Adding Conditional Control to Text-to-Image Diffusion Models

arXiv 2302 Lvmin Zhang*, Maneesh Agrawala* *Stanford University

> 马逸扬 2023/03/26

Content

- Authors
- Background
- Method
- Experiments

Content

- Authors
- Background
- Method
- Experiments

First, we briefly review Diffusion models.

Diffusion models are a kind of generative models.

Generative models: to build a projection between a known distribution (*e.g.* Gaussian distribution) to an unknown distribution (*e.g.* natural image distribution).

Diffusion models consist of two processes: *forward* and *reverse*.

- *forward* process:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$
(1)

- *reverse* process:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$
(2)

where

$$\tilde{\beta}_{t} = 1/(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \cdot \beta_{t}$$

$$\tilde{\mu}_{t}(\mathbf{x}_{t}, \mathbf{x}_{0}) = (\frac{\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t}}}{1 - \bar{\alpha}_{t}}\mathbf{x}_{0})/(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}}\mathbf{x}_{0}$$
(3)

Diffusion models consist of two processes: *forward* and *reverse*.

Forward diffusion process (fixed) Noise \mathbf{X}_4 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_0 \mathbf{X}_1 XT ... Reverse denoising process (generative) Noise \mathbf{X}_2 \mathbf{X}_3 \mathbf{x}_4 \mathbf{x}_0 \mathbf{x}_1 \mathbf{X}_{T} ...

Data

Data

Text-to-image diffusion models have achieved great results.

"a hedgehog using a calculator"

"robots meditating in a vipassana retreat"

"a fall landscape with a small cottage next to a lake"

"a surrealist dream-like oil painting by salvador dalí of a cat playing checkers"

"a professional photo of a sunset behind the grand canyon"

"a high-quality oil painting of a psychedelic hamster dragon"

"an illustration of albert einstein wearing a superhero costume"

GLIDE (arXiv 2112)

Text-to-image diffusion models have achieved great results.

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

DALLE-2 (arXiv 2204)

Text-to-image diffusion models have achieved great results.

A chromeplated cat sculpture placed on a Persian rug.

Android Mascot made from bamboo.

Intricate origami of a fox and a unicorn in a snowy forest.

Imagen (NIPS 22')

However, text-to-image diffusion models still have several problems:

- Texts can be less detailed to control the process of generation.

(*e.g.* to generate a several persons with specific poses.)

- They often fail when generating subjects with strong priors.

(*e.g.* to generate human hands.)

How to provide additional control during generation?

Content

- Authors
- Background
- Method
- Experiments

Method

Additional controls contain:

Canny edge / Hough line.

Skeleton.

Segmentation maps.

Depth maps.

Different from text embeddings, they all have same size to the generated images.

Method

The proposed framework.

Method

To leverage the pre-trained text-to-image models:

Use zero-convolution layers to ensure the outputs of the

conditioning model are zero at first.

To leverage the character of size:

Use copied main block to extract features with the same size.

Content

- Authors
- Background
- Method
- Experiments

Canny edge. 600 GPU hours. (A100 80G)

"a cute cat in a garden, masterpiece, detailed wallpaper"

"a cat with blue eyes in a room"

Hough line. 150 GPU hours. (A100 80G)

"hacker's room at night"

HED boundary. 300 GPU hours. (A100 80G)

"a clown with a hat and a clown face"

User sketching. 600+150 GPU hours. (A100 80G)

"a turtle in river"

"a masterpiece of cartoon-style turtle illustration"

"a cow with horns standing in a field"

"a robot ox on moon, UE5 rendering, ray tracing"

Human pose (Openpifpaf). 400 GPU hours. (RTX 3090Ti)

"artwork of Michael Jordan playing basketball"

Human pose (Openpose). 300 GPU hours. (A100 80G)

"astronaut"

Semantic segmentation (COCO). 400 GPU hours. (RTX 3090Ti)

"fantastic artwork, fairy tail"

"cyberpunk, city at night"

Semantic segmentation (ADE20k). 200 GPU hours. (A100 80G)

Normal map. 100 GPU hours. (A100 80G)

"Yharnam"

"cars parked in a city night"

Depth map. 500 GPU hours. (A100 80G)

Cartoon line drawings. 300 GPU hours. (A100 80G)

Cartoon line drawing

"1girl, masterpiece, best quality, ultra-detailed, illustration"

Ablation study: comparison between <u>ControlNet</u> and <u>Concatenate</u>.

without ControlNet (using Stability's "official" method to add the channels to input layer, same as their depth-to-image structure) SD + ControlNet

Thanks for watching.

马逸扬 2023/03/26