GAN Prior based Null-Space Learning for Consistent Super-Resolution

- AAAI 2023 **Oral** -Yinhuai Wang, Yujie Hu, Jiwen Yu, Jian Zhang

Outline

- Authorship
- Background
- Method
- Experiments
- Conclusion

Noise-free Image Restoration

 \mathcal{X}

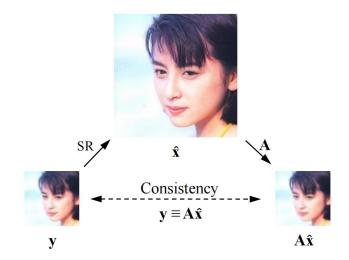
$$y = \mathbf{A}x$$

$$\hat{x} = \mathbf{A}^{-1} y$$

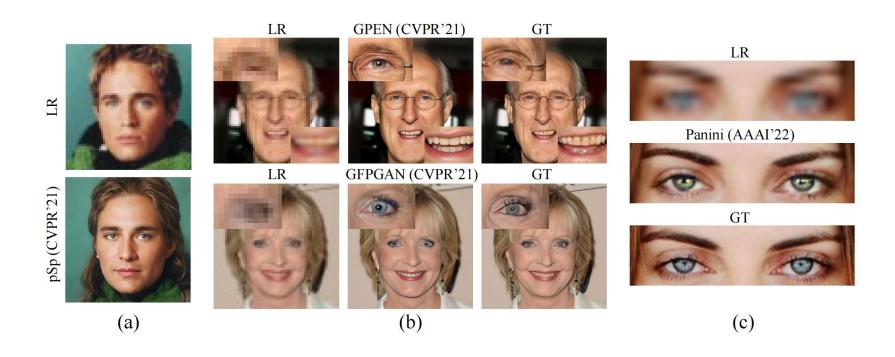
Noise-free Image Restoration

Consistency: $y = A\hat{x}$

Realness: $\hat{x} \sim p(x)$



GAN-based SR



Range-Null Space Decomposition (RND)

given a non-zero linear operator A, it usually has at least one pseudo-inverse A^{\dagger} that satisfies:

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\equiv\mathbf{A}$$

It can be obtained by SVD.

Range-Null Space Decomposition (RND)

 ${\bf A}^\dagger {\bf A}$ be seen as the operator that projects samples to the range space of ${\bf A}$, since ${\bf A} {\bf A}^\dagger {\bf A} \equiv {\bf A}$. While ${\bf I} - {\bf A}^\dagger {\bf A}$ can be seen as the operator that projects samples to the null-space of ${\bf A}$, since ${\bf A}({\bf I} - {\bf A}^\dagger {\bf A}) \equiv 0$.

Range-Null Space Decomposition (RND)

$$x = \mathbf{A}^{\dagger} \mathbf{A} x + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) x$$
range space null space

Method

In real world, X is unknown.

$$x = \mathbf{A}^{\dagger} \mathbf{A} x + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) x$$

$$\downarrow$$

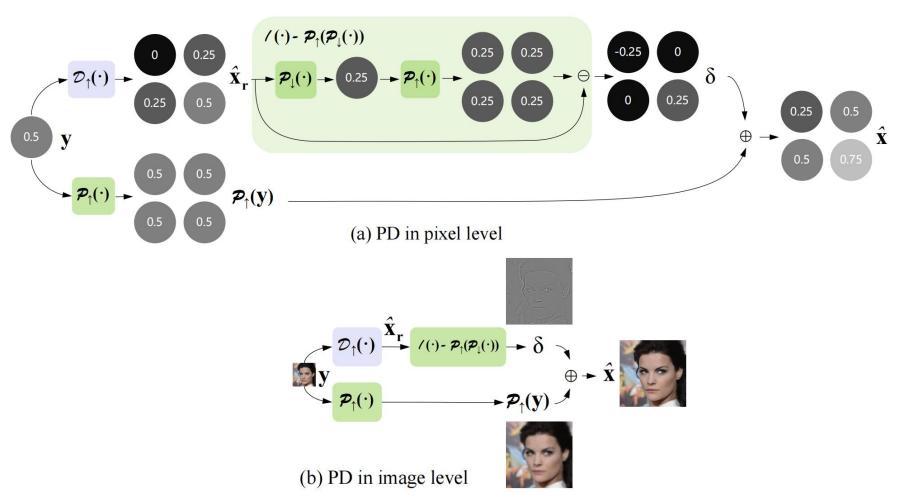
$$x = \mathbf{A}^{\dagger} y + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \hat{x}_{r}$$

Method

In real world, A is unknown.

