Diffusion Autoencoders: Toward a Meaningful and Decodable Representation

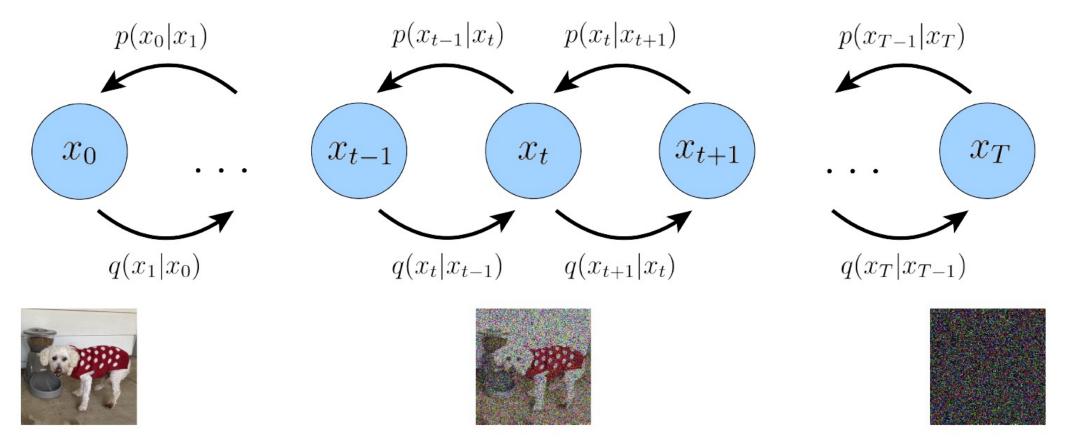
Konpat Preechakul Nattanat Chatthee Suttisak Wizadwongsa Supasorn Suwajanakorn

VISTEC, Thailand

Outline

- Authorship
- Background
- Method
- Conclusion

Denoising diffusion probabilistic model



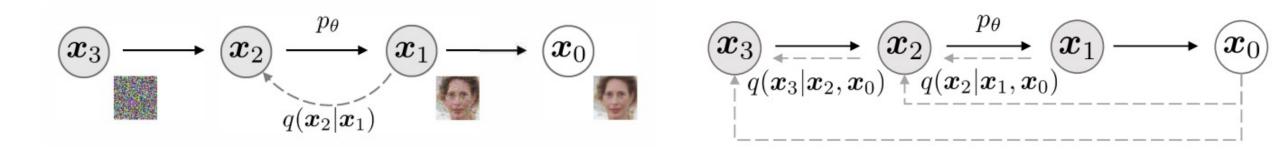
- Denoising diffusion probabilistic model
- Forward process
 - projection from original image to a Gaussian noise by adding Gaussian noise gradually

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - eta_t} \mathbf{x}_{t-1}, eta_t \mathbf{I})$$

- Reverse process
 - reversion of forward process, just as the name suggests

$$p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{ heta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{ heta}(\mathbf{x}_t, t))$$

Denoising diffusion implicit model



Graphical models for diffusion and non-Markovian inference models

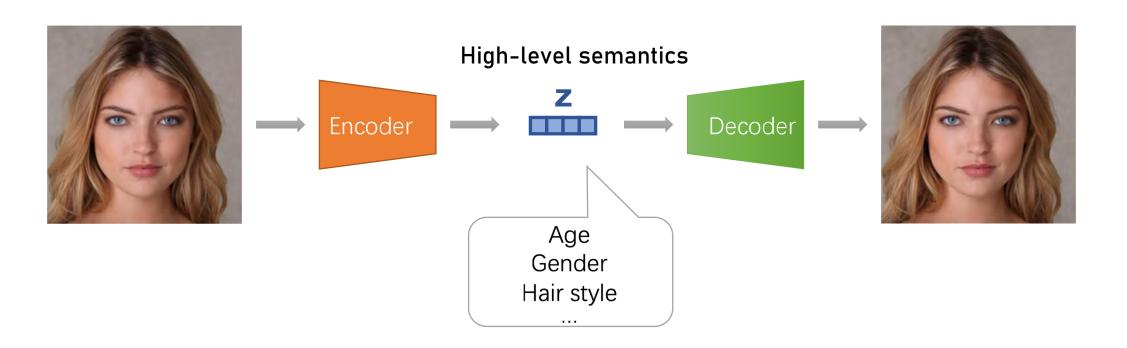
- Denoising diffusion implicit model
- Forward process
 - Non-markovian forward process

