STRUCT Group Paper Reading

Image as Set of Points

ICLR 2023

Notable top 5%

Xu Ma, Yuqian Zhou, Huan Wang, Can Qin, Bin Sun, Chang Liu, Yun Fu

Northeastern University, Boston University of Illinois, Urbana-Champaign

Presented by Zejia Fan 2023.2.19

Backbone development

- MLP->CNN->Transformer->MLP?
 - ・21年
 - 12月: "图像识别也是Transformer最强(ViT)"
 - 2月: "Transformer is All you Need"
 - 3月: "Attention is not All you Need"
 - 5月: "在MLP上的ViT并(MLPmixer)"
 - 5月: "Convolution比Transformer强"
 - 5月: "在MLP上加个门, 跨越Transformer (Pay Attention to MLPs)"

CNN

- LeNet-5
 - Convolution & pooling

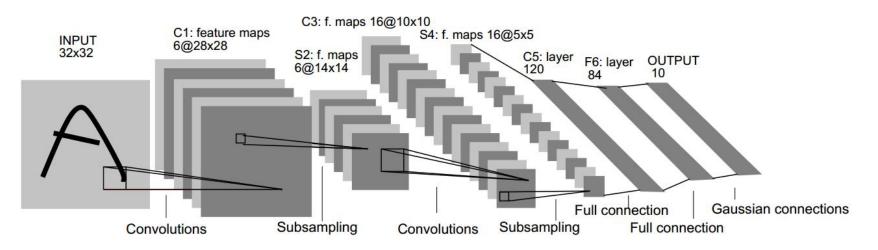
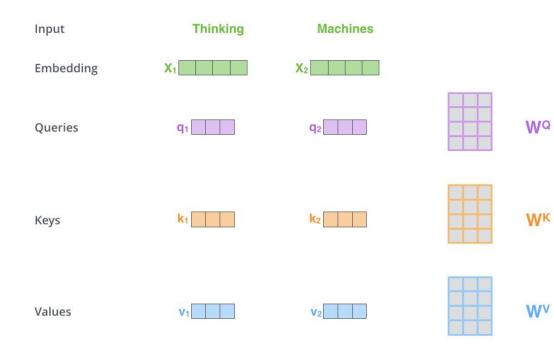



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Attention

Input	Thinking	Machines
Embedding	X1	X2
Queries	q 1	q ₂
Keys	k 1	k ₂
Values	V 1	V2
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V 1	V2
Sum	Z1	Z ₂

Attention(Q, K, V) =
$$softmax\left(\frac{QK^{\mathsf{T}}}{\sqrt{d_k}}\right)V$$

11

Transformer in NLP

N encoder layers and N decoder layers together form the transformer. Several point:

- (Self-/Cross-) attention
- Feed forward
- Residual connection & norm
- Positional encoding

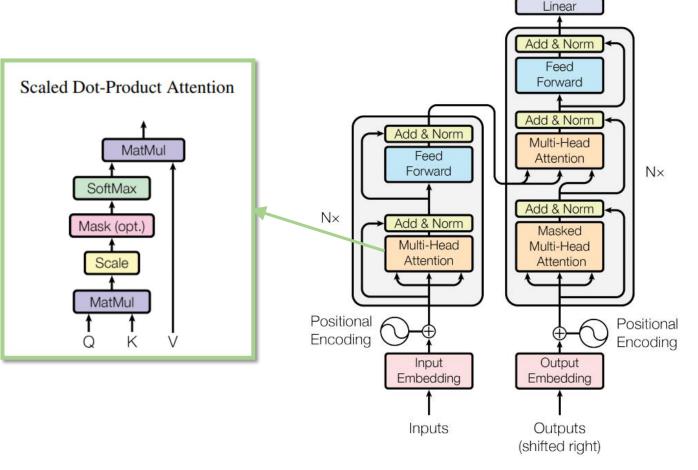
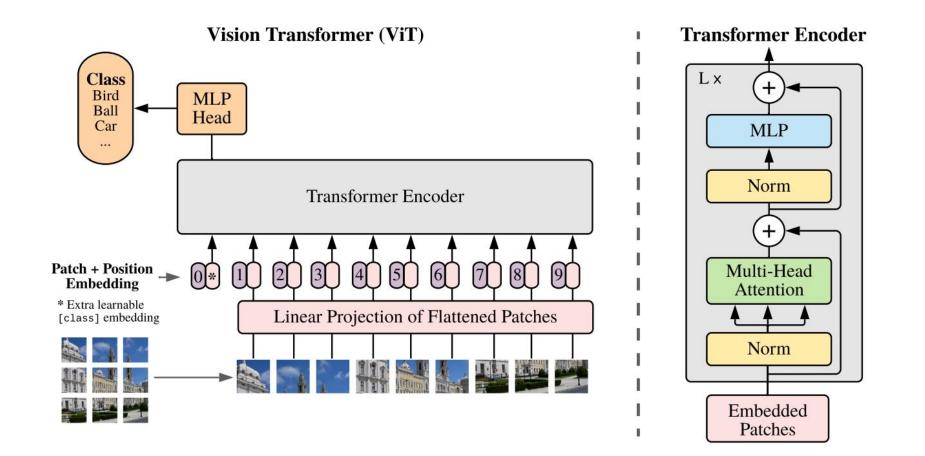



