Robust Image Denoising of No-Flash Images Guided by Consistent Flash Images

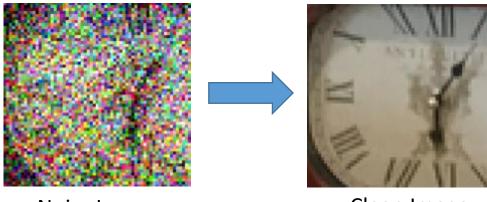
Geunwoo Oh, Jonghee Back, Jae-Pil Heo, Bochang Moon

STRUCT Group Seminar Presenter: Haowei Kuang 2023.02.05

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

OUTLINE


- Authorship
- Background
- Method
- Experiments
- Conclusion

BACKGROUND: KPN

Image Denoising

- Recover clean images from noisy input images
- Noise Model: $I_i^N = I_i + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(I_i, \sigma_r^2 + \sigma_s I_i)$
- Estimate:

$$\hat{I}_{c} = \frac{1}{\sum_{i \in \Omega_{c}} w_{ci}} \sum_{i \in \Omega_{c}} w_{ci} \left\{ I_{i}^{N} \right\}$$

Noisy Image

Clean Image

BACKGROUND

Image Denoising

- Bottleneck:
 - Loss of high-frequency details
 - Blending colors across edges
 - Over-smooth

Noisy Image

Ground Truth

Denoise Result

BACKGROUND

Image Denoising Guided by Flash

- Contain high-frequency details
- Serve as edge-stopping functions
- Bottleneck: Additional image structures

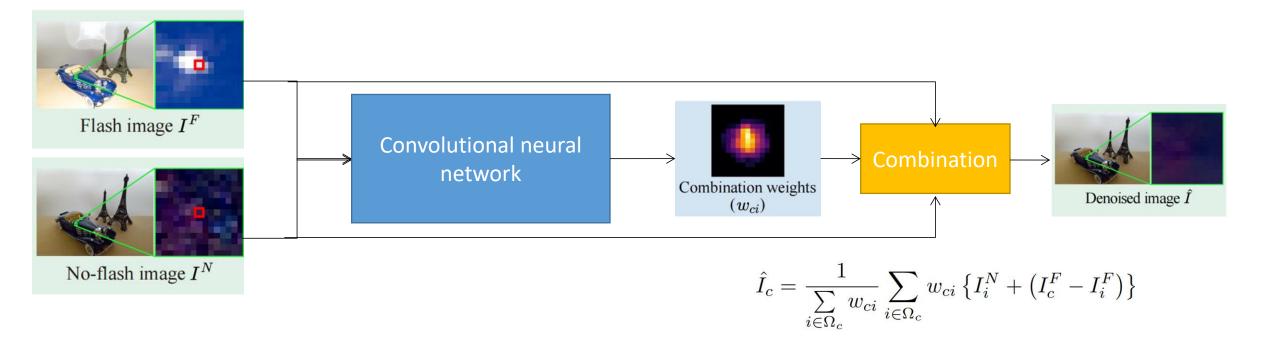
OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

METHOD: Deep Combiner

• For Noisy Image:

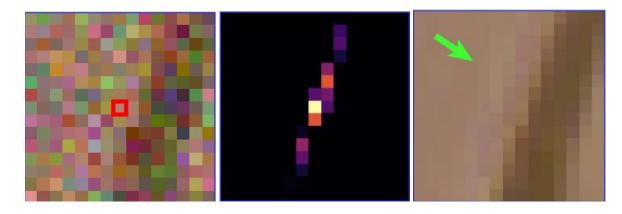
$$I_i^N = I_i + \epsilon_i$$


• For Flash/No-flash Pairs:

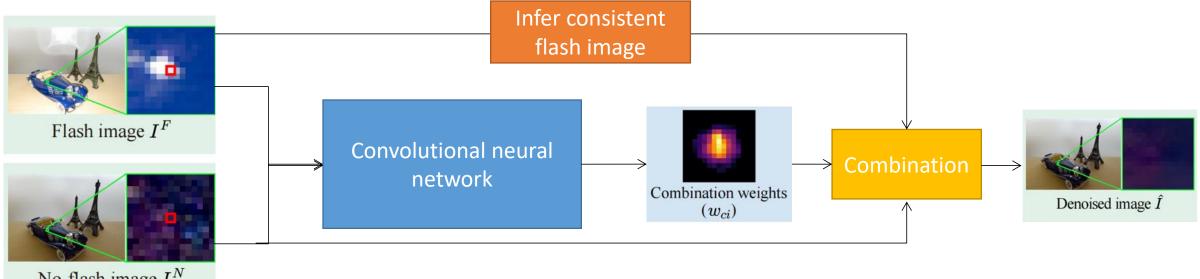
$$I_c^F - I_i^F = I_c - I_i + \epsilon_{ci}$$

