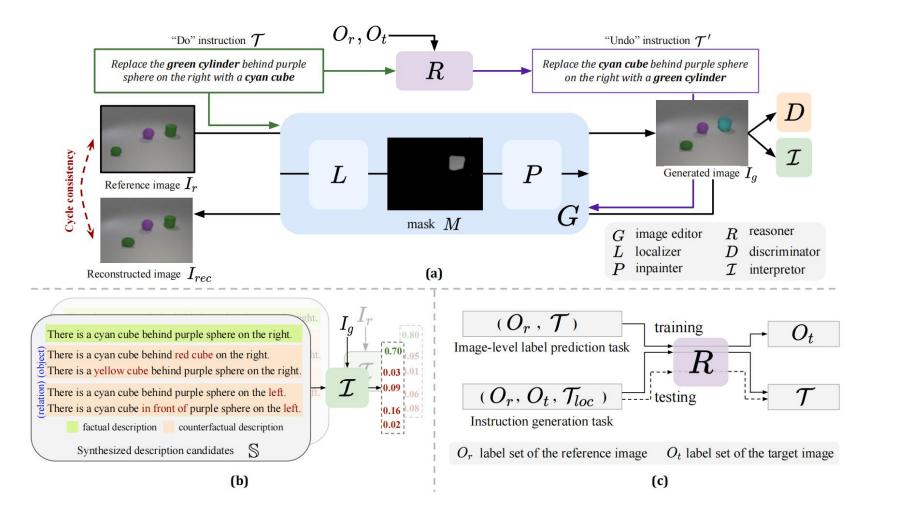


OUTLINE

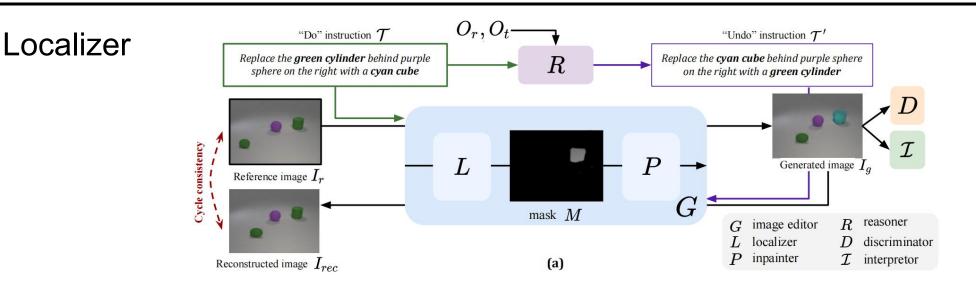
- Authorship
- Background
- Method
- Experiments
- Conclusion

METHOD

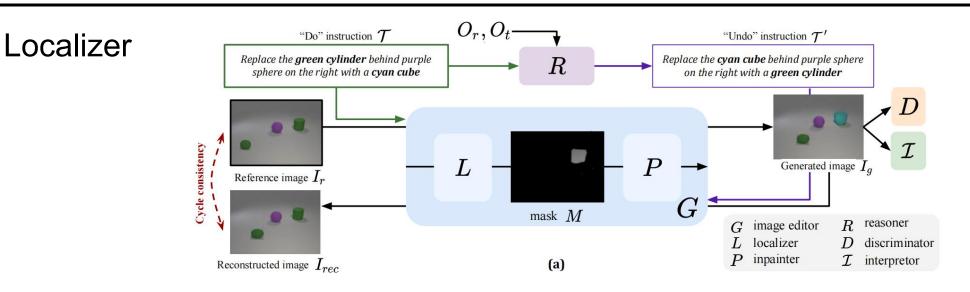
Overview



17



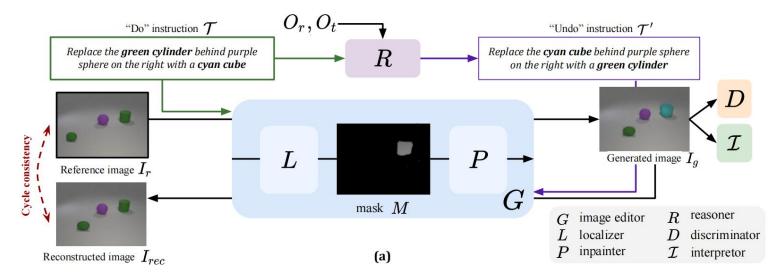
- Identify the target object/location in I_r based on the adverb \mathcal{T}_{loc} extracted from instruction \mathcal{T} via CoreNLP.
- Achieved by performing cross modal attention between f_{loc}^{T} (embedding of the location of interest encoded by a pre-trained BERT) and the feature map of I_r , followed by a mask decoder to produce *M*.