$$q_{\sigma}(\boldsymbol{x}_T | \boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_T} \boldsymbol{x}_0, (1 - \alpha_T) \boldsymbol{I})$$

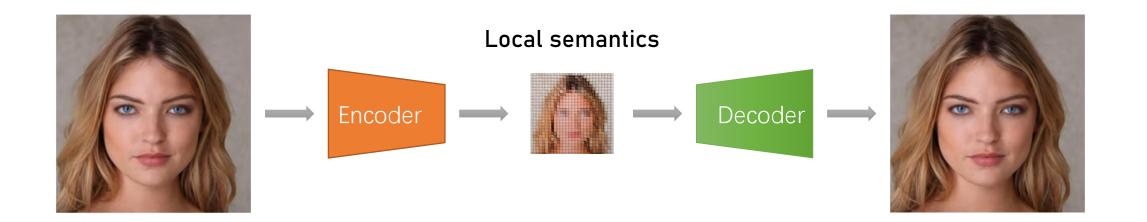
• Reverse process

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t}-\sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1-\alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right)$$

➢ Representation learning

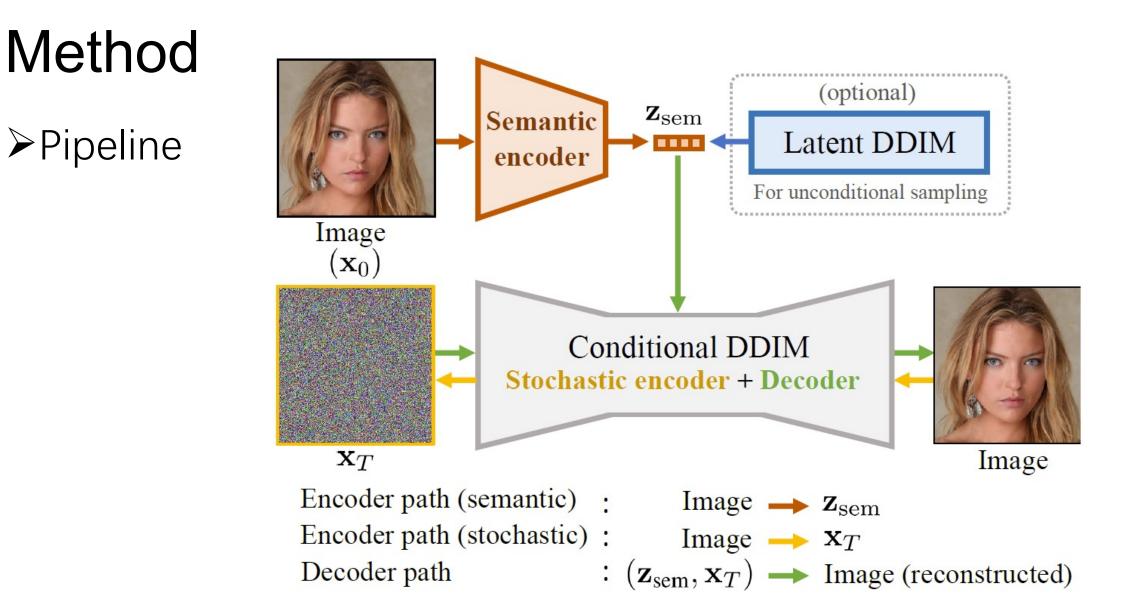


➢ Representation learning



≻Target

- Learn a representation
 - High-level semantics
 - Allowing near-exact reconstruction