"We observe that many downsampling methods with antialiasing share very similar results."

Method



Comparison with CEM [CVPR22]

$$\mathbf{A}^{\dagger} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1}$$

Method	PSNR(LR)↑	Time↓
CEM	42.2	31.8ms
PD	145.7	0.68ms

Table 1: **Validation of the** *consistency*. To compare PD with CEM, we calculate the *consistency* strictly following their theories, respectively. The result shows that the implementation of PD is faster and more precise.

8x and 16x human face SR

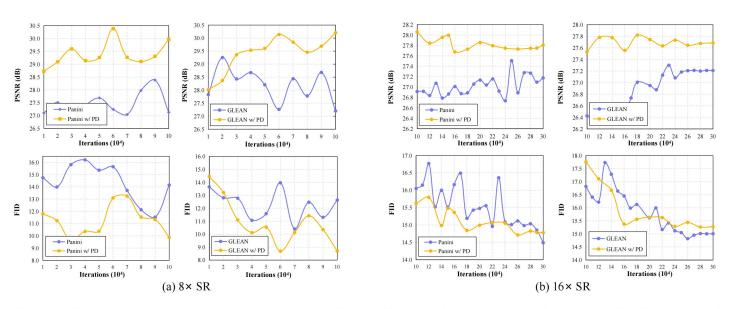


Figure 3: Convergence curves. Part (a) for the $8 \times$ face SR and (b) for the $16 \times$ face SR. With PD, both GLEAN and Panini yield significantly higher PSNR and comparable FID.

Dataset	Method	PSNR↑	SSIM↑	FID↓
Face	Panini	27.13	0.729	14.15
	Panini w/ PD	29.97	0.801	9.87
	GLEAN	27.20	0.74	12.63
	GLEAN w/ PD	30.21	0.81	8.69
Cat	Panini	22.36	0.596	129.2
	Panini w/ PD	23.52	0.623	118.9
	GLEAN	22.74	0.588	62.92
	GLEAN w/ PD	22.94	0.597	58.95
Church	Panini	19.27	0.483	67.98
	Panini w/ PD	19.80	0.491	69.20
	GLEAN	19.59	0.485	24.49
	GLEAN w/ PD	19.99	0.500	24.03

Table 2: **8**× **SR on different categories**. The use of PD significantly improves the PSNR, SSIM, and FID in most cases. It is worth noting that PD is parameter-free with negligible computational cost.

Method	PSNR↑	SSIM↑	MS-SSIM↑	FID↓
PULSE	21.68	0.676	0.596	42.71
pSp	18.91	0.680	0.526	39.88
GFPGAN	25.17	0.761	0.804	24.34
GPEN	26.07	0.784	0.820	31.89
Panini	27.18	0.758	0.843	14.49
Panini w/ PD	27.81	0.771	0.851	14.78
GLEAN	27.21	0.743	0.843	15.01
GLEAN w/ PD	27.69	0.754	0.848	15.27

Table 3: Comprehensive comparison on $16 \times$ face SR. We compare Panini and GLEAN and their PD-based versions with state-of-the-art face SR methods. The involvement of PD significantly elevates all consistency metrics, i.e., PSNR, SSIM, and MS-SSIM. We attribute the slight rise of FID to the training stochasticity. Actually, the FID is comparable during training, as can be seen in Fig. $\boxed{3}$.

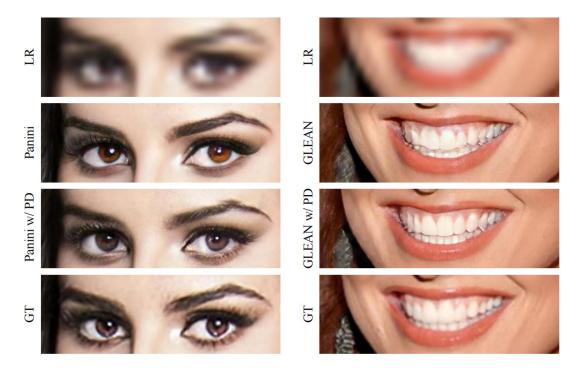


Figure 5: Qualitative results on $16 \times$ face SR. The use of PD can eliminate color deviation and reduce structural inconsistencies.

