

AutoMix: Unveiling the Power of Mixup for Stronger Classifiers

ECCV 2022 Oral

PRESENTER: JIAHANG ZHANG

2023/02/12

Outline

1 Authors

4 Experiments

• Outline

1 Authors

3

4 Experiments

• Outline

2/Background

3 Method

4 Experiments

Mix up & Cut Mix

Original Image Dog Mix up Dog & Cat Cut out Dog Cut Mix Dog & Cat

 $\tilde{y} = \lambda y_A + (1 - \lambda) y_B$

Resize Mix

Source image Is Source patch P Resize Mix Target image It

Mixed image Im

ResizeMix: Mixing Data with Preserved Object Information and True Labels

Jie Qin^{1,2*}, Jiemin Fang^{3,4*}, Qian Zhang⁵, Wenyu Liu⁴, Xingang Wang^{2†}, Xinggang Wang⁴

¹School of Artificial Intelligence, University of Chinese Academy of Sciences
²Institute of Automation, Chinese Academy of Sciences
³Institute of Artificial Intelligence, Huazhong University of Science and Technology
⁴School of EIC, Huazhong University of Science and Technology

$$l_m = \lambda l_s + (1 - \lambda) l_t$$

Puzzle Mix

Maximally utilize the saliency information

Puzzle Mix (full)

Input2

FMix: Enhancing Mixed Sample Data Augmentation

Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-Bennett, Jonathon Hare

FMix

Mask	X
Image 1	
Image 2	
FMix	

TransMix: Attend to Mix for Vision Transformers

Jie-Neng Chen^{1*} Shuyang Sun^{2*} Ju He¹ Philip Torr² Alan Yuille¹ Song Bai³ ¹Johns Hopkins University ²University of Oxford ³ByteDance Inc.

TransMix

Attention-guided for ViTs

- Why Mix effective?
 - Data-dependent regulazation
 - Label smoothing

• Outline

Motivation:

Motivation:

- How to design an accurate mixing policy to benefit the mixup classification objective? Label Mismatch Issue
- How to solve generation-classification optimization problems efficiently?

Overview

Fig. 2. The difference between AutoMix and offline approaches. Left: Offline mixup methods, where a fixed mixup policy generates mixed samples for the classifier to learn from. Right: AutoMix, where the mixup policy is trained with the feature map.

- Mixup policy for input h_{ϕ}
- Mixup policy for label g

$$g(y_i, y_j, \lambda) = \lambda y_i + (1 - \lambda) y_j \quad (1)$$

Optimization objective:

$$\min_{\theta, \phi} \ell_{MCE} \Big(f_{\theta} \big(h_{\phi}(x_i, x_j, \lambda) \big), g(y_i, y_j, \lambda) \Big)$$
(2)

Generate the pixel-level mask and obtain the mixed data

$$h_{\phi}(x_i, x_j, \lambda) = \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l) \odot x_i + (1 - \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l)) \odot x_j \quad (3)$$
$$z_{\lambda}^l = \operatorname{concat}(z, \lambda)$$

Generate the pixel-level mask and obtain the mixed data

 $h_{\phi}(x_i, x_j, \lambda) = \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l) \odot x_i + (1 - \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l)) \odot x_j \quad (3)$

Generate the pixel-level mask and obtain the mixed data

$$h_{\phi}(x_i, x_j, \lambda) = \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l) \odot x_i + (1 - \mathcal{M}_{\phi}(z_{i,\lambda}^l, z_{j,1-\lambda}^l)) \odot x_j \quad (3)$$

Objective for \mathcal{M}_{ϕ}

$$\ell_{\lambda} = \gamma \max\left(||\lambda - \frac{1}{HW}\sum_{h,w} s_{i,h,w}|| - \epsilon, 0\right) \quad (4)$$

- A trick for training \mathcal{M}_{ϕ}
 - Direct optimizing the two sub-tasks leads to gradient entanglement problem

$$\nabla_{\phi} \mathcal{L}_{MCE}^{cls} \propto \nabla_{\phi} h_{\phi}(x_i, x_j, \lambda) \odot f'_{\theta}(h_{\phi}(x_i, x_j, \lambda)) \quad (5)$$

- A trick for training \mathcal{M}_{ϕ}
 - To this end, Momentum Pipeline are proposed for bi-level optimization
 - Inspired by the self-supervised learning

• Outline

4 Experiments

5 Discussion

• Experiments

Quality of the proposed method

Experiments

Classification

Table 2. Top-1 accuracy (%)↑ of image classification based on ResNet variants on ImageNet-1k using PyTorch-style 100-epoch and 300-epoch training procedures.