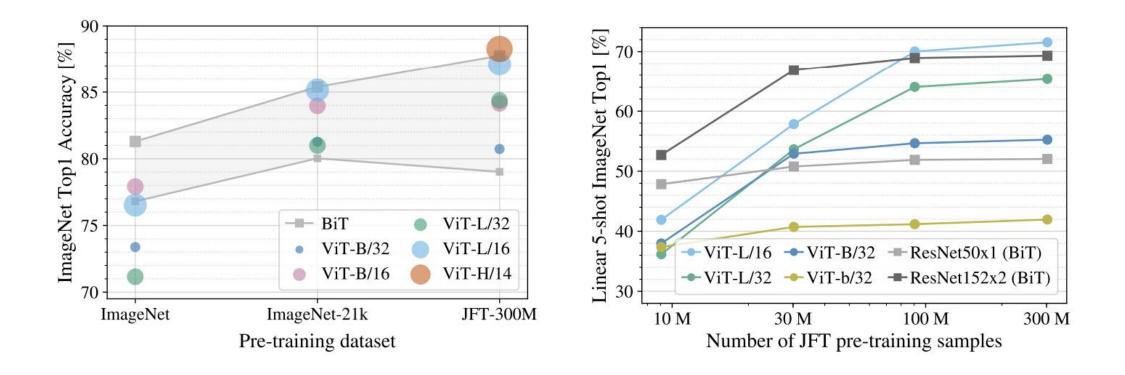
Figure 1: The Transformer - model architecture.

Output Probabilities

Softmax

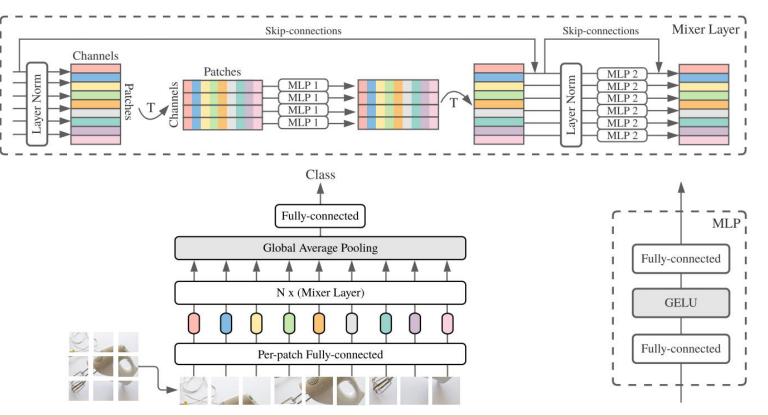
Vision Transformer

Alexey et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021. cite 12042.


Vision Transformer

- JFT: 300M images
- ImageNet 21k: 14M images
- ImageNet: 1.3M images

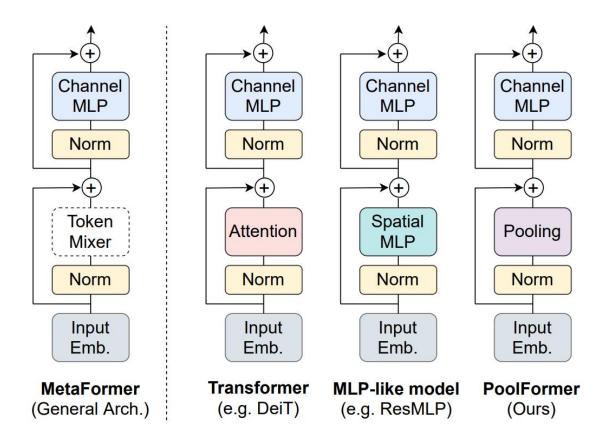
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	-
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k


Vision Transformer

• ViT needs large dataset.

