All-in-one Image Restoration for Unknown Degradations Using Adaptive Discriminative Filters for Specific Degradations

CVPR 2023

Dongwon Park, Byung Hyun Lee, Se Young Chun

INMC, Dept. of ECE, IPAI, Seoul National University, Republic of Korea Dept. of EE, UNIST, Republic of Korea

Presented by Zejia Fan 2023.10.15

好物推荐

• 配色B站账号

长期洗涤 | 花与月高级感配色
系列 | Sophia Ahamed
▶ 116.6万 2022-6-28

长期洗涤 | 莫兰迪向秋意纷然
配色系列 | 高级感配色15期
88.3万 2022-9-29

LONG WASHING

74 关注

审美提升	克莱因蓝小众向高				
级灰 高级感配色05期					
▶ 80.2万	2022-4-2				

LONG WASHING × 长祖洗浴 × Silisili × 正式入驻bilibili

长期洗涤Longwashi... LVE+ 年度大会员

76.0万 粉丝 93.2万 获赞

研究色彩的,不洗衣服,洗涤心灵。合作邮箱: longwashing@163.com (备注品牌和来意)

🕗 bilibili个人认证:bilibili 知名UP主

长期洗涤	莫兰迪向白茶花春
暖配色系列	高级感配色20期
▶ 73.2万	2-23

长期洗涤 | 饱和度高级感配色
系列06期 | Laura Perrucci
▶ 66.7万 2022-12-13

长期洗涤 | 饱和度高级感配色
系列 | Andoni Beristain
● 61.2万 2022-7-28

审美提升 | 克莱因蓝向高级灰与夏日灿烂 | 高级感配色10期● 51.3万2022-6-13

审美提升 | 世界著名配色 | 高级感配色番外篇01期● 46.7万 2022-3-19

长期洗涤 | 新年古风汉服中国
传统配色系列 | 朱山尽
● 46.5万 2022-12-31

нех	HEX	HEX
#5A7C4D	#E3971F	#E9DAAD
RGB	RGB	RGB
90,124,77	227,151,31	233,218,173
смүк	CMYK	смүк
71,45,82,4	15,49,90,0	13,15,37,0

HEX	HEX	HEX
#8B5357	#123B57	#3B6F7C
RGB	RGB	RGB
139,83,87	18,59,87	59,111,124
CMYK	⊂мүк	смүк
53,75,60,7	96,80,53,21	81,53,48,2

S-12

HEX	HEX	HEX
#5B8BAF	#E5A93C	#D7D6D7
RGB	RGB	RGB
91,139,175	229,169,60	215,214,215
смүк	смүк	CMYK
69,40,23,0	15,40,81,0	18,15,13,0

花与月 加拿大设计师SOPHIA AHAMED 插画作品《花与月》系列 HEX HEX HEX #182E59 #F9A647 **#EDCFAB** RGB RGB RGB 24,46,89 174,25,8 215,124,3 CMYK CMYK CMYK 99,93,48,17 39,100,100,5 20,61,100,0

花与月

加拿大设计师SOPHIA AHAMED 插画作品《花与月》系列

×

高级感配色

Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution

NIPS 2021

Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, Ying Shan

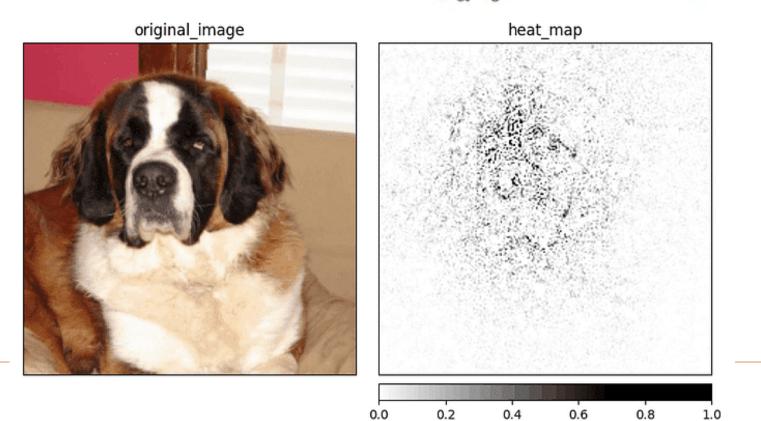
Integrated Gradients

- How to understand DNN?
 - F for model, baseline x' and the input image x
 - Baseline represents "absence of feature"

$$IntegratedGrads_i(x) ::= (x_i - x_i') imes \int_{lpha=0}^1 rac{\partial F(x' + lpha imes (x - x'))}{\partial x_i} dlpha$$

