

Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields

Garvita Tiwari, Dimitrije Anti'c, Jan Eric Lenssen, Nikolaos Sarafianos, Tony Tung3, and Gerard Pons-Moll

ECCV 2022 Oral - Best Paper Honourable Mention

PRESENTER: YUERU JIA 2023/02/19

Outline

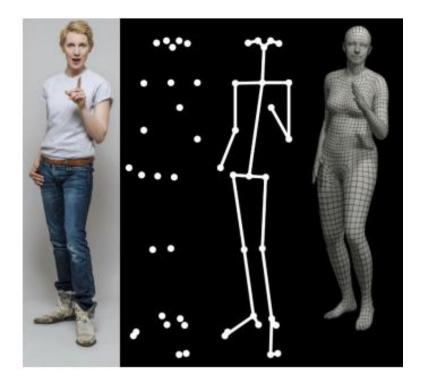
1 Authors

• Outline

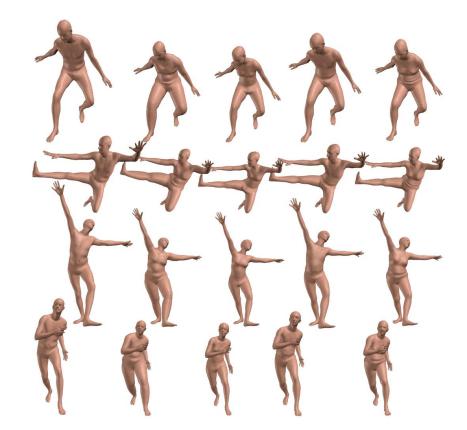
9

2/Background

- What is this work for?
- Pose and Motion Priors
 - estimate human pose from images and videos
 - data generation
 - denoising



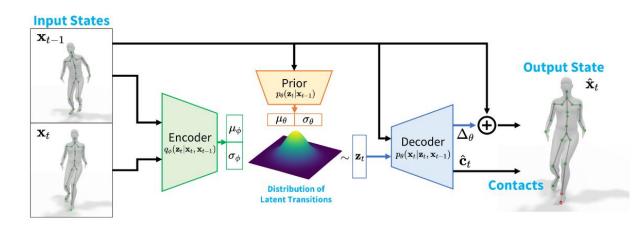
- SMPL (Skinned Multi-Person Linear Model)
 - vertex-based
 - **shape:** β , pose: θ
 - K=23, N=6890



- Current methods
 - VAE-based: VPoser, HuMoR
 - Gaussian assumption's limitations:
 - producing more likely poses near the mean of the computed Gaussian
 - Distances are not preserved
 - Dead regions

- Current methods
 - VPoser
 - Variational Human Pose Prior of SMPL-X
 - VAE with normal distribution

- Current methods
 - HuMoR
 - Generative sampling tasks
 - recover plausible pose sequences with noise and occlusions
 - Estimation from 3D and RGB Observations



- Other perspective:
 - To model the full manifold of plausible poses in high-dimensional pose space directly.
- implicit functions
 - a fully differentiable neural network
 - gradient descent

• Outline

- Given a neural network: $f : SO(3)^K \mapsto \mathbb{R}^+$
- Represent the manifold of plausible poses as the zero level set:

$$\mathcal{S} = \{ \boldsymbol{\theta} \in SO(3)^K \mid f(\boldsymbol{\theta}) = 0 \}$$

SMPL body model

1. Unit Quaternions as Representation of SO(3)

$$\boldsymbol{\theta} = \{ \boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_K \}$$

SO(3)

Distance between two poses:

$$d(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = \sqrt{\sum_{i=1}^{K} \frac{w_i}{2} (\arccos |\boldsymbol{\theta}_i^\top \cdot \hat{\boldsymbol{\theta}}_i|)^2}$$

2. Hierarchical Implicit Neural Function

- Local coordinate frame **manipulation** of a single joint
- ancestor rotations

$$f_1^{\text{enc}} : (\boldsymbol{\theta}_1) \mapsto \mathbf{v}_1 \qquad f_k^{\text{enc}} : (\boldsymbol{\theta}_k(\mathbf{v}_{\tau(k)})) \mapsto \mathbf{v}_k, \quad k \in \{2 \dots K\}$$

