Visual Prompting via Image Inpainting NeurIPS 2022

Amir Bar^{* 1,2}, Yossi Gandelsman^{* 1}, Trevor Darrell¹, Amir Globerson², Alexei A. Efros¹ 1 UC Berkeley 2 Tel Aviv University

Outline

- Authorship
- Background
- Method
- Experiments
- Summary

Prompting

Pretrain-finetune

Finetuning the pretrained model with downstream data & labels

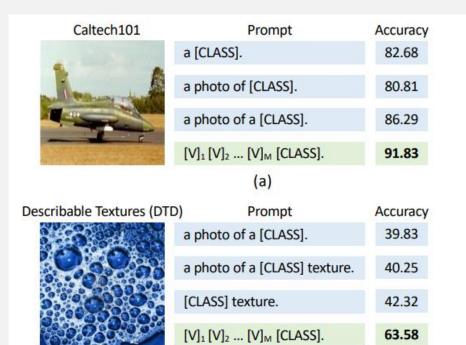
- Pretrain-prompt-predict
 - No longer need finetuning
 - Using prompting to predict
 - E.g. Sentiment prediction. "I love this moive."
 - Prompt: "I love this moive. Overall, it was a [Z] moive." We predict sentiment by [Z]

Prompting

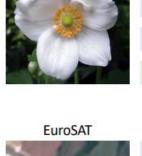
Learned prompt

Human-designed prefix is time-consuming/not robust

- Learning a prefix with few-shot data
 - "I love this moive. Overall, it was a [Z] moive."
 - "I love this moive.[P][Z]." [P] is tuned on the downstream data.