- ► Diffusion-based Decoder
- Generative process

$$p_{\theta}(\mathbf{x}_{0:T} \mid \mathbf{z}_{\text{sem}}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_{\text{sem}})$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{z}_{\text{sem}}) = \begin{cases} \mathcal{N}(\mathbf{f}_{\theta}(\mathbf{x}_1, 1, \mathbf{z}_{\text{sem}}), \mathbf{0}) & \text{if } t = 1\\ q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{f}_{\theta}(\mathbf{x}_t, t, \mathbf{z}_{\text{sem}})) & \text{otherwise} \end{cases}$$

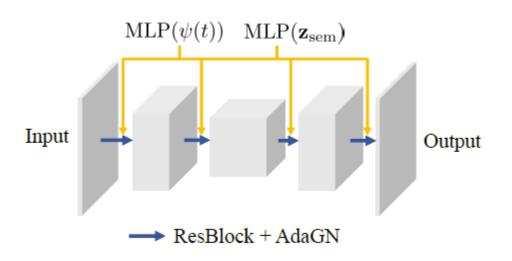
- ➢Diffusion-based Decoder
- Noise prediction network

$$\mathbf{f}_{\theta}(\mathbf{x}_{t}, t, \mathbf{z}_{\text{sem}}) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \sqrt{1 - \alpha_{t}} \epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{z}_{\text{sem}}) \right)$$

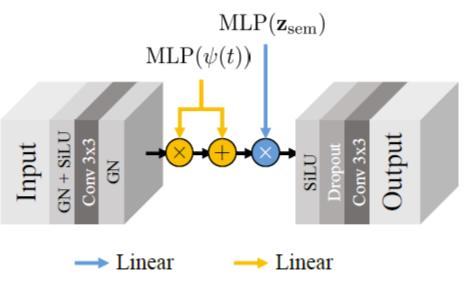
Loss function

$$L_{\text{simple}} = \sum_{t=1}^{T} \mathbb{E}_{\mathbf{x}_{0},\epsilon_{t}} \left[\left\| \epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{z}_{\text{sem}}) - \epsilon_{t} \right\|_{2}^{2} \right]$$

- Diffusion-based Decoder
- Architecture



(a) Diffusion autoencoder (Diff-AE)'s UNet decoder conditioned by z_{sem} .



(b) ResBlock + AdaGN. The residual path is not depicted.

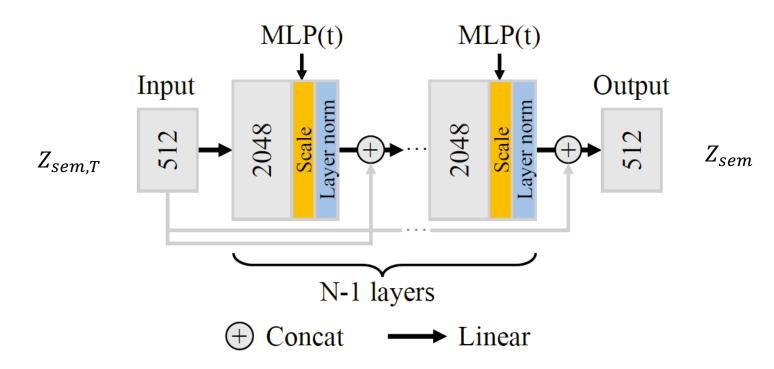
- ➢Stochastic encoder
- Deterministic generative process backward

$$\mathbf{x}_{t+1} = \sqrt{\alpha_{t+1}} \mathbf{f}_{\theta}(\mathbf{x}_t, t, \mathbf{z}_{\text{sem}}) + \sqrt{1 - \alpha_{t+1}} \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{z}_{\text{sem}})$$

