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Noise-free Image Restoration
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Background

GAN-based SR
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Background

Range-Null Space Decomposition (RND)

given a non-zero linear operator A, it usually has at

least one pseudo-inverse A" that satisfies:

AATA=A

It can be obtained by SVD.



Background

Range-Null Space Decomposition (RND)

A'A be seen as the operator that projects samples to
the range space of A, since AA'A=A . While I-ATA
can be seen as the operator that projects samples to the

null-space of A, sinceAI-A'A)=0



Background

Range-Null Space Decomposition (RND)

x=A"Ax+(I1-A"A)x

range space null space



Method

In real world, X is unknown.
x=ATAx+(I-A"A)x

!

x=A"y+(I-ATA)x,



Method

In real world, A is unknown.

“We observe that many downsampling methods with
antialiasing share very similar results.”

x=A"y+(I-A"A)x

1 Pooling-based Decomposition

x=Py+% -P (P (%))
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Experiment

Comparison with CEM [CVPR22]

AT = AT(AATY

Method PSNR(LR)T Timel
CEM 42.2 31.8ms
PD 145.7 0.68ms

Table 1: Validation of the consistency. To compare PD with
CEM, we calculate the consistency strictly following their
theories, respectively. The result shows that the implemen-
tation of PD i1s faster and more precise.



Experiment

8x and 16x human face SR
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Figure 3: Convergence curves. Part (a) for the 8 x face SR and (b) for the 16x face SR. With PD, both GLEAN and Panini
yield significantly higher PSNR and comparable FID.



Experiment

Dataset | Method PSNR1T SSIMT FID|]
Panini 27.13 0.729  14.15
s Panini w/ PD 29.97 0.801  9.87
GLEAN 27.20 0.74 12.63
GLEAN w/PD  30.21 0.81 8.69
Panini 22.36 0.596 129.2
Cat Panini w/ PD 23.52 0.623 118.9
GLEAN 22.74 0.588  62.92
GLEAN w/PD  22.94 0.597 58.95
Panini 19.27 0.483  67.98
Church | Panini w/ PD 19.80 0.491 69.20
GLEAN 19.59 0485 24.49
GLEAN w/PD  19.99 0.500 24.03

Table 2: 8 x SR on different categories. The use of PD sig-
nificantly improves the PSNR, SSIM, and FID in most cases.
It is worth noting that PD is parameter-free with negligible
computational cost.



Experiment

Method PSNRT SSIMT MS-SSIM?T FID|
PULSE 21.68 0.676 0.596 42.71
pSp 18.91 0.680 0.526 39.88
GFPGAN 25.17 0.761 0.804 24.34
GPEN 26.07 0.784 0.820 31.89
Panini 27.18 0.758 0.843 14.49
Panini w/ PD 27.81 0.771 0.851 14.78
GLEAN 27.21 0.743 0.843 15.01

GLEAN w/PD  27.69 0.754 0.848 15.27

Table 3: Comprehensive comparison on 16 x face SR. We
compare Panini and GLEAN and their PD-based versions
with state-of-the-art face SR methods. The involvement of
PD significantly elevates all consistency metrics, i.e., PSNR,
SSIM, and MS-SSIM. We attribute the slight rise of FID to
the training stochasticity. Actually, the FID is comparable
during training, as can be seen in Fig. El



Experiment
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Figure 5: Qualitative results on 16:x face SR. The use of
PD can eliminate color deviation and reduce structural in-
consistencies.
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Experiment

2:(y)

Figure 6: Visualization of PD. X, represent the raw pre-
diction of GAN prior network, ¢ is the high-frequency part
of X,. P;(y) denotes the low-frequency contents inherited
from LR image. The final result x is yielded by adding
P+ (y) with 9. (Zoom-in for the best view)
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Experiment

Better generalization results w/o pixel-level loss

)
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Figure 7: Results on unseen downsamplings. PDN yields
clearer results when facing unseen downsamplings. Here the
networks are all trained on 8 x bicubic(alias) and tested on
8 X bicubic(antialias).
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Experiment

Better generalization results w/o pixel-level loss

GT Panini PDN(Ours)

Figure 8: Results on real-world degradation. We can see
that GLEAN tends to replicate the degradation that GT suf-
fers, while PDN is not affected and tends to generate clear
results. Note PDN only uses 16x bicubic(antialias) to syn-
thesize LRs for training, without any simulated degradation.
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More results
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Conclusion

- A novel method to eliminate inconsistencies for GAN prior
based super-resolution networks.

- It can be applied to different backbones, accelerating their
training convergence and yielding better consistency.

- It also shows potential in dealing with unseen
downsamplings or real-world degradation.

- Hard to deal with hybrid distortions.



