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What is generative models?

What are in generative model family?
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What’s the ideal generative models?

• One step projector

• Global projector
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A novel generative model —— Idempotent Generative Network

• The first step towards a “global projector”
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Applied sequentially multiple times without changing the result beyond the 

initial application:

Examples: Orthogonal Projection
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Generate samples from a target distribution       given input from a source 

distribution

Basic idea:

Learning a model f satisfy:
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Reconstruction objective
Each sample               is mapped to itself:

Define the drift measure of some instance y as:

Idempotent objective
Similarly, we hope                               , that is

Then the idempotence objective is formulated then as follows:

Does it work?
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What about                            ?

Makes on the estimated manifold, but not imply other instances not on that 

What does Idempotent optimization do?
• Mapping Z to S

• Expanding S
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Idempotent objective
Only optimize w.r.t. the first f(·) to discourage the incentive to expand

Not just discourage expand, but tighten:

Maximize the distance between f(y) and y
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Adversarial fashion
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Tightening loss metric

Final optimization objective



METHOD: Training Strategy
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Final optimization objective



METHOD: Theoretical Results
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How to prove the method is efficient?

• The convergenced generated distribution is aligned with target distribution
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Network architecture: Autoencoder from DCGAN

Dataset: MNIST(28*28) , CelebA(64*64)
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Generation from noise
FID=39 (DCGAN FID=34)
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Out-of-distribution projection
Generation from noisy image, grayscale and sketches
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Latent space manipulations
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Projection-based edit                  Projection-based compositing



OUTLINE

26

• Background

• Method

• Experiments

• Conclusion



CONCLUSION
• Compared with GAN

• Self-adversarial

• Compared with Diffusion
• The trajectory between distributions is determined solely by the model’s learning 

process but not set rule
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CONCLUSION
• Advantage

• A global projector, can apply to never seen data

• One step projector

• Allow more accurate finetune by multi-step map

• Limitation
• Mode collapse

• Blurriness

• Unsteadiness
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