Integrated Gradients

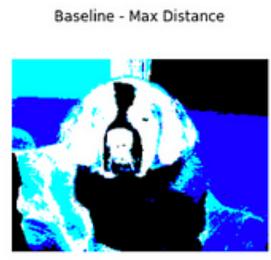
$$IntegratedGrads_i(x) ::= (x_i - x_i') imes \int_{lpha=0}^1 rac{\partial F(x' + lpha imes (x - x'))}{\partial x_i} dlpha$$

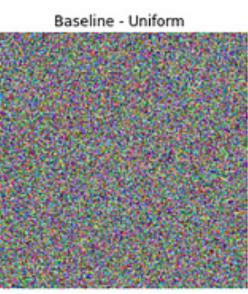


10

Integrated Gradients

$$IntegratedGrads_i(x) ::= (x_i - x'_i) imes \int_{lpha=0}^1 rac{\partial F(x' + lpha imes (x - x'))}{\partial x_i} dlpha$$





(a) Gaussian Baseline

(b) Blur Baseline

(c) Max Distance Baseline

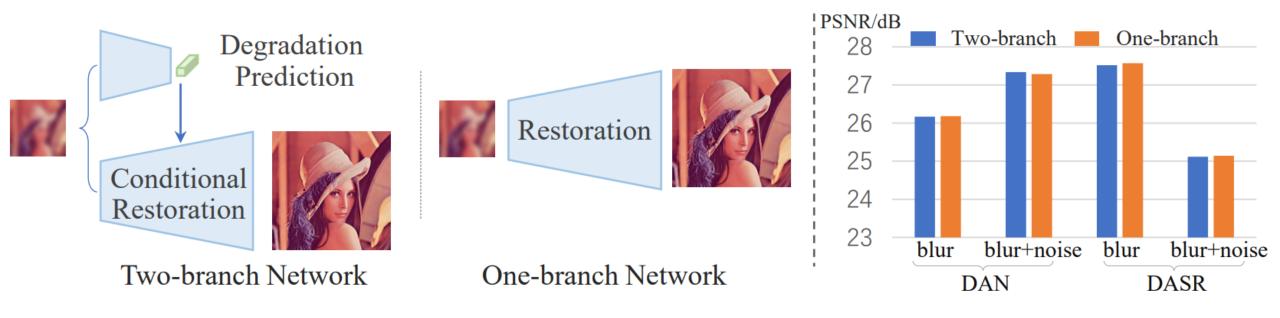
(d) Uniform Baseline

Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution

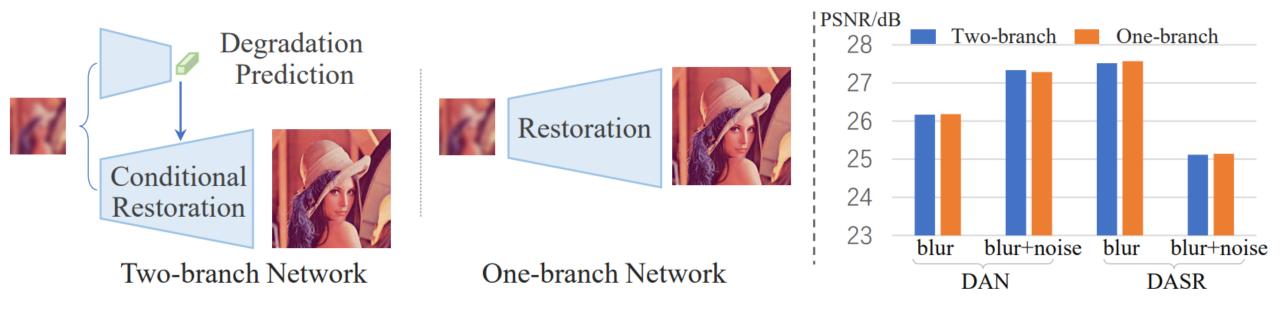
NIPS 2021

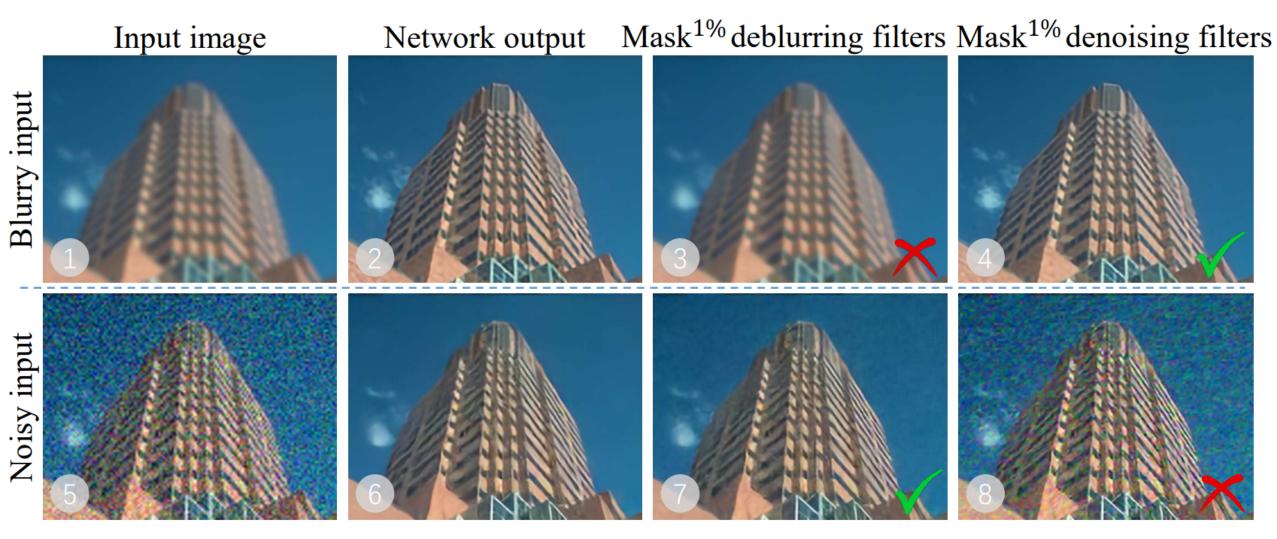
Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, Ying Shan

• A unified one-branch network achieve comparable performance under similar computation budgets for SOTA blind SR methods



- Open the black box
- Are there any small sub-network existing for a specific degradation?





- Filter Attribution Integrated Gradients (FAIG)
- Instead of focusing on image, attribute on network parameters

 $L(\theta, x)$ measures the distance between the network output and the ground-truth

$$\mathcal{L}(\theta, x) = \|F(\theta, x) - x^{gt}\|_2^2$$

Let $\gamma(\alpha)$, $\alpha \in [0, 1]$ be a continuous path between the baseline model and the target model, satisfying $\gamma(1) = \overline{\theta}$, $\gamma(0) = \theta$, input image x