- ►Latent DDIM
- Sampling with diffusion autoencoder

$$L_{\text{latent}} = \sum_{t=1}^{T} \mathbb{E}_{\mathbf{z}_{\text{sem}},\epsilon_t} \left[\left\| \epsilon_{\omega}(\mathbf{z}_{\text{sem},t},t) - \epsilon_t \right\|_1 \right]$$

- ≻Latent DDIM
- Architecture



➤Latent code

 Latent code captures both high-level semantics and low-level stochastic variations



 $(\mathbf{z}_{sem}, \mathbf{x}_T)$

≻Latent code

 Latent code captures both high-level semantics and low-level stochastic variations

Madal	SSIM ↑			LPIPS ↓			MSE↓					
Model	T=10	T=20	T=50	T=100	T=10	T=20	T=50	T=100	T=10	T=20	T=50	T=100
DDIM (@130M) [47]	0.600	0.760	0.878	0.917	0.227	0.148	0.087	0.063	0.019	0.008	0.003	0.002
Ours (@130M, 512D z _{sem})	0.827	0.927	0.978	0.991	0.078	0.050	0.023	0.011	0.001	0.001	0.000	0.000
a) No encoded \mathbf{x}_T	0.707	0.695	0.683	0.677	0.085	0.078	0.074	0.073	0.006	0.007	0.007	0.007
b) No encoded \mathbf{x}_T , @48M, 512D \mathbf{z}_{sem}	0.662	0.650	0.637	0.631	0.102	0.096	0.093	0.092	0.009	0.009	0.009	0.010
c) No encoded \mathbf{x}_T , @48M, 256D \mathbf{z}_{sem}	0.637	0.624	0.612	0.606	0.116	0.109	0.106	0.105	0.010	0.011	0.011	0.011
d) No encoded \mathbf{x}_T , @48M, 128D \mathbf{z}_{sem}	0.613	0.600	0.588	0.582	0.133	0.127	0.125	0.124	0.012	0.012	0.013	0.013
e) No encoded \mathbf{x}_T , @48M, 64D \mathbf{z}_{sem}	0.551	0.538	0.527	0.521	0.168	0.165	0.163	0.162	0.018	0.019	0.020	0.020

➤Semantically meaningful latent interpolation

(a) StyleGAN2 interpolation after \mathcal{W} space inversion.

(b) StyleGAN2 interpolation after W+ space inversion.

(c) DDIM interpolation.

(d) Our diffusion autoencoder interpolation.

► Attribute manipulation

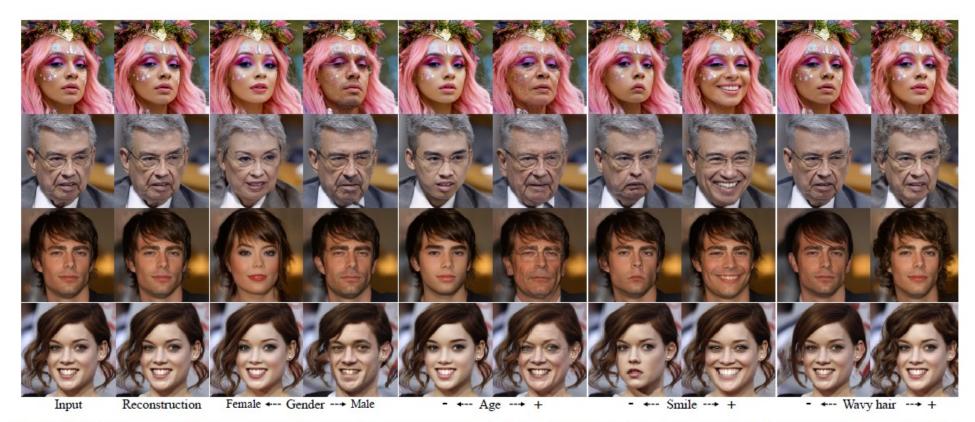


Figure 5. Real-image attribute manipulation results on two global attributes (gender, age) and two local attributes (smile, wavy hair) by moving z_{sem} along the positive or negative direction found by linear classifiers. The top two are from FFHQ [27] and the bottom two are from CelebA-HQ [26]. Our method synthesizes highly-plausible and realistic results that preserve an unprecedented level of detail.