	K.	PyTo	ch 100	epochs	PyTorch 300 epochs				
Methods	R-18	R-34	R-50	R-101	RX-101	R-18	R-34	R-50	R-101
Vanilla	70.04	73.85	76.83	78.18	78.71	71.83	75.29	77.35	78.91
MixUp	69.98	73.97	77.12	78.97	79.98	71.72	75.73	78.44	80.60
CutMix	68.95	73.58	77.17	78.96	80.42	71.01	75.16	78.69	80.59
ManifoldMix	69.98	73.98	77.01	79.02	79.93	71.73	75.44	78.21	80.64
SaliencyMix	69.16	73.56	77.14	79.32	80.27	70.21	75.01	78.46	80.45
FMix*	69.96	74.08	77.19	79.09	80.06	70.30	75.12	78.51	80.20
PuzzleMix	70.12	74.26	77.54	79.43	80.53	71.64	75.84	78.86	80.67
$\operatorname{ResizeMix}^*$	69.50	73.88	77.42	79.27	80.55	71.32	75.64	78.91	80.52
AutoMix	70.50	74.52	77.91	79.87	80.89	72.05	76.10	79.25	80.98
Gain	+0.38	+0.26	+0.37	+0.44	+0.34	+0.22	+0.26	+0.34	+0.31

• Experiments

Classification

Table 2. Top-1 accuracy (%)↑ of image classification based on ResNet variants on ImageNet-1k using PyTorch-style 100-epoch and 300-epoch training procedures.

	K.	PyTor	ch 100	epochs	PyTorch 300 epochs					
Methods	R-18	R-34	R-50	R-101	RX-101	R-18	R-34	R-50	R-101	
Vanilla	70.04	73.85	76.83	78.18	78.71	71.83	75.29	77.35	78.91	
MixUp	69.98	73.97	77.12	78.97	79.98	71.72	75.73	78.44	80.60	
CutMix	68.95	73.58	77.17	78.96	80.42	71.01	75.16	78.69	80.59	
ManifoldMix	69.98	73.98	77.01	79.02	79.93	71.73	75.44	78.21	80.64	
SaliencyMix	69.16	73.56	77.14	79.32	80.27	70.21	75.01	78.46	80.45	
$FMix^*$	69.96	74.08	77.19	79.09	80.06	70.30	75.12	78.51	80.20	
PuzzleMix	70.12	74.26	77.54	79.43	80.53	71.64	75.84	78.86	80.67	
$\operatorname{ResizeMix}^*$	69.50	73.88	77.42	79.27	80.55	71.32	75.64	78.91	80.52	
AutoMix	70.50	74.52	77.91	79.87	80.89	72.05	76.10	79.25	80.98	
Gain	+0.38	+0.26	+0.37	+0.44	+0.34	+0.22	+0.26	+0.34	+0.31	

• Experiments

Classification

Table 4. Top-1 accuracy $(\%)\uparrow$ on ImageNet-1k based on ViTs and ConvNeXt using DeiT training settings.

Methods	DeiT-S	Swin-T	ConvNeXt-T
DeiT	79.80	81.28	82.10
MixUp	79.65	81.01	80.88
CutMix	79.78	81.20	81.57
AttentiveMix	77.63	77.27	78.19
SaliencyMix	79.88	81.37	81.33
FMix^*	77.37	79.60	81.04
PuzzleMix	80.45	81.47	81.48
$\operatorname{ResizeMix}^*$	78.61	81.36	81.64
$\mathrm{TransMix}^\dagger$	80.70	81.80	-
AutoMix	80.78	81.80	82.28
Gain	+0.08	+0.00	+0.18

• Outline

Discussion

- Review the proposed AutoMix framework
 - Optimize both the mixed sample generation task and the mixup classification task in a momentum training pipeline.
 - Without adding cost to inference, AutoMix can generate various masks adaptively.

36

Thanks!