$$\mathcal{L}(\bar{\theta}, x) - \mathcal{L}(\theta, x) = \mathcal{L}(\gamma(1), x) - \mathcal{L}(\gamma(0), x)$$
$$= \sum_{i} \int_{\alpha=0}^{1} \frac{\partial \mathcal{L}(\gamma(\alpha), x)}{\partial \gamma(\alpha)_{i}} \times \frac{\gamma(\alpha)_{i}}{\partial \alpha} d\alpha$$

the ith dimension (i.e., different network parameters) of the FAIG could be defined as

$$\mathsf{FAIG}_i(\theta, x) = \int_{\alpha=0}^1 \frac{\partial \mathcal{L}(\gamma(\alpha), x)}{\partial \gamma(\alpha)_i} \times \frac{\gamma(\alpha)_i}{\partial \alpha} d\alpha$$

Baseline model:

- 1. Represent the 'absence' of the desired function
- 2. The output should also be an image with the same content as the input
- 3. Better to locate in a smaller neighborhood around the target model

First train a common SR model, finetune for blur and noise tasks

Problem:

- 1. The discovered filters do not guarantee to be only responsible for this degradation
- 2. Calculated for a single input image, influenced by image content

$$\operatorname{FAIG}_{i}^{\mathcal{D}}(\theta) = \frac{1}{|\mathcal{X}|} (\underbrace{\sum_{x \in \mathcal{X}} |\operatorname{FAIG}_{i}(\theta, x^{\mathcal{D}})|}_{\operatorname{attribution for degradtion}\mathcal{D}} - \underbrace{\sum_{x \in \mathcal{X}} |\operatorname{FAIG}_{i}(\theta, x^{\sim \mathcal{D}})|}_{\operatorname{attribution for other degradtions}}),$$