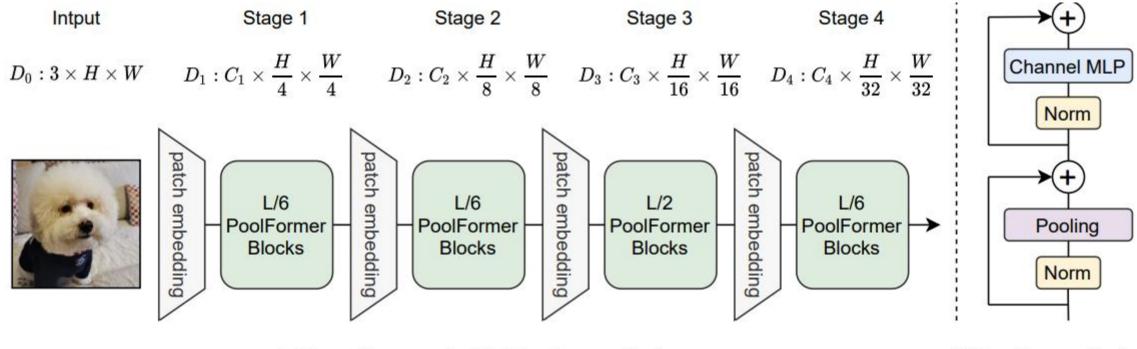
• Remove attention in ViT but keep the structure.

Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision. NIPS 2021. cite 890.


MLP-Mixer

• Sell point: the throughput, perform kind of well on large dataset.

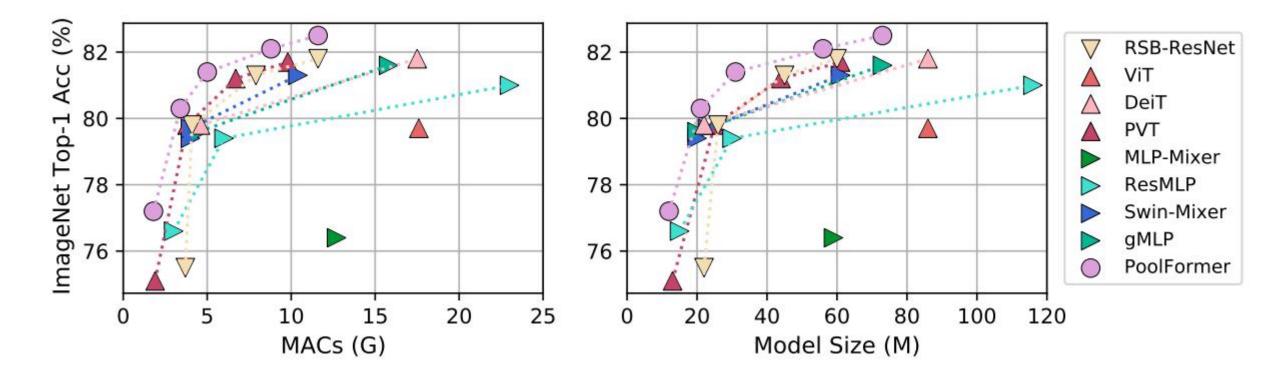
	Image size	Pre-Train Epochs	ImNet top-1	ReaL top-1	Avg. 5 top-1	Throughput (img/sec/core)	TPUv3 core-days
	Pre-tr	ained on Ima	geNet (wi	th extra r	egulariza	ation)	
• Mixer-B/16	224	300	76.44	82.36	88.33	1384	0.01k ^(‡)
• ViT-B/16 (🕿)	224	300	79.67	84.97	90.79	861	$0.02k^{(\ddagger)}$
• Mixer-L/16	224	300	71.76	77.08	87.25	419	$0.04k^{(\ddagger)}$
• ViT-L/16 (☎)	224	300	76.11	80.93	89.66	280	$0.05k^{(\ddagger)}$
	Pre-train	ned on Image	Net-21k (with extr	a regular	ization)	
• Mixer-B/16	224	300	80.64	85.80	92.50	1384	0.15k ^(‡)
• ViT-B/16 (🕿)	224	300	84.59	88.93	94.16	861	0.18k ^(‡)
• Mixer-L/16	224	300	82.89	87.54	93.63	419	$0.41k^{(\ddagger)}$
• ViT-L/16 (🕿)	224	300	84.46	88.35	94.49	280	0.55k ^(‡)
• Mixer-L/16	448	300	83.91	87.75	93.86	105	0.41k ^(‡)
		Pre-tr	ained on .	IFT-300N	1		
• Mixer-S/32	224	5	68.70	75.83	87.13	11489	0.01k
Mixer-B/32	224	7	75.53	81.94	90.99	4208	0.05k
 Mixer-S/16 	224	5	73.83	80.60	89.50	3994	0.03k
 BiT-R50x1 	224	7	73.69	81.92		2159	0.08k
 Mixer-B/16 	224	7	80.00	85.56	92.60	1384	0.08k
Mixer-L/32	224	7	80.67	85.62	93.24	1314	0.12k
BiT-R152x1	224	7	79.12	86.12		932	0.14k
BiT-R50x2	224	7	78.92	86.06	<u> </u>	890	0.14k
 BiT-R152x2 	224	14	83.34	88.90		356	0.58k
Mixer-L/16	224	7	84.05	88.14	94.51	419	0.23k
Mixer-L/16	224	14	84.82	88.48	94.77	419	0.45k
• ViT-L/16	224	14	85.63	89.16	95.21	280	0.65k
• Mixer-H/14	224	14	86.32	89.14	95.49	194	1.01k
• BiT-R200x3	224	14	84.73	89.58		141	1.78k
 Mixer-L/16 	448	14	86.78	89.72	95.13	105	0.45k
• ViT-H/14	224	14	86.65	89.56	95.57	87	2.30k
• ViT-L/16 [14]	512	14	87.76	90.54	95.63	32	0.65k