• To estimate the c-th pixel $\hat{I_c}$

$$J_{c} = \frac{1}{2} w_{cc} \left(I_{c}^{N} - \hat{I}_{c} \right)^{2} + \sum_{i \in \Omega_{c}, i \neq c} w_{ci} \left(I_{i}^{N} - \hat{I}_{i} \right)^{2} + \sum_{i \in \Omega_{c}, i \neq c} w_{ci} \left\{ \left(I_{c}^{F} - I_{i}^{F} \right) - \left(\hat{I}_{c} - \hat{I}_{i} \right) \right\}^{2},$$
$$\hat{I}_{c} = \frac{1}{\sum_{i \in \Omega_{c}} w_{ci}} \sum_{i \in \Omega_{c}} w_{ci} \left\{ I_{i}^{N} + \left(I_{c}^{F} - I_{i}^{F} \right) \right\}$$


METHOD: Deep Combiner

Drawbacks


$$I_c^F - I_i^F = I_c - I_i + \epsilon_{ci}$$

Noisy Image Combination Weights Result

Ground Truth/Flash Image

Improvement

No-flash image I^N

• Deep Combiner:

$$I_c^F - I_i^F = I_c - I_i + \epsilon_{ci}$$

• RIDFnF:

$$\left(k_c * I^F\right)_c - \left(k_c * I^F\right)_i = I_c - I_i + \epsilon_{ci}$$

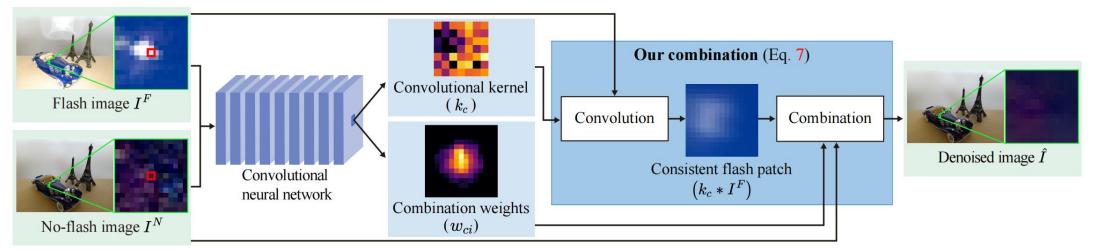
• To estimate the c-th pixel \hat{I}_c

$$J_{c} = \frac{1}{2} w_{cc} \left(I_{c}^{N} - \hat{I}_{c} \right)^{2} + \sum_{i \in \Omega_{c}, i \neq c} w_{ci} \left(I_{i}^{N} - \hat{I}_{i} \right)^{2}$$

$$+ \sum_{i \in \Omega_{c}, i \neq c} w_{ci} \Big[\Big\{ \Big(k_{c} * I^{F} \Big)_{c} - \Big(k_{c} * I^{F} \Big)_{i} \Big\} - \Big(\hat{I}_{c} - \hat{I}_{i} \Big) \Big]^{2}$$

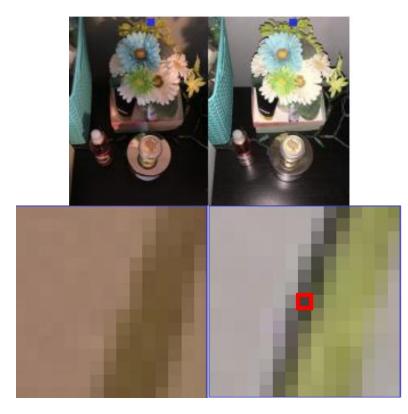
• minimized by setting its gradients with respect to \hat{I}_c and \hat{I}_i zero

$$\begin{aligned} \frac{\partial J_c}{\partial \hat{I}_c} &= w_{cc} \left(I_c^N - \hat{I}_c \right) \\ &+ 2 \sum_{i \in \Omega_c, i \neq c} w_{ci} \left[\left\{ \left(k_c * I^F \right)_c - \left(k_c * I^F \right)_i \right\} - \left(\hat{I}_c - \hat{I}_i \right) \right] \\ &= 0, \end{aligned} \qquad \begin{aligned} &= 0. \end{aligned} \qquad \begin{aligned} \frac{\partial J_c}{\partial \hat{I}_i} &= -w_{ci} \left(I_i^N - \hat{I}_i \right) \\ &+ w_{ci} \left[\left\{ \left(k_c * I^F \right)_c - \left(k_c * I^F \right)_i \right\} - \left(\hat{I}_c - \hat{I}_i \right) \right] \\ &= 0. \end{aligned}$$