Combined pose embedding: $\mathbf{p} = [\mathbf{v}_1 || \dots || \mathbf{v}_K]$
$$f^{\text{udf}}(\boldsymbol{\theta}) = (f^{\text{df}} \circ f^{\text{enc}})(\boldsymbol{\theta})$$

)(0)

3. Loss function

- training data: $\mathcal{D} = \{(\theta_i, d_i)\}_{1 \le i \le N}$
- **standard distance loss:** $\mathcal{L}_{\text{UDF}} = \sum_{(\theta,d)\in\mathcal{D}} ||f^{\text{udf}}(\theta) d_{\theta}||_2$
- **Eikonal regularizer (unit-norm gradient)** $\mathcal{L}_{eikonal} = \sum_{(\theta,d)\in\mathcal{D}, d\neq 0} (||\nabla_{\theta} f^{udf}(\theta)||-1)^2$

- 4. Projection Algorithm
 - converge to local minima on the sphere, assuming a correctly learned distance function, is the nearest point on the pose manifold.

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in SO(3)^{K}} d(\boldsymbol{\theta}, \mathcal{S})$$

$$\boldsymbol{\theta}^{i} = \boldsymbol{\theta}^{i-1} - \alpha f(\boldsymbol{\theta}^{i-1}) \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^{i-1}),$$

• Outline

Set up:

Datasets: AMASS(Training, dθ = 0)

negative samples: distance dθ > 0

- Training scheme: Increase the number of non-manifold poses with a small distance in each training batch.
- f^{enc} : 2-layer MLP, f^{df} : 5-layer-MLP

- Different uses:
 - Denoising Mocap Data
 - 3D pose Estimation from Images
 - Pose Generation
 - Pose Interpolation

- Denoising Mocap Data
 - 1. motion denosing

Data		HPS [23]		А	MASS [38]	N	oisy AMA	SS
# frames	60	120	240	60	120	240	60	120	240
Method									
VPoser [49]	4.91	4.16	3.81	1.52	1.55	1.47	8.96	9.13	9.15
HuMoR [52]	9.69	8.73	10.86	3.21	3.62	3.67	11.04	17.14	30.31
Pose-NDF	2.32	2.14	2.11	0.59	0.55	0.54	7.96	8.31	8.46
ñ/		X			1	VPoser	HuMoR	Ours	GT

- Evaluate on two different settings:
 - clean (HPS, AMASS)
 - nosiy (add Gaussian noise to AMASS)
- Metrics: per-vertex error

- Denoising Mocap Data
 - 1. motion denosing

$$\hat{\boldsymbol{ heta}}^t = \operatorname*{arg\,min}_{\boldsymbol{ heta}} \lambda_{\mathrm{v}} \mathcal{L}_{\mathrm{v}} + \lambda_{\boldsymbol{ heta}} \mathcal{L}_{\boldsymbol{ heta}} + \lambda_t \mathcal{L}_t$$

- **data term:** $\mathcal{L}_{v} = ||\mathcal{J}(\boldsymbol{\beta}_{0}, \hat{\boldsymbol{\theta}}^{t}) \mathcal{J}_{obs}||_{2}^{2}$
- $\blacksquare \text{ temporal smoothness term} \qquad \mathcal{L}_t = ||M(\boldsymbol{\beta}_0, \boldsymbol{\hat{\theta}}^t) M(\boldsymbol{\beta}_0, \boldsymbol{\theta}^{t-1})||_2^2$
- **proir term:** $\mathcal{L}_{\boldsymbol{\theta}} = f^{\mathrm{udf}}(\boldsymbol{\theta})$

- Denoising Mocap Data
 - 2. Fitting to partial data (randomly create occluded poses)
 - Evaluate on three different type of occlusions: occluded left leg, occluded left arm and occluded right shoulder and upper arm