	CUB-200		FGVC-Aircraft		iNat2017		iNat2018		Place	es205
Method	R-18	RX-50	R-18	RX-50	R-50	RX-101	R-50	RX-101	R-18	R-50
Vanilla	77.68	83.01	80.23	85.10	60.23	63.70	62.53	66.94	59.63	63.10
MixUp	78.39	84.58	79.52	85.18	61.22	66.27	62.69	67.56	59.33	63.01
CutMix	78.40	85.68	78.84	84.55	62.34	67.59	63.91	69.75	59.21	63.75
ManifoldMix	79.76	86.38	80.68	86.60	61.47	66.08	63.46	69.30	59.46	63.23
SaliencyMix	77.95	83.29	80.02	84.31	62.51	67.20	64.27	70.01	59.50	63.33
FMix*	77.28	84.06	79.36	86.23	61.90	66.64	63.71	69.46	59. <mark>5</mark> 1	63.63
PuzzleMix	78.63	84.51	80.76	86.23	62.66	67.72	64.36	70.12	59.62	63.91
ResizeMix*	78.50	84.77	78.10	84.08	62.29	66.82	64.12	69.30	59.66	63.88
AutoMix	79.87	86.56	81.37	86.72	63.08	68.03	64.73	70.49	59.74	64.06
Gain	+0.11	+0.18	+0.61	+0.12	+0.42	+0.31	+0.37	+0.37	+0.08	+0.15

Table 5. Top-1 accuracy $(\%)\uparrow$ of various algorithms based on ResNet variants on fine-grained and scenic classification datasets.

Table 6. Top-1 accuracy $(\%)\uparrow$ and FGSM er- **Table 7.** Trasfer learning of object de-
ror $(\%)\downarrow$ on CIFAR-100 based on ResNeXt-50 tection task with Faster-RCNN on Pas-
(32x4d) trained 400 epochs.cal VOC and COCO datasets.

	Clean	Corruption	FGSM		VOC	COCO			
	Acc(%)↑	Acc(%)↑	Error(%)↓	Methods	mAP	mAP	AP_{50}^{bb}	AP_{75}^{bb}	
Vanilla	80.24	51.71	63.92	Vanilla	81.0	38.1	59.1	41.8	
MixUp	82.44	58.10	56.60	Mixup	80.7	37.9	59.0	41.7	
CutMix	81.09	49.32	76.84	CutMix	81.9	38.2	59.3	42.0	
AugMix	81.18	66.54	55.59	PuzzleMix	81.9	38.3	59.3	42.1	
PuzzleMix	82.76	57.82	63.71	ResizeMix	82.1	38.4	59.4	42.1	
AutoMix	83.13	58.35	55.34	AutoMix	82.4	38.6	59.5	42.2	

Table 6. Top-1 accuracy $(\%)\uparrow$ and FGSM error $(\%)\downarrow$ on CIFAR-100 based on ResNeXt-50 (32x4d) trained 400 epochs.

	Clean	Corruption	FGSM
	$Acc(\%)\uparrow$	$\mathrm{Acc}(\%)\uparrow$	$\operatorname{Error}(\%)\downarrow$
Vanilla	80.24	51.71	63.92
MixUp	82.44	58.10	56.60
CutMix	81.09	49.32	76.84
AugMix	81.18	66.54	55.59
PuzzleMix	82.76	57.82	63.71
AutoMix	83.13	58.35	55.34

Table 9. Ablation of **Table 10.** Ablation of the proposed momentum pipeline (MP)modules in MixBlock.and the cross-entropy loss l_{CE} (CE) based on ResNet-18.

	Tiny-ImageNet		e.	CIFAR-100		Tiny-ImageNet			ImageNet-1k			
module	R-18	RX-50	modules	MixUp	CutMix	\mathcal{M}_{ϕ}	MixUp	CutMix	\mathcal{M}_{ϕ}	MixUp	CutMix	\mathcal{M}_{ϕ}
(random grids)	64.40	66.83	(none)	79.12	78.17	79.46	63.39	64.40	64.84	69.98	68.95	70.04
+ cross attention	66.87	69.76	+MP(m=0)	-	: 	81.75	-	-	67.05	-	-	70.41
$+\lambda ext{ embedding}$	67.15	70.41	+MP	80.82	79.57	81.93	66.02	65.72	67.19	70.13	70.02	70.45
$+\ell_{\lambda}$	67.33	70.72	+MP+CE	80.41	79.64	82.04	66.10	65.05	67.33	70.10	70.04	70.50