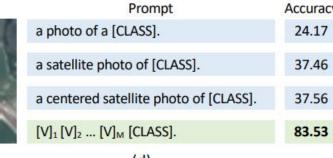

Prompting in Vision

CLIP



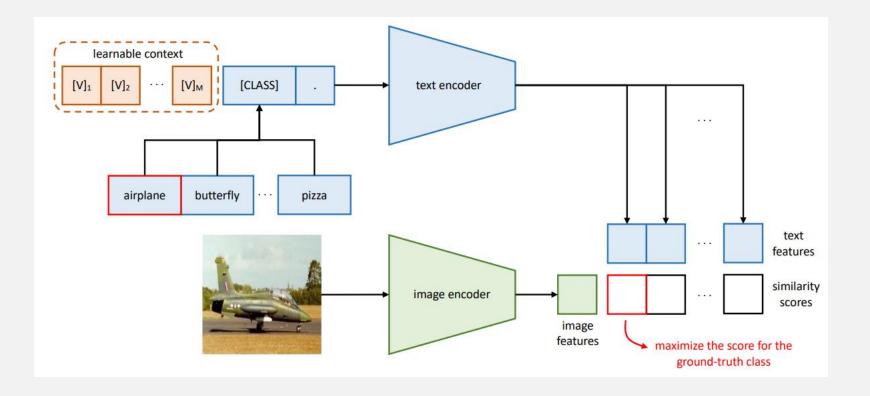
Prompting in Vision

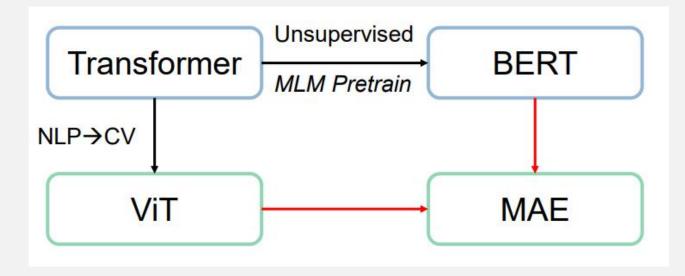
CoOp: Using learned prompt



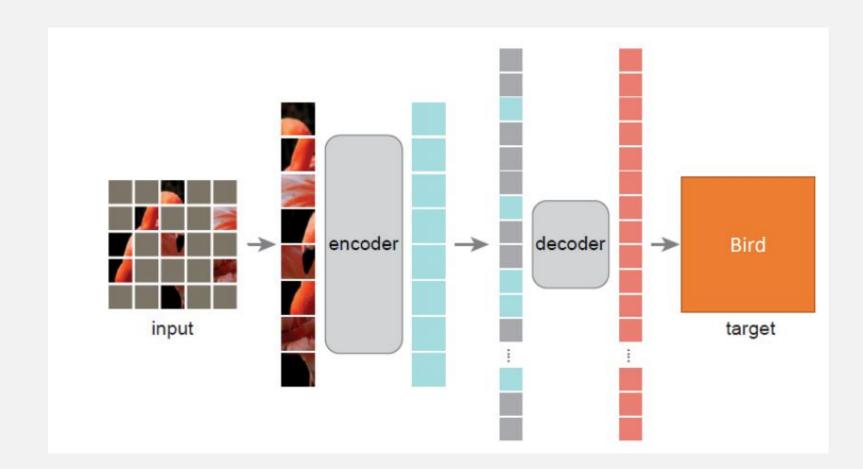
(c)

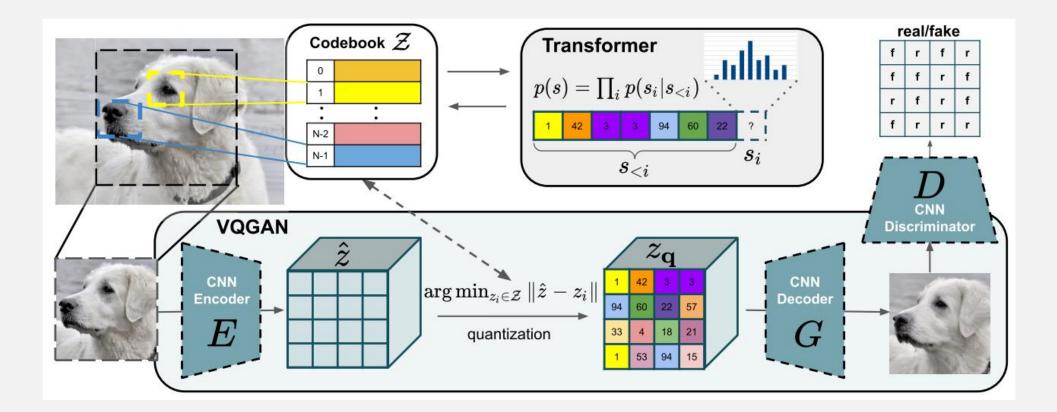
Flowers102


Prompt	Accuracy
a photo of a [CLASS].	60.86
a flower photo of a [CLASS].	65.81
a photo of a [CLASS], a type of flower.	66.14
[V] ₁ [V] ₂ [V] _M [CLASS].	94.51
(b)	
Prompt	Accuracy

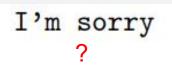

(d)

Prompting in Vision


CoOp: Using learned prompt


MAE

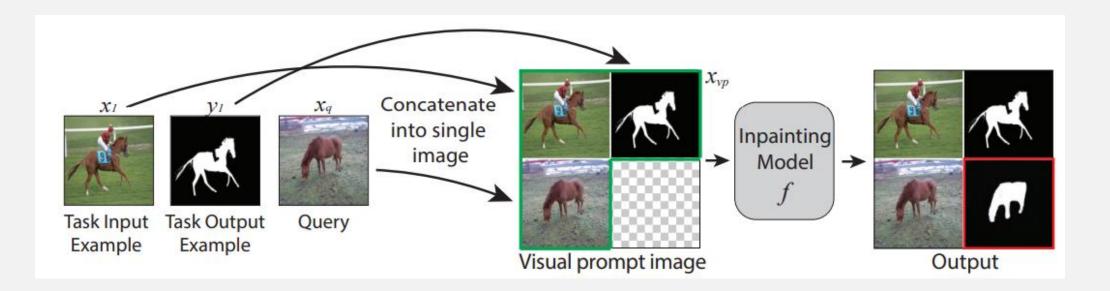
MAE


VQGAN

Motivation

Prompting in NLP

Je suis désolé J'adore la glace


Motivation

Prompting in NLP

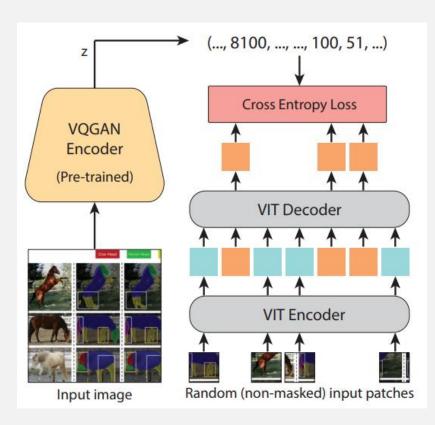
Je suis désolé I'm sorry J'adore la glace I love ice cream