Metrics: per-vertex error

Data	Occ. Leg			Occ. Arm+hand			Occ. Shoulder +Upper Arm		
# frames	60	120	240	60	120	240	60	120	240
Method									
VPoser [49]	2.53	2.57	2.54	8.51	8.52	8.59	9.98	9.49	9.48
HuMoR [52]	5.60	6.19	9.09	7.83	8.44	10.25	4.75	5.11	4.95
Pose-NDF	2.49	2.51	2.47	7.81	8.13	7.98	7.63	7.89	6.76

3D pose Estimation from Images

 $\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}, \boldsymbol{\theta}} \mathcal{L}_{J} + \lambda_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\theta}} + \lambda_{\boldsymbol{\beta}} \mathcal{L}_{\boldsymbol{\beta}} + \lambda_{\alpha} \mathcal{L}_{\alpha},$

data term:
$$\mathcal{L}_J = \sum_{i \in \text{ioints}} \gamma_i w_i \rho(\Pi_K(R_\theta(J(\beta))) - J_{\text{est,i}}))$$

shape regularizer: $\mathcal{L}_{\beta} = ||\beta||^2$

prior term:
$$\mathcal{L}_{\boldsymbol{\theta}} = f^{\mathrm{udf}}(\boldsymbol{\theta})$$

bending term:
$$\mathcal{L}_{\alpha} = \sum_{i \in (\text{elbow,knees})} \exp(\theta_i)$$

$$\lambda_{\boldsymbol{\theta}} = w f^{\mathrm{udf}}(\boldsymbol{\theta})$$

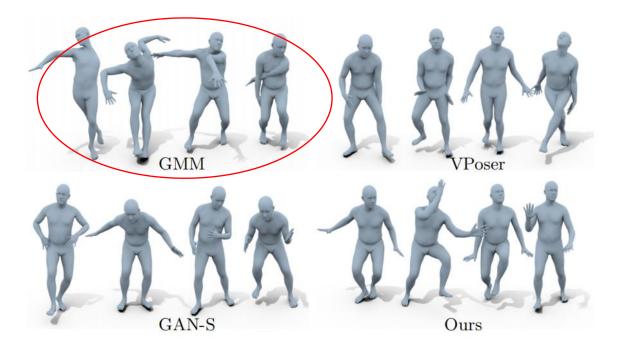
• To ensure that if the pose is getting close to the manifold, the prior term is down-weighted, which results in faster convergence.

3D pose Estimation from Images

- EHF dataset
- Refine the ExPose output with Pose-NDF as prior

Method	Optimization			ExPose		ExPose + Optimization		
	VPoser [49]	GAN-S [16]	Pose-NDF	\frown	+No prior	+ VPoser [49] -	- GAN-S [16]	+Pose-NDF
Per-vertex error (mm)	60.34	59.18	57.39	54.76	99.78	67.23	54.09	53.81
8. 				$\overline{}$				

- Pose Generation:
- Sample a random point from SO(3)K and project it onto the manifold.



Pose Generation

- Average Pairwise Distance (APD): mean joint distance between all pairs of samples
 - the diversity of generated poses
 - the percentage of self-intersecting faces in generated poses

	GMM	VPoser	GAN-S	Pose-NDF
APD	48.24	23.13	27.52	32.31
percentage	/	0.89%	1.43%	2.10%

- **Pose Interpolation** $\boldsymbol{\theta}_{t} = \boldsymbol{\theta}'_{t-1} + \tau(\boldsymbol{\theta}'_{T} \boldsymbol{\theta}'_{t-1})$
 - Evaluate: mean per-vertex distance
 - Pose-NDF(2.72 ± 2.16), GAN-S (2.71 ± 2.45), VPoser(2.53 ±4.62)

- Pose-NDF vs. Gaussian Assumption models
 - the cumulative error based on deviation from the mean pose
 - AMASS Noisy (60 and 120 frames)

	Pose-NDF	VPoser	HuMoR
σ	8.18	8.35	10.08
2σ	8.20	9.11	11.38
3σ	8.21	9.13	16.86

• Outline

Conclusion

- human pose prior model
- a scalar neural distance
- zero level set in SO(3)K.
- Application:
 - diverse pose sampling
 - pose estimation from images
 - motion denoising.

36

Thanks!