- Objective
 - $\mathcal{L}_{in}^{L} = \mathcal{L}_{CE}(MLP(E(M \cdot I_r)), y_{in}^{r})$

•
$$\mathcal{L}_{out}^{L} = \mathcal{L}_{BCE}\left(MLP\left(E\left((1-M)\cdot I_{r}\right)\right), y_{out}\right)$$

Image In-painter



• Given I_r , M, $f_{how}^{\mathcal{T}}$ (extracted from \mathcal{T} by pre-trained BERT), produce I_g .

Image In-painter

- Objective
 - Adversarial loss

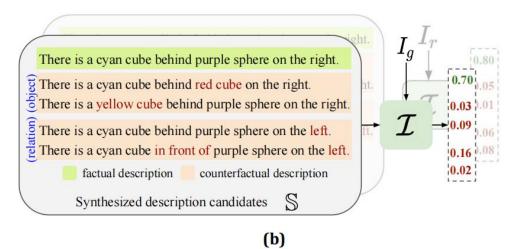
•
$$\mathcal{L}_{rec}^{P} = \mathcal{L}_{MSE} ((1-M) \cdot I_r, (1-M) \cdot I_g)$$

•
$$\mathcal{L}_{out}^{P} = \mathcal{L}_{BCE} (\mathcal{C}((1-M) \cdot I_g), y_{out})$$

• $\mathcal{L}_{in}^P = \mathcal{L}_{CE}(\mathcal{C}(M \cdot I_g), y_{in})$

Cross-Modal Interpreter

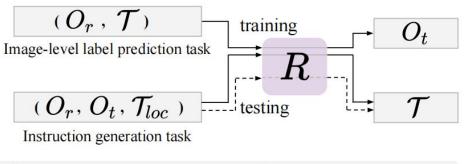
- Authenticates the output image via factual/counterfactual descriptions.
- Learning from Factual/counterfactual Descriptions:
 - Description template: There is a [OBJ][LOC]
 - OBJ: the symmetry difference between reference image label set O_r and target image label set O_t .
 - LOC: Adverb of the place of \mathcal{T} , extracted by CoreNLP.
- Authenticating Semantic Correctness of I_g .



Reasoner

- Produce the undo instruction for cross-modal cycle consistency.
- Purpose: minimizing the difference between I_r and I_{rec} .
- Two learning tasks:
 - O_r , \mathcal{T} to O_t
 - O_r , O_t , \mathcal{T}_{loc} to undo instruction \mathcal{T}'
- Objective:

•
$$\mathcal{L}_{R} = \mathcal{L}_{s2s} \left(R(\mathcal{T}_{r}^{O} \oplus \mathcal{T}_{t}^{O} \oplus \mathcal{T}_{loc}), \mathcal{T} \right) + \mathcal{L}_{s2s} \left(R(\mathcal{T}_{r}^{O} \oplus \mathcal{T}), \mathcal{T}_{t}^{O} \right)$$



 O_r label set of the reference image O_t label set of the target image

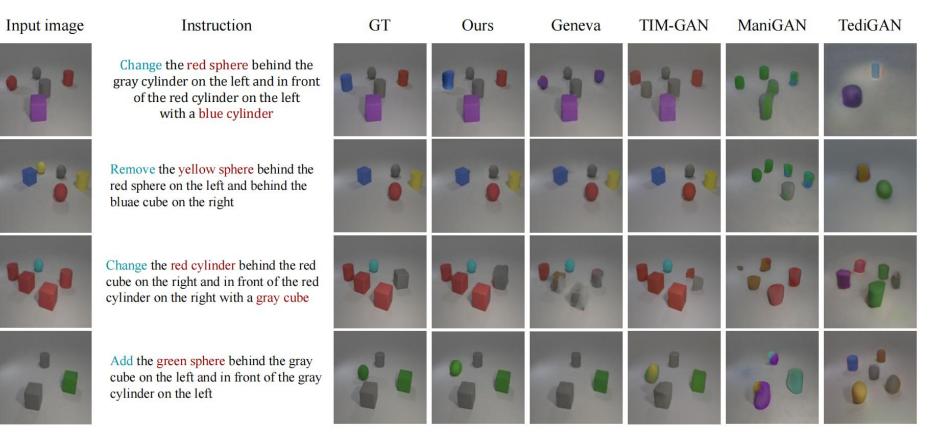
OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

Datasets

- CLEVR: Created for multimodal learning tasks such as visual question answering, cross-modal retrieval, and iterative story generation. Synthesized version of CLEVR were considered(24 object categories, 28.1K/4.6K paired images with instructions)
- COCO: 118K real-world scene images. The subset with 20 object categories(overlapped with Pascal-VOC) were used.