Metaformer

- Attention-based module can be replaced by spatial MLPs
- General architecture of the Transformers is essential

Metaformer

• Replace module with Average Pooling



(a) Overal framework with L PoolFormer blocks

(b) PoolFormer block

Metaformer

Reduce computation notably

- What is an image and how to extract latent features?
- CNN: organized pixels in rectangular shape, convolutional operation in local region
- ViTs: a sequence of patches, attention mechanism in a global range
- CoCs: a set of unorganized points, simplified clustering algorithm

- Context cluster
- Each pixel as a 5-dimensional data point with the information of color and position
- Convert image to a set of point clouds, utilize methodologies from point cloud analysis

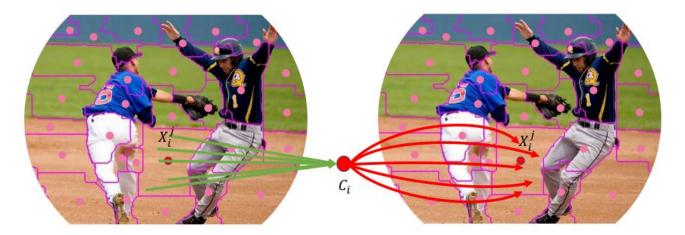
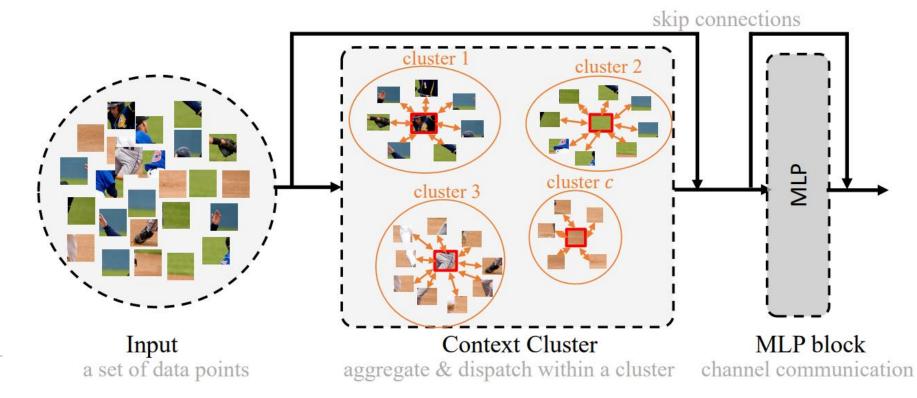
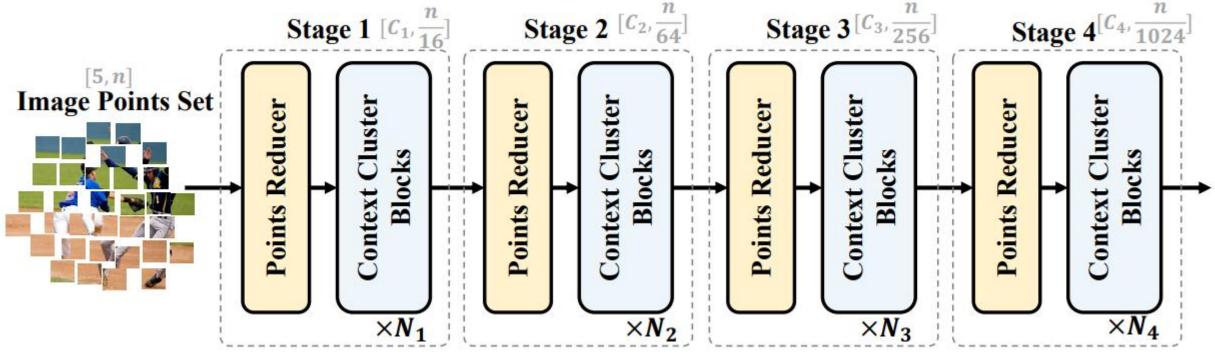
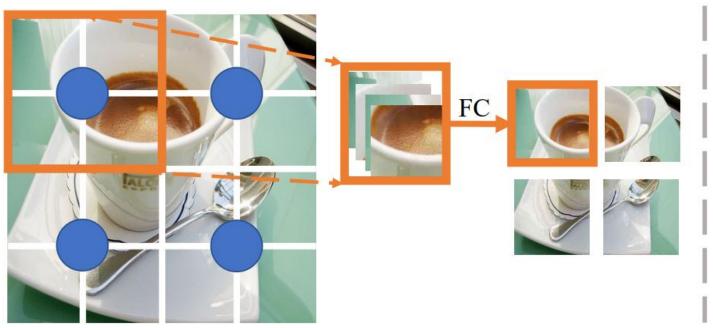