Overview

■ Prompting in NLP→CV

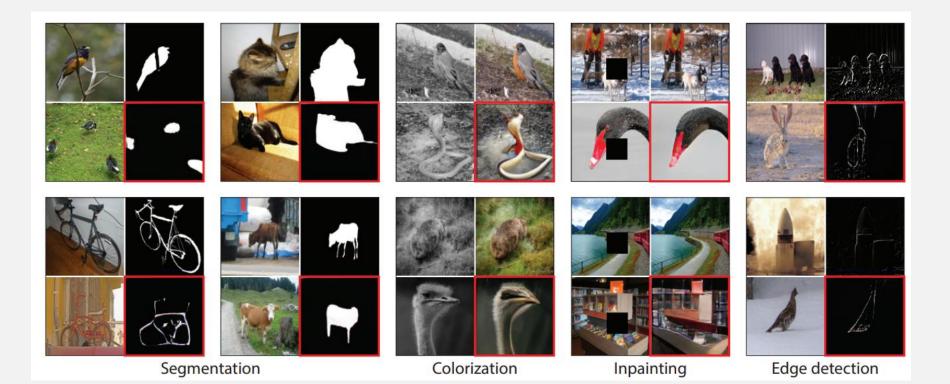
Overview

■ Prompting in NLP→CV

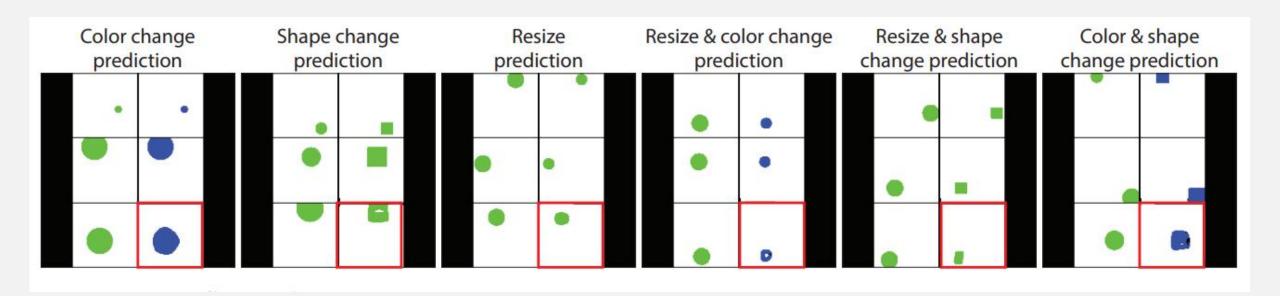

Data

88k unlabeled figures from Arxiv [Opensourced]