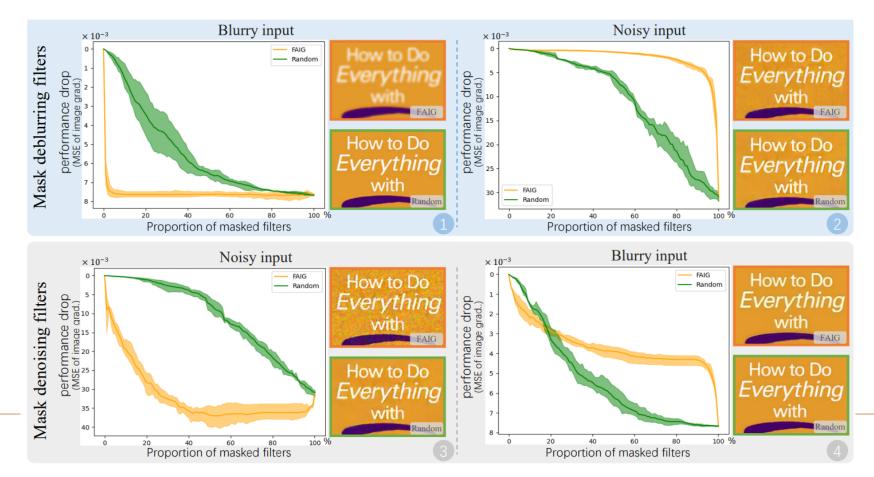
Predict the degradation of an input image

$$OS(x, \mathcal{D}) = \frac{|\{filter^{\mathcal{D}}\} \cap \{filter^x\}|}{|\{filter^x\}|}.$$

Compare the performance drop with other methods

(10^{-3})	mask 1% discovered filters				mask 5% discovered filters			
Input	FAIG (ours) IG $ \theta - \overline{\theta} $ Random				FAIG (ours)	IG	$ heta-ar{ heta} $	Random
Blurry image	6.68 ±0.63	4.31±1.54	0.18±0.13	0.07 ± 0.01	7.53 ±0.24	6.41±0.88	2.16 ± 0.61	0.55 ± 0.32
Noisy image	6.62 ±0.54	4.22 ± 0.44	$0.49 {\pm} 0.10$	$0.04 {\pm} 0.01$	16.28 ±3.84	8.01 ± 1.04	$3.25 {\pm} 1.85$	$0.19 {\pm} 0.05$

Compare the performance drop with other methods



Results of re-training baseline models with 1% filters for deblurring and denoising

PSNR(dB)		Re-train 1% filters for deblurring			Re-train 1% filters for denoising				
Input	Upper bound	FAIG	IG	$ heta-ar{ heta} $	Random	FAIG	IG	$ heta-ar{ heta} $	Random
Blurry	29.203	27.889	26.389	26.444	26.691	27.642	26.534	26.444	26.668
Blully	(±0.021)	(± 0.207)	(± 0.274)	(±0.097)	(± 0.092)	(± 0.007)	(± 0.125)	(± 0.096)	(± 0.126)
Noisy	26.712	25.268	25.211	25.288	25.239	25.743	25.141	25.275	25.204
INDISY	(± 0.008)	(± 0.035)	(± 0.005)	(± 0.044)	(± 0.034)	(± 0.033)	(± 0.116)	(± 0.035)	(± 0.016)