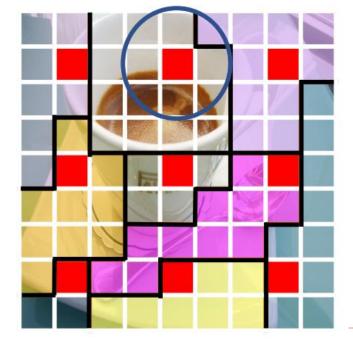
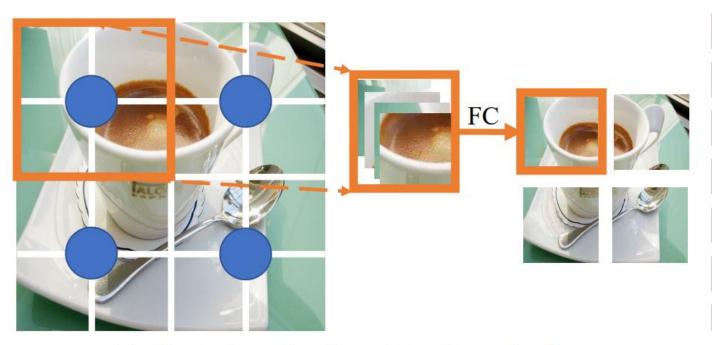




Figure 1: A context cluster in our network trained for image classification. We view an image as a set of points and sample c centers for points clustering. Point features are aggregated and then dispatched within a cluster. For cluster center C_i , we first aggregated all points $\{x_i^0, x_i^1, \dots, x_i^n\}$ in *i*th cluster, then the aggregated result is distributed to all points in the clusters dynamically. See § 3 for details.

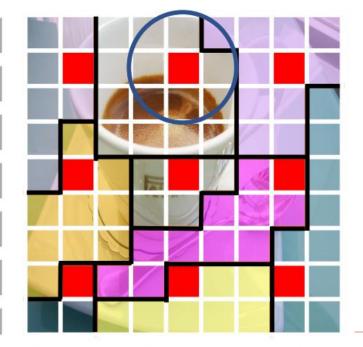

- Group a set of unorganized data points
- Communicate the points within clusters.
- Applied MLP block


- Context Cluster architecture with four stages, extract deep feature
- Points reducer as down-sampler

- Anchors in points reducer block and centers for context cluster block
- The center feature value is achieved by averaging its k neighbors as blue circle.