Network Structure


Based on MAE-VQGAN

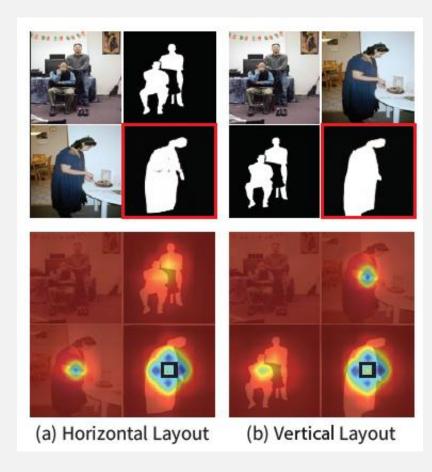
Experiment CV Tasks


Model	Foreground Segmentation ↑			Single Object Detection ↑				Colorization \downarrow		
	Split 0	Split 1	Split 2	Split 3	Split 1	Split 2	Split 3	Split 4	MSE	LPIPS
Сору	12.92	17.90	13.52	15.29	12.14	13.50	13.03	12.38	2.63	0.75
BEiT (IN-21k)	0.38	0.93	0.90	0.95	0.24	0.32	0.19	0.10	1.25	0.73
VQGAN (IN-1k)	6.96	10.55	9.59	9.43	5.19	4.99	5.09	5.10	2.44	0.66
MAE (IN-1k)	1.92	6.76	3.85	4.57	1.37	1.98	1.62	1.62	1.13	0.87
MAE-VQGAN (IN-1k)	2.22	7.07	5.48	6.28	3.34	3.21	2.80	2.80	3.31	0.75
BEiT (Figures)	5.38	3.94	3.20	3.29	0.17	0.02	0.14	0.16	0.60	0.70
VQGAN (Figures)	12.56	17.51	14.27	15.06	2.27	2.37	2.48	1.99	1.50	0.56
MAE (Figures)	17.42	25.70	18.64	16.53	5.49	4.98	5.24	5.84	0.43	0.55
MAE-VQGAN (Figures)	27.83	30.44	26.15	24.25	24.19	25.20	25.36	25.23	0.67	0.40

CV Tasks

23

Synthetic Data


-Synthetic Data

	Color	Shape	Size	Color & Shape	Color & Size	Shape & Size
Сору	5.53	6.71	1.17	6.74	1.17	1.86
VQGAN (IN-1k)	0.91	6.51	6.24	2.40	0.70	6.53
BEiT (IN-22k)	15.99	9.08	1.26	7.23	2.84	2.66
MAE (IN-1k)	0.00	2.07	1.20	0.00	0.00	1.56
MAE-VQGAN (IN-1k)	0.13	2.94	3.71	0.00	0.01	3.60
VQGAN (Figures)	6.96	19.11	16.21	7.40	2.24	18.41
BEiT (Figures)	40.92	31.43	7.12	33.10	21.21	12.98
MAE (Figures)	70.23	43.99	34.72	19.30	18.99	46.02
MAE-VQGAN (Figures)	40.40	46.53	42.04	20.41	18.27	40.33

Comparing to Finetuning and 1-shot Segmentaion

Pretraining	# Labeled Images	# Shots	Model	Split 0	Split 1	Split 2	Split 3
Unlabeled ImageNet	1 4	1 4	Finetune MAE	11.1 12.9	13.4 15.8	13.0 14.3	12.3 15.0
	16	16		13.7	16.1	16.8	17.1
Unlabeled Figures	1	1	MAE-VQGAN	32.5	33.8	32.7	27.2
Labeled Pascal 5i (Segmentation masks)	2086 - 5883	1 1	FWB [36] CyCTR [59]	51.3 67.2	64.5 71.1	56.7 57.6	52.2 59.0

Prompting Engineering

Prompting Engineering

	Horizontal	Vertical
Black/White	27.17	31.57
Purple/Yellow	23.44	28.47

Prompting Ensembling

Prompt Layout	Color	Shape	Size
Horizontal	39.97	46.54	42.01
+ Vertical	41.31	54.71	46.18
+ Vertical w/ Rows Swap	44.14	60.42	49.42

Style/content Extrapolation

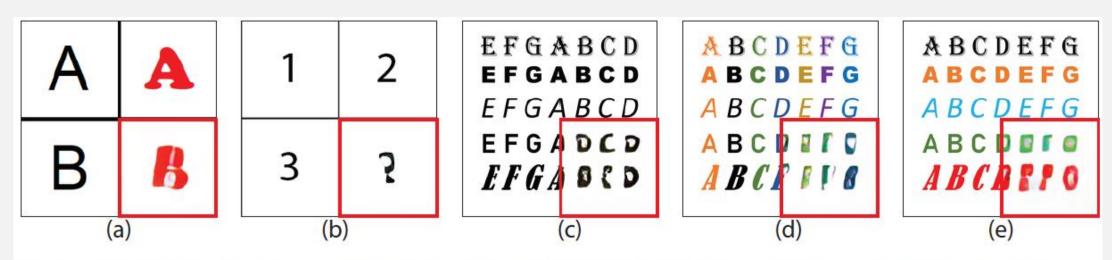


Figure 10: Style and content extrapolation using MAE-VQGAN. The model can extrapolate the style of a new content (a), but fails to predict a new content (b). The model struggles to extrapolate new style and content of longer sequences (c-e).

Conclusion

- The dataset is interesting and may be helpful
- Transferring ideas from NLP can benefit CV
- Combining pretraining models (MAE+VQGAN) may be helpful
- Visual prompting can be adapted to many vision tasks
 - especially for some specific scenario