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Slot Attention (1/4)
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• Object-Centric Learning with Slot Attention (NeurIPS 2020)

• Task: unsupervised object discovery, i.e., 
uncovering patterns that define objects and 
discriminates them against the background.

• More specifically, seperate an image to sets of 
pixels. 



Slot Attention (2/4)
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• Encoder: Vanilla CNN, ResNet, etc. Output features of size Dinputs*H0*W0

• Slot attention module. Output k slots, each with size Dslots

1) Sampling: Sample all object latents (i.e., slots) from the same prior distribution to encourage 
representational uniformity across all slots. 
2) Binding: Bound each slot to an object region via an attention mechanism.
3) Updating: Each slot gets updated by the bound object features to specialize for that object.
• Decoder: TransposeConvNets. Given a slot latent, broadcast it into an initial size (e.g, 8*8), 

then upsample to the original size. For each slot, output: 4*H*W (R, G, B, alpha). Alpha is a 
mask for compositing slots and determine the attribution of pixel.

• Slots: Latent vector that describe a single object

composite



• Primary Idea: Attention machanism
• Slots compete for explaining parts of the input
• Slots as queries 
• Features as keys&values (per input position, extracted by 

CNN, with positional embeddings)

Slot Attention (3/4)
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Slot Attention (4/4)
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LayerNorm: Normalize feature instead of batch
GRU: Gated Recurrent Unit (RNN with gates, similar to LSTM) 

• Pseudo code for attention module



Slot Attention in 3D (1/1)
• Unsupervised Discovery of Object Radiance Fields (ICLR 2022)

Single image NeRF for scene editing & synthesis
• Given a single reference image, extract slot latents for scence segmentation, 

decompostion, etc.
• Condition NeRF on the slot latent
• Trained on reconstruction loss 17



Slot Attention in 3D (2/2)
• NeRF Overview

• Volume rendering

*

• Conditional NeRF



Slot Attention: Conclusion

Problems of slot attention
• Slot is a mixture of object information ➡  ️How to disentangle "slot"? 
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composite

One sentence summary: use slots to explain objects.
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Method: Overview (1/6)
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• Disentangle slot’s appearance with its position, scale, and rotation.

• Specifically, learn the position, scale, and rotation  (Sp, Ss, Sr) of each slot

• As a result, slot feature is invariant to position, scale, and rotation.



Uniform positional encoding Relative positional encoding for slot 0

Method: Invariance to Translation and Scaling  (2/6)
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• In original slot attention, we add positional encoding to each input feature
• Relative positional encoding for each slot (K slots in total)
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Method: Invariance to Translation and Scaling (3/6)
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add slot-specific
positional encoding

• Obtain slot keys and values

• Obtain attention and updates
• Update slots by GRU
• Update slots’ position and scale latent

Intuitive explanation: move slot to the place with higher attention

input
features

slots



Method: Invariance to Rotation (4/6)
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• Encode rotation (Sr) 
• Heuristic: the orientation of a slot is given by the axis with the highest variation

eigenvector of the covariance matrix

• Author’s claim: Not effective enough
• My opinion: Unreasonable to encode rotation in 3D by 2D rotation matrix



• Decode each slot
• Calculate rel_grid for current slot
• Spatially broadcast slot with relative positional encoding 
• Decode the RGB value and alpha mask (an image per slot)

• Alpha composite the images

Method: Decoding (5/6)
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Method (6/6)
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Eeperiments (1/6)
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• Datasets
• Tetrominos 
• Objects Room
• MultiShapeNet
• CLEVR
• CLEVR Tex
• Waymo Open (real-world, only for qualitative)

• Evaluation Protocol
• Qualitative
• Quantitative (FG-ARI)



Eeperiments (2/6)
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• Adjusted Rand Index:

• Rand Index: Calculate the similarity between two partitions of a set



Experiments: Quantitative (3/6)
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• Rotation invariance does not bring 
consistent improvement



Experiments: Qualitative (4/6)
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• ISA-T improves OOD robustness • Qualitative results on MultiShapeNet

• Qualitative results on Waymo open



Experiments: Reproduction (5/6)
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• Cannot guarantee one slot represent one object 
• No explicit control on background (multiple background slot)
• Cannot handle occulusion (general problem for 2D methods)
• Undesirable reconstruction result on edges (e.g, tend to smooth sharp edges)
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• Results for translation and scaling

translate translate, scale*1.5 translate, scale*2

Experiments: Reproduction (6/6)
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Conclusion
Pros
• The authors proposed invariant slot attention, a novel approach for obtaining object-

centric representations from 2D single image

Cons
• Position and scale are defined in the image plane, while objects position is 3D
• This approach seems only work for 2D

Future research direction
• 3D object-centric representations from a single image.
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Thanks for listening!