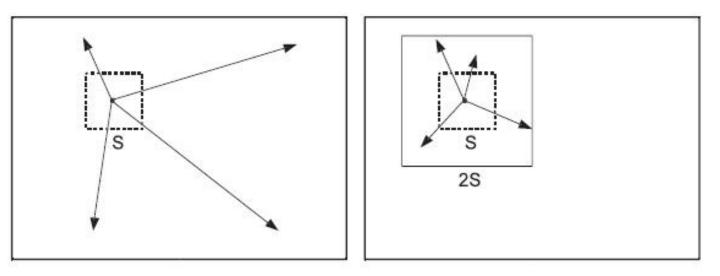


(a) Illustration of anchors for points reduction.



(b) Demo of centers in CoC. 25

- Fixed center for cluster, but feature updated, aggregate in cluster and assign back.
- Calculation complexity consideration.


(a) Illustration of anchors for points reduction.

(b) Demo of centers in CoC. 26

SLIC

- K-means clustering method with local searching region
- Linear complexity

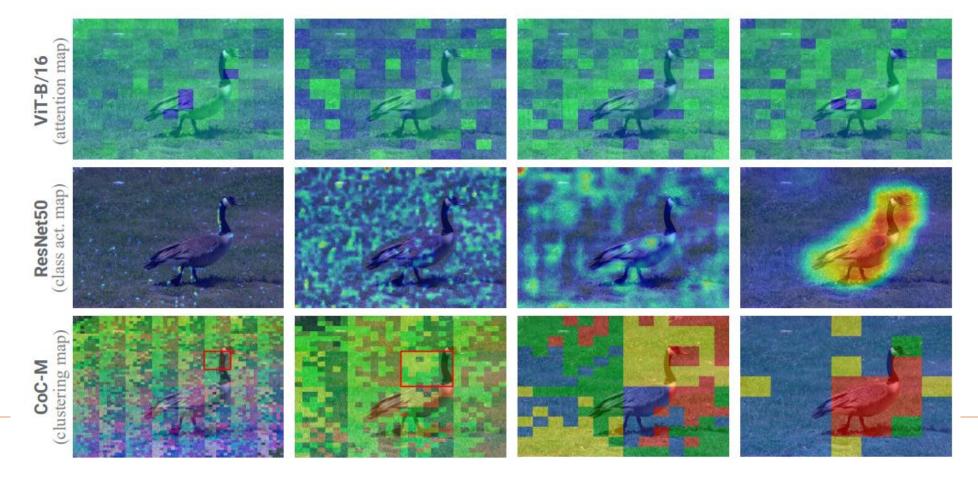
(a) standard k-means searches the entire image (b) SLIC searches a limited region

- Imagenet-1k classification,
- Comparable, even better some case

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
	ResMLP-12 (Touvron et al., 2021a)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2021a)	30.0	6.0	79.4	509.7
Ь	ResMLP-36 (Touvron et al., 2021a)	45.0	8.9	79.7	452.9
MLP	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
4	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	# gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	# gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
tion	 PVT-Tiny (Wang et al., 2021) 	13.2	1.9	75.1	-
Attention	 PVT-Small (Wang et al., 2021) 	24.5	3.8	79.8	<u>ः = -</u>
VII	 ◆ T2T-ViT-7 (Yuan et al., 2021a) 	4.3	1.1	71.7	-
H	 DeiT-Tiny/16 (Touvron et al., 2021b) 	5.7	1.3	72.2	523.8
	 DeiT-Small/16 (Touvron et al., 2021b) 	22.1	4.6	79.8	521.3
-	ResNet18 (He et al., 2016)	12	1.8	69.8	584.9
tio	ResNet50 (He et al., 2016)	26	4.1	79.8	524.8
I	 ConvMixer-512/16 (Trockman et al., 2022) 	5.4	-	73.8	-
IVO	 ConvMixer-1024/12 (Trockman et al., 2022) 	14.6	-	77.8	21 <u>1</u>
Convolution	 ConvMixer-768/32 (Trockman et al., 2022) 	21.1	-	80.16	142.9
	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
Cluster	Context-Cluster-Ti [‡] (ours)	5.3	1.0	71.7	510.8
P	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
<u> </u>	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