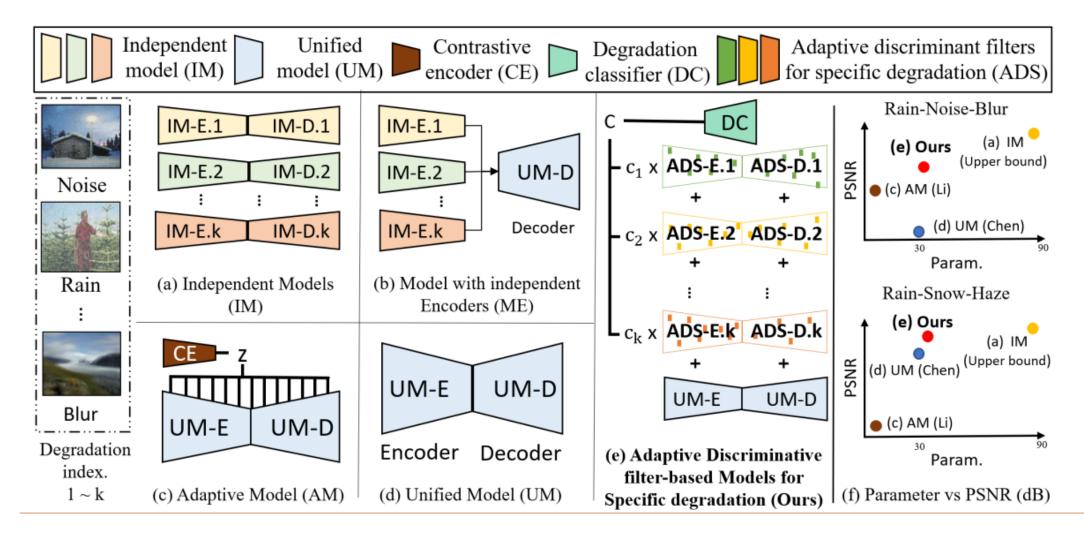
All-in-one Image Restoration for Unknown Degradations Using Adaptive Discriminative Filters for Specific Degradations

CVPR 2023

Dongwon Park, Byung Hyun Lee, Se Young Chun

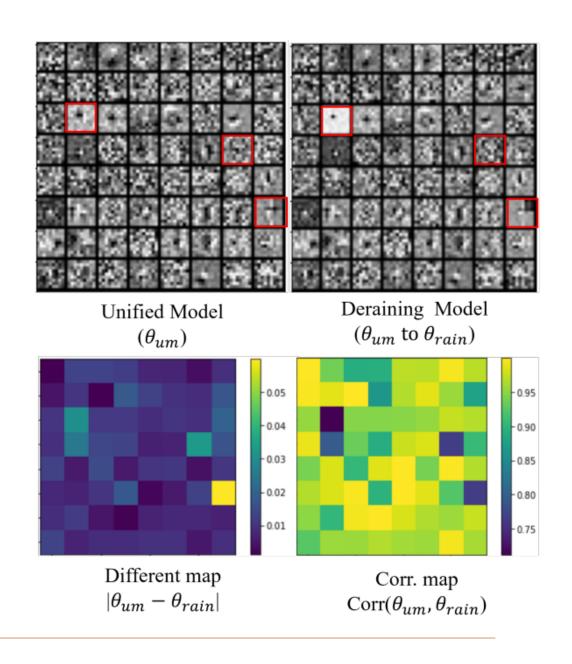
INMC, Dept. of ECE, IPAI, Seoul National University, Republic of Korea Dept. of EE, UNIST, Republic of Korea

ADMS



ADMS

- Visualization of convolution filters in UM for Rain-Noise-Blur and IM for Rain, where IM was fine-tuned from UM\
- Only a small number of filters changed



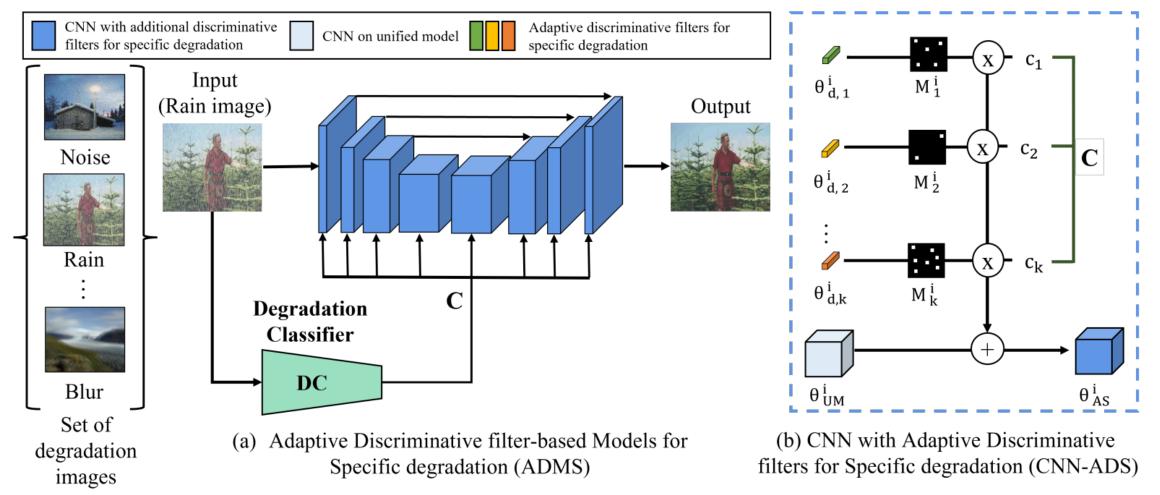
- the baseline model is the unified model trained for all degradations
- the target model for the specific degradation d is constructed by fine-tuning the baseline model.