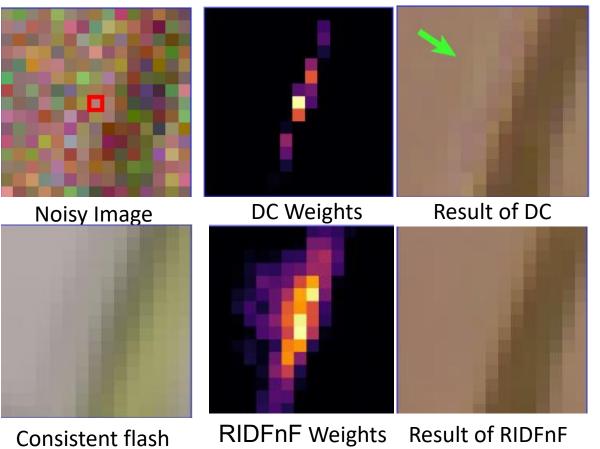

• Setting $\frac{\partial J_c}{\partial \hat{I}_i} = 0$:

$$\hat{I}_{i} = \frac{1}{2} \left\{ I_{i}^{N} - \left(k_{c} * I^{F} \right)_{c} + \left(k_{c} * I^{F} \right)_{i} + \hat{I}_{c} \right\}$$

• Plug this equation into $\frac{\partial J_c}{\partial \hat{I}_c}$


$$\hat{I}_{c} = \frac{1}{\sum_{i \in \Omega_{c}} w_{ci}} \sum_{i \in \Omega_{c}} w_{ci} \{ I_{i}^{N} + (k_{c} * I^{F})_{c} - (k_{c} * I^{F})_{i} \}$$

Network Architecture



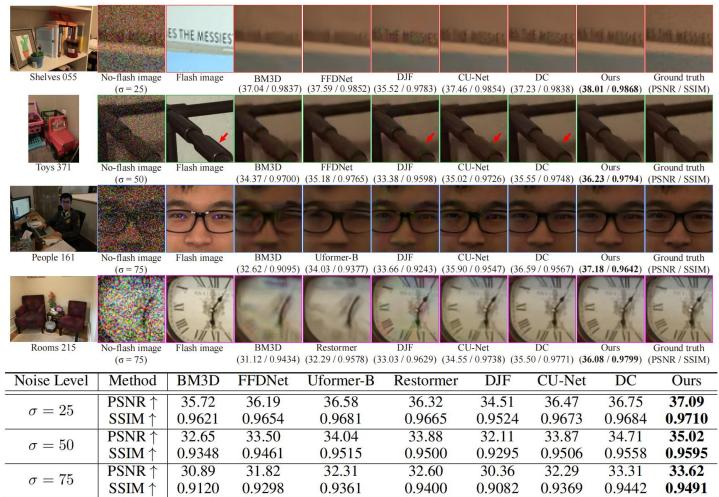
Network Details

- k_c a normalized kernel whose elements are non-negative
- k_c size: (7×7) Ω_c size: (15×15)
- Training loss: L2 Loss
- Trainable parameters: 1.84M