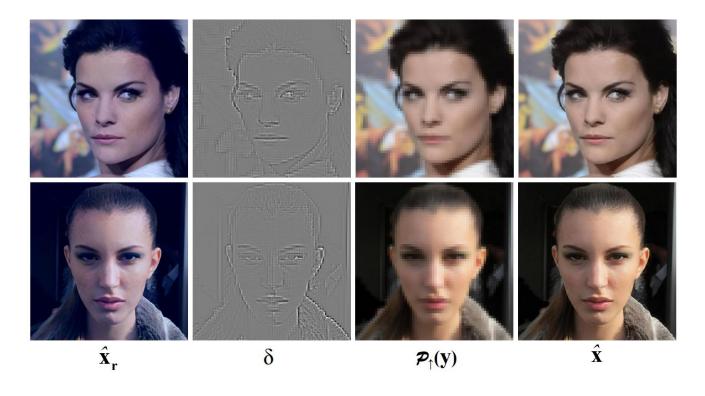


Figure 6: **Visualization of PD.** $\hat{\mathbf{x}}_r$ represent the raw prediction of GAN prior network, δ is the high-frequency part of $\hat{\mathbf{x}}_r$. $\mathcal{P}_{\uparrow}(\mathbf{y})$ denotes the low-frequency contents inherited from LR image. The final result $\hat{\mathbf{x}}$ is yielded by adding $\mathcal{P}_{\uparrow}(\mathbf{y})$ with δ . (**Zoom-in for the best view**)

Better generalization results w/o pixel-level loss

Figure 7: **Results on unseen downsamplings**. PDN yields clearer results when facing unseen downsamplings. Here the networks are all trained on $8 \times$ bicubic(alias) and tested on $8 \times$ bicubic(antialias).

Better generalization results w/o pixel-level loss

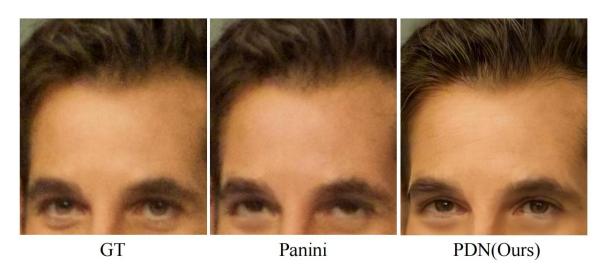
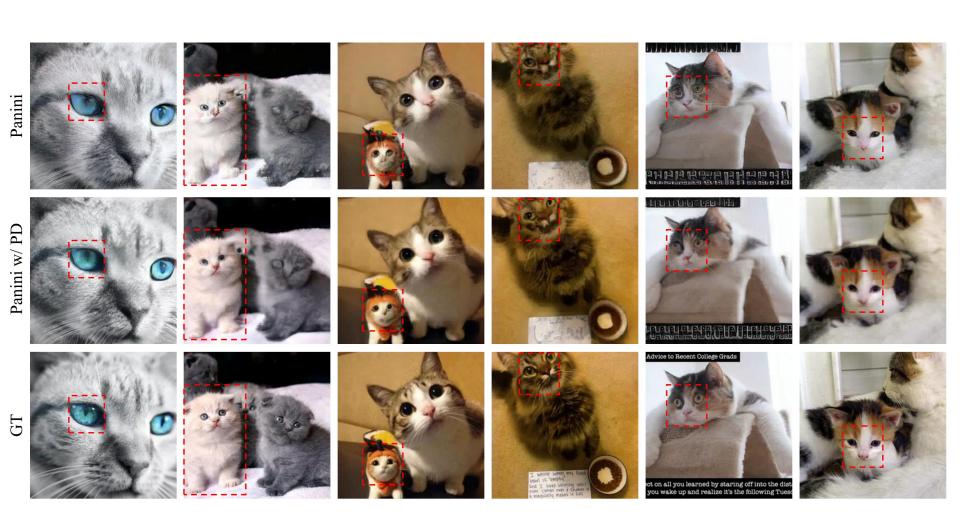


Figure 8: **Results on real-world degradation**. We can see that GLEAN tends to replicate the degradation that GT suffers, while PDN is not affected and tends to generate clear results. Note PDN only uses 16× bicubic(antialias) to synthesize LRs for training, without any simulated degradation.

More results



More results

Conclusion

- A novel method to eliminate inconsistencies for GAN prior based super-resolution networks.
- It can be applied to different backbones, accelerating their training convergence and yielding better consistency.
- It also shows potential in dealing with unseen downsamplings or real-world degradation.
- Hard to deal with hybrid distortions.