 Imagenet-1k classification

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
	ResMLP-12 (Touvron et al., 2021a)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2021a)	30.0	6.0	79.4	509.7
Р	ResMLP-36 (Touvron et al., 2021a)	45.0	8.9	79.7	452.9
MLP	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
4	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	# gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	# gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
C	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
ioi	 PVT-Tiny (Wang et al., 2021) 	13.2	1.9	75.1	-
ent	 PVT-Small (Wang et al., 2021) 	24.5	3.8	79.8	<u></u>
Attention	◆ T2T-ViT-7 (Yuan et al., 2021a)	4.3	1.1	71.7	-
F	 DeiT-Tiny/16 (Touvron et al., 2021b) 	5.7	1.3	72.2	523.8
	 DeiT-Small/16 (Touvron et al., 2021b) 	22.1	4.6	79.8	521.3
a	ResNet18 (He et al., 2016)	12	1.8	69.8	584.9
tio	ResNet50 (He et al., 2016)	26	4.1	79.8	524.8
Convolution	 ConvMixer-512/16 (Trockman et al., 2022) 	5.4	-	73.8	-
M	 ConvMixer-1024/12 (Trockman et al., 2022) 	14.6	-	77.8	°
0	 ConvMixer-768/32 (Trockman et al., 2022) 	21.1	-	80.16	142.9
H	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
Cluster	Context-Cluster-Ti ⁺ (ours)	5.3	1.0	71.7	510.8
R	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
-	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2


 Imagenet-1k classification

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
	ResMLP-12 (Touvron et al., 2021a)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2021a)	30.0	6.0	79.4	509.7
A	ResMLP-36 (Touvron et al., 2021a)	45.0	8.9	79.7	452.9
MLP	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
4	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	# gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	# gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
C	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
tion	 PVT-Tiny (Wang et al., 2021) 	13.2	1.9	75.1	-
Attention	 PVT-Small (Wang et al., 2021) 	24.5	3.8	79.8	<u></u>
V tt	 T2T-ViT-7 (Yuan et al., 2021a) 	4.3	1.1	71.7	-
4	 DeiT-Tiny/16 (Touvron et al., 2021b) 	5.7	1.3	72.2	523.8
	 DeiT-Small/16 (Touvron et al., 2021b) 	22.1	4.6	79.8	521.3
a	 ResNet18 (He et al., 2016) 	12	1.8	69.8	584.9
tio	 ResNet50 (He et al., 2016) 	26	4.1	79.8	524.8
h	 ConvMixer-512/16 (Trockman et al., 2022) 	5.4	-	73.8	-
Convolution	 ConvMixer-1024/12 (Trockman et al., 2022) 	14.6	-	77.8	· 🛏
0	 ConvMixer-768/32 (Trockman et al., 2022) 	21.1	-	80.16	142.9
	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
ste	Context-Cluster-Ti [‡] (ours)	5.3	1.0	71.7	510.8
Cluster	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

 Imagenet-1k classification

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
	ResMLP-12 (Touvron et al., 2021a)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2021a)	30.0	6.0	79.4	509.7
Ч	ResMLP-36 (Touvron et al., 2021a)	45.0	8.9	79.7	452.9
MLP	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
4	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	# gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	# gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
u	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
ioi	 PVT-Tiny (Wang et al., 2021) 	13.2	1.9	75.1	-
Attention	 PVT-Small (Wang et al., 2021) 	24.5	3.8	79.8	-
VII	 T2T-ViT-7 (Yuan et al., 2021a) 	4.3	1.1	71.7	-
A	 DeiT-Tiny/16 (Touvron et al., 2021b) 	5.7	1.3	72.2	523.8
	 DeiT-Small/16 (Touvron et al., 2021b) 	22.1	4.6	79.8	521.3
u	 ResNet18 (He et al., 2016) 	12	1.8	69.8	584.9
lioi	 ResNet50 (He et al., 2016) 	26	4.1	79.8	524.8
III	 ConvMixer-512/16 (Trockman et al., 2022) 	5.4	s	73.8	-
DAL	 ConvMixer-1024/12 (Trockman et al., 2022) 	14.6	-	77.8	-
Convolution	 ConvMixer-768/32 (Trockman et al., 2022) 	21.1	-	80.16	142.9
	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
Cluster	♥ Context-Cluster-Ti‡ (ours)	5.3	1.0	71.7	510.8
Ŋ	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
0	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

 Visualization of activation map, class activation map, and clustering map for ViT-B/16, ResNet50, and our CoC-M