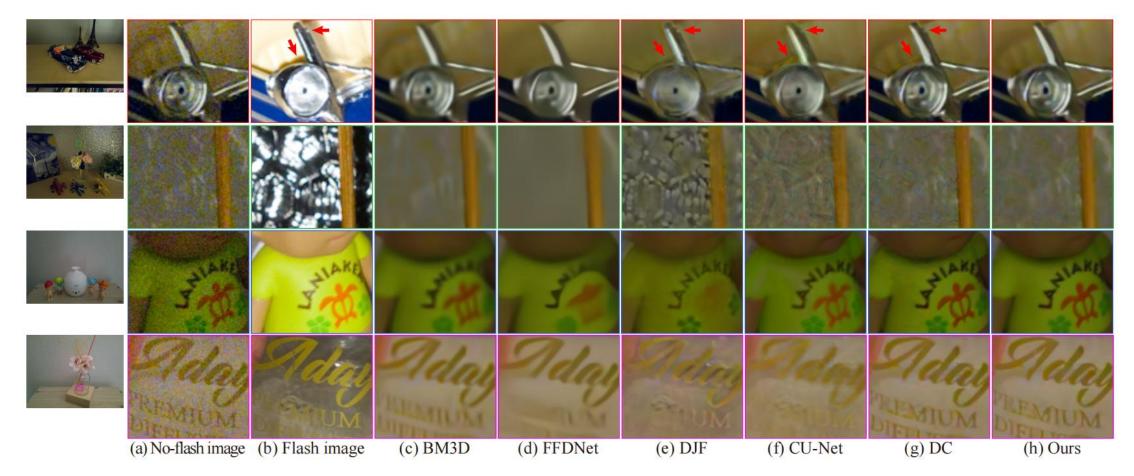
Ground Truth/Flash Image

OUTLINE

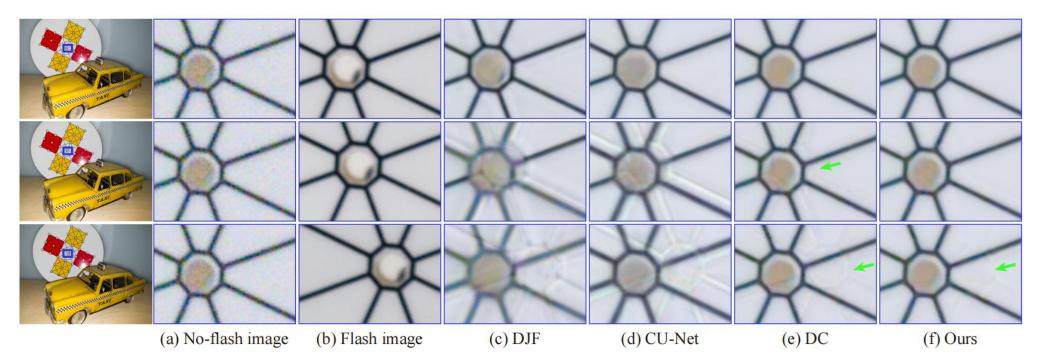
- Authorship
- Background
- Method
- Experiments
- Conclusion


Datasets: Flash and Ambient Illuminations Dataset(FAID)

- Includes 2775 flash/no-flash image pairs categorized into six classes
- 2263 for training, 256 for validation, 256 for testing


Training Details

- Training for 50 epochs
- Learning rate: $5e-4 \rightarrow 1e-4$
- Image patches: (64×64)
- Batch size: 64


Comparisons using Gaussian noise

Comparisons using Real Noise

Analysis using misaligned flash/no-flash pairs

Ablation studies

- Different consistent flash generations
 - Gaussian

Produce the band-width of a Gaussian filter per pixel

• Direct

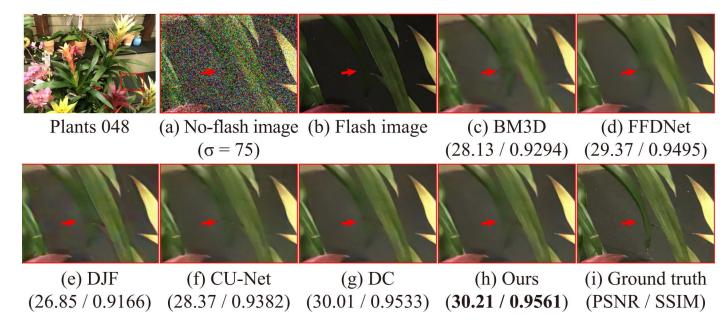
Produces consistent flash images

Methods	DC PSNR↑	Gaussian PSNR ↑	Direct PSNR ↑	Convolutional k_c PSNR \uparrow
$\sigma = 25$	36.75	36.98	37.02	37.09
$\sigma = 50$	34.71	34.92	34.89	35.02
$\sigma = 75$	33.31	33.54	33.45	33.62

Analysis of convolutional kernel sizes

• Varying the kernel size K \times K from 1 \times 1 to 9 \times 9

Kernel size	1×1	3×3	5×5	7×7	9×9
Kerner size	PSNR ↑	PSNR ↑	PSNR ↑	PSNR ↑	$PSNR \uparrow$
$\sigma = 25$	36.75	37.02	37.07	37.09	37.10
$\sigma = 50$	34.69	34.97	35.00	35.02	35.02
$\sigma = 75$	33.29	33.58	33.61	33.62	33.61
Inference time	0.76 s	0.78 s	1.12 s	1.70 s	2.66 s


OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

CONCLUSION

Discussion of limitations and future work

- The benefit disappear when flash image doesn't capture high-frequency details
- Do not explicitly model a misalignment

CONCLUSION

- Infer a consistent image patch, which is structurally similar to the ground truth, by applying per-pixel convolutional kernels to an input flash image locally.
- We combine a noisy no-flash image and inferred consistent image locally via a new combination model and output a denoised no-flash image.

Thanks for listening!