Qualitative Evaluation on CLEVR



Qualitative Evaluation on CLEVR

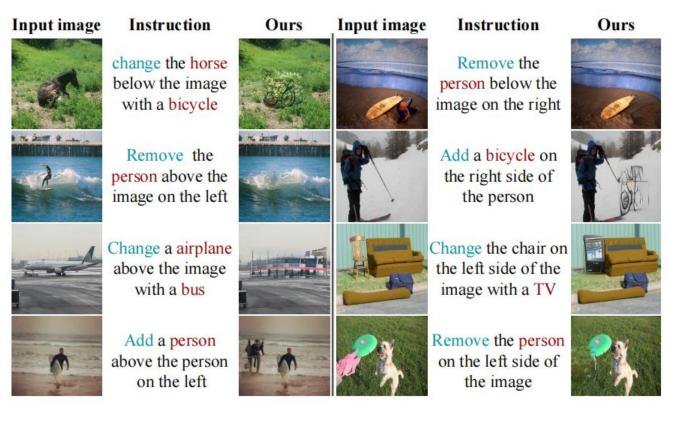
Operation	Type 1: remove + add					Type 2: attribute change / shape				
Matrics	$FID \downarrow IS \uparrow$	image acc (%)	In-mask acc (%)	Interp. acc (%)	R@1R@5	$FID \downarrow IS \uparrow$	image acc (%)	In-mask acc (%)	Interp. acc (%)	R@1R@5
Upper bound		99.25	88.66	67.16	72.1299.77		98.71	90.91	67.19	96.2799.85
GeNeVa [†]	54.802.336	92.93	40.08	34.27	33.3279.23	52.91 2.017	88.65	7.18	11.18	64.1776.75
TIM-GAN [†]	43.38 2.192	93.40	25.50	38.17	33.7280.81	54.66 2.122	90.05	4.67	10.79	58.7376.37
ManiGAN	168.52.390	75.68	20.12	0.88	0.01 0.09	170.1 <u>2.234</u>	73.78	2.3	0.42	0.08 0.17
TediGAN	172.2 2.760	69.60	26.07	4.02	0.01 0.49	168.1 2.672	69.47	2.46	0.76	0.04 0.64
Ours	45.882.214	93.59	43.01	40.85	47.9594.04	38.26 2.210	93.18	39.18	33.74	87.4694.01

- Image acc: whether the objects in the generated image match the labels of the target image.
- In-mask acc: whether the generated object in the masked part can be recognized by a pretrained classification model.
- In-terp. Acc: whether the generated image semantically matches its factual description via a cross-modal interpreter.
- RS: the manipulation correctness of the manipulation by applying the existing text-guided image retrieval method of TIRG.

Qualitative Evaluation on COCO

	FID↓	IS ↑	image acc (%)	Inside-mask acc (%)	Inpterp. acc (%)
Upper bound	-		91.47	92.49	68.71
Ours	166.18	4.64	86.04	17.17	13.54
ASE [†]	132.04			41.66	33.34
Ours [†]	104.77	7.21	89.73	50.03	46.20

Qualitative Evaluation on COCO



Ablation Studies

		IS ↑	image Inside-mask Interp. acc (%) acc (%) acc (%)			
	LID †		acc (%)	acc (%)	acc (%)	
Upper bound	- 1	-	98.96	89.56	67.16	
			72.52	24.38	0.667	
Ours w/o R (cycle)	68.08	2.07	83.47	41.40	28.27	
Ours w/o \mathcal{I}	44.08	2.11	93.73	41.01	35.14	
Ours w/o R, \mathcal{I}	77.56	2.08	80.22	39.70	26.55	
Ours	39.41	2.22	93.41	41.92	37.46	

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

CONCLUSION

- A Cyclic Manipulation GAN (cManiGAN) for target-free text-guided image manipulation.
- Using localizer and in-painter to decide "where" and "how" to edit given image.
- Using cross-modal interpreter to enforces the authenticity and correctness of the output image.
- Using reasoner to provide additional pixel-level guidance.

Thanks for listening!