► Autoencoding reconstruction quality

Table 1. Autoencoding reconstruction quality of models trained on FFHQ [27] and tested on unseen CelebA-HQ [26]. Our model is competitive with state-of-the-art NVAE while producing readily useful high-level semantics in a compact 512D z_{sem} .

Model	Latent dim	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	$\mathbf{MSE}\downarrow$
StyleGAN2 (W) [28]	512	0.677	0.168	0.016
StyleGAN2 (W+) [28]	7,168	0.827	0.114	0.006
VQ-GAN [13]	65,536	0.782	0.109	3.61e-3
VQ-VAE2 [38]	327,680	0.947	0.012	4.87e-4
NVAE [50]	6,005,760	0.984	0.001	4.85e-5
DDIM (T=100, 128 ²) [47]	49,152	0.917	0.063	0.002
Ours (T=100, 128^2 , no \mathbf{x}_T)	512	0.677	0.073	0.007
Ours (T=100, 128 ²)	49,664	0.991	0.011	6.07e-5

➢ Faster denoising process

(a) DDIM predicting x_0 .

(b) Our diffusion autoencoder predicting x_0 .

Figure 6. Predicted \mathbf{x}_0 at $t_{9,8,7,5,2,0}$ (*T*=10). By conditioning on \mathbf{z}_{sem} , our method predicts images that resemble \mathbf{x}_0 much faster.

Class conditional sampling

Table 3. FID scores (\downarrow) for class-conditional generation on CelebA 64 dataset computed between 5k sampled images and the target subset. \pm represents one standard deviation (*n*=3). D2C [45] results come from their paper (*n*=1 run of FID computation on 5k samples). Binary classifier was trained with 50 positives and 50 negatives. Positive-unlabeled (PU) classifier was trained with 100 positives and 10,000 unlabeled examples (as negatives). Naive FIDs were computed between all images and the target subset.

Scenario	Classes	Ours	D2C [45]	Naive
Binary	Male	11.52 ± 1.19	13.44	23.83
	Female	7.29 ± 0.44	9.51	13.64
	Blond	16.10 ± 2.00	17.61	25.62
	Non-Blond	8.48 ± 0.52	8.94	0.96
PU	Male	9.54 ± 0.54	16.39	23.83
	Female	9.21 ± 0.19	12.21	13.64
	Blond	7.01 ± 0.25	10.09	25.62
	Non-Blond	7.91 ± 0.15	9.09	0.96

➤Unconditional sampling

Table 4. FID scores (\downarrow) for unconditional generation. Our method is competitive with DDIM baselines. "+ autoencoding" refers to diffusion autoencoders that infer ground-truth semantic subcode from the test set and do not sample from the latent DDIM.

Detest	Madal	FID↓					
Dataset	Model	T=10	T=20	T=50	T=100		
FFHQ 128	DDIM	29.56	21.45	15.08	12.03		
	Ours	20.80	16.70	12.57	10.59		
	+ autoencoding	14.43	10.70	6.69	4.56		
Horse 128	DDIM	22.17	12.92	7.92	5.97		
	Ours	11.97	9.37	7.44	6.71		
	+ autoencoding	9.27	6.23	3.87	2.92		
Bedroom 128	DDIM	13.70	9.23	7.14	5.94		
	Ours	10.69	8.19	6.50	5.70		
	+ autoencoding	6.36	4.88	3.61	2.88		
CelebA 64	DDIM	16.38	12.70	8.52	5.83		
	Ours	12.92	10.18	7.05	5.30		
	+ autoencoding	12.78	9.06	5.15	3.11		

Conclusion

- Autoencoder with near-perfect reconstruction
- Framework for learning **semantic** representation
- **Simple solution** for many real-image applications