$$\mathbf{F}_{i}(\theta_{ta},\theta_{ab},x) \approx \left| \frac{1}{N} [\theta_{ta} - \theta_{ab}]_{i} \sum_{t=0}^{N-1} \left[\frac{\partial \mathcal{L}(\lambda(\alpha_{t}),x)}{\partial \lambda(\alpha_{t})} \right]_{i} \right|$$

- the baseline model is the unified model trained for all degradations
- the target model for the specific degradation d is constructed by fine-tuning the baseline model.

$$\mathbf{F}_{i}(\theta_{ta},\theta_{ab},x) \approx \left| \frac{1}{N} [\theta_{ta} - \theta_{ab}]_{i} \sum_{t=0}^{N-1} \left[\frac{\partial \mathcal{L}(\lambda(\alpha_{t}),x)}{\partial \lambda(\alpha_{t})} \right]_{i} \right|$$

ADMS



- the baseline model is the unified model trained for all degradations
- the target model for the specific degradation d is constructed by fine-tuning the baseline model.

the adaptive network kernel θ_{ads} is defined as follows

$$\theta_{ads}^{i} = \theta_{um}^{i} + \sum_{d=1}^{k} \hat{c}_{d} \; \theta_{d}^{i} \odot M_{d}^{i}$$

C is the predicted degradation type where the sum of all \hat{c}_d is 1 and each \hat{c}_d is in between 0 and 1

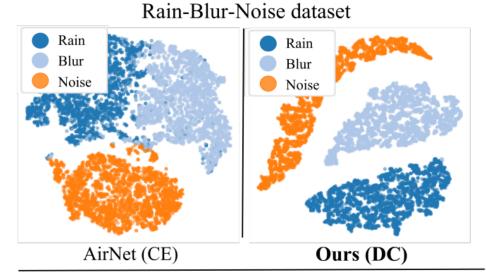
• Quantitative performance comparison on the Rain-Blur-Noise test dataset

Net	M	Rain	Blur	Noise	Avg.	Par.
NAF	IM	33.03	30.30	31.59	31.64	51.3
MSB	IM	33.02	28.79	31.52	31.11	83.1
NAF	UM	32.99	29.46	31.39	31.28	17.1
MSB	UM	32.12	26.61	30.97	29.90	28.7
M-L	UM	32.25	26.81	31.00	30.02	34.6
MSB	-Chen	32.14	25.91	30.85	29.63	28.7
Air	met	32.49	26.84	31.41	30.25	7.6
NAF	Ours	33.15	29.99	31.53	31.56	18.9
MSB	Ours	32.74	27.56	31.42	30.58	31.6

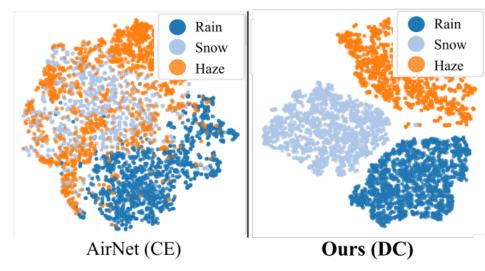
• Quantitative performance comparison on the Rain-Snow-Hazy test dataset

Net	Μ	Rain	Snow	Hazy	Avg.	Par.
MSB	IM	34.81	31.42	31.67	32.63	86.1
MSB	UM	30.77	30.56	30.45	30.59	28.7
MSB-Chen		31.52	32.28	30.54	31.45	28.7
Airnet		30.08	26.91	26.11	27.70	7.6
MSB	Ours	32.07	32.41	30.38	31.62	31.6
MSB	Chen,	31.89	33.83	30.56	32.09	31.6
IVISD	Ours	51.09	33.03	30.30	52.09	51.0

• Visualization of representations for degradation types



Rain-Snow-Haze dataset



Real data

Conclusion

- Introduce FAIG, a method to attribute performance on network
- The application on multi-degradation tasks

Thanks for your listening!