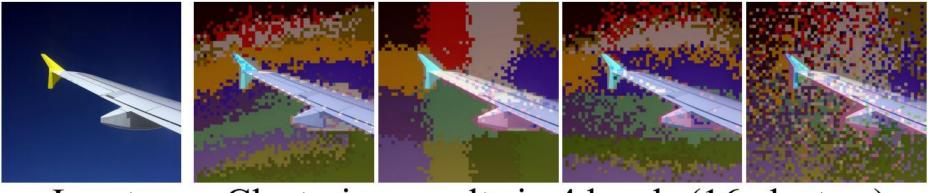
- 3D Point Cloud Classification on ScanObjectNN
- PointMLP as baseline

Method	mAcc(%)	OA(%)
SpiderCNN (Xu et al., 2018)	69.8	73.7
 DGCNN (Wang et al., 2019) 	73.6	78.1
PointCNN (Li et al., 2018)	75.1	78.5
• GBNet (Qiu et al., 2021)	77.8	80.5
 PointBert (Yu et al., 2022d) 	-	83.1
 Point-MAE (Pang et al., 2022) 	_	85.2
 Point-TnT (Berg et al., 2022) 	81.0	83.5
PointNet (Qi et al., 2017a)	63.4	68.2
PointNet++ (Qi et al., 2017b)	75.4	77.9
♣ BGA-PN++ (Uy et al., 2019)	77.5	80.2
A PointMLP (Ma et al., 2022)	83.9	85.4
PointMLP-elite (Ma et al., 2022)	81.8	83.8
PointMLP-CoC (ours)	84.4 ^{10.5}	86.2 _{10.}

Table 5: Semantic segmentation performance of different backbones with Semantic FPN on the ADE20K validation set.

Detection and segmentation

Backbone	Params	mIoU(%)
A ResNet18	15.5M	32.9
PVT-Tiny	17.0M	35.7
VCoC-Small/4	17.7M	36.6
VCoC-Small/25	17.7M	36.4
♥ CoC-Small/49	17.7M	36.3


Table 4: COCO object detection and instance segmentation results using Mask-RCNN (1×).

Family	Backbone	Params	APbox	AP ₅₀ ^{box}	AP ^{box} ₇₅	APmask	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
Conv.	ResNet-18	31.2M	34.0	54.0	36.7	31.2	51.0	32.7
Attention	PVT-Tiny	32.9M	36.7	59.2	39.3	35.1	56.7	37.3
	♥ CoC-Small/4	33.6M	35.9	58.3	38.3	33.8	55.3	35.8
Cluster	♥ CoC-Small/25	33.6M	37.5	60.1	40.0	35.4	57.1	37.9
	♥ CoC-Small/49	33.6M	37.2	59.8	39.7	34.9	56.7	37.0

Figure 8: The clustering results of the last context cluster block in the first CoC-Tiny stage (without region partition). Without region partition, Our Context Cluster astonishingly displays "superpixel"-like clustering results, even in the early stage. we pick the most intriguing one out of the four heads.

Multi heads

Input Clustering results in 4 heads (16 clusters)

Figure 9: A sample of all groups' clustering results.

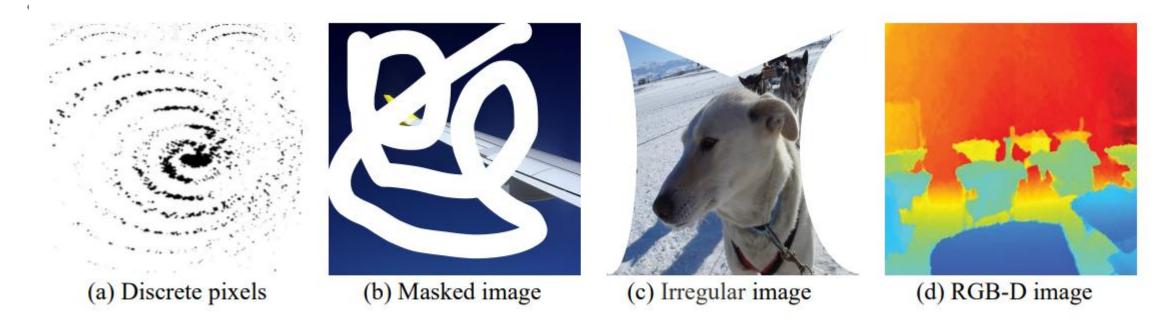


Figure 10: Four examples of image formats. Remember that there are no pixels in the white area.

Conclusion

- Propose a backbone with context cluster and metaformer structure
- Show promising performance
- Better interpretability for feature extraction and may support irregular input format

Thanks for your listening!