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Background

Video object segmentation (VOS)

Setting: semi-supervised, where a first-frame annotation is provided by the user, and the method
segments objects in all other frames as accurately as possible while preferably running in real-
time, online, and while having a small memory footprint even when processing long videos.
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Background

Video object segmentation (VOS)

F = vW(k, q).
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Method

Formulation
image segmentation model Seg(l:) = Seg,
temporal propagation model Prop(H, I)
(XMem as a propagation backbone)

represent a segmentation as a set of non-
overlappmg per-object binary segments
{mz, 0<1 < |Mt|}

Bi-Directional Propagation
In-clip consensus

Merging Propagation of Consensus
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Figure 3. Overview of our framework. We first filter image-level segmentations with in-clip consensus (Section 3.2.1) and temporally
propagate this result forward. To incorporate a new image segmentation at a later time step (for previously unseen objects, e.g., red box),
we merge the propagated results with in-clip consensus as described in Section 3.2.2. Specifics of temporal propagation are in the appendix.



Method

In-clip consensus (Formulation)

Input a set of n frames (Seg,, Seg, s e S€Z 1)

Output a denoised consensus C:

3 steps: Spatial Alignment
Representation

Integer Programming
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Method

In-clip consensus (Spatial Alignment)

re-use temporal propagation model

Seg,,; = Prop ({It+i,Seg, .}, 1) ,0 <i < n.

In-clip consensus (Representation)

n—1

P = U §e\gt+z‘ ={pi,0 <i < [P[}.
i=0

C: = {pilv; =1} ={c;,0 < i <|C|}.
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Method

In-clip consensus (Integer Programming.)

two criteria;

1. Lone proposals p; are likely to be noise and should not [
be selected. Selected proposals should be supported by
other (unselected) proposals. [
2. Selected proposals should not overlap significantly
with each other. l
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Method

In-clip consensus (Integer Programming.)

understanding

v" = argmax,, Z (Supp, + Penal;) s.t.

support for proposal

i (1 Dj
IOUij = IOUji = |p le
[pi U pjl

IoU,.., if | _ .
Suppi:viZ{OUUv if IoU;; >05andz;é].

0, otherwise

J

do not select if overlap

Overlap; = {O, otherwise

ViVj, if IOUij >0.5and i # j

Z Overlap,; = 0.

1,7

(6)

Penal;, = —aw;.
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Method

Merging Propagation and Consensus

propagation and consensus (past and future)
Prop(H,I;) = Ry = {r;,0 < i < |R|} C; = {¢;,0 < j < |C|}

do not eliminate
M, = {TiUCj|CLij = 1}U{’I‘i|vjaij = O}U{Cj |Vz’aij = 0},

maximizing association Iou

¥

IoU(ri,c¢j), ifloU(r;,c;) > 0.5  a;; = life;; > 0and 0 otherwise
€ii = . .
—1, otherwise

segment deletion
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Experiments

Comparison with end-to-end

Pretrained on COCO panoptic dataset, fine-tuned on VIPSeg

Backbone VPQ' VPQ? VPQ* VPQ® VPQ® VPQ' VPQ™ VPQ STQ
Clip-PanoFCN end-to-end [45] semi-online 27.3 260 242 229 221 215 18.1 21.1 283
Clip-PanoFCN decoupled (ours) online 29.5 289 281 272 267 26.1 25.0 264 35.7
Clip-PanoFCN decoupled (ours) semi-online 31.3 308 30.1 294 288 283 271 284 358
Video-K-Net R50 end-to-end [34]  online 354 308 285 270 259 249 21.7 252 337
Video-K-Net RS50 decoupled (ours) online 358 352 345 33.6 331 326 305 323 384
Video-K-Net R50 decoupled (ours) semi-online 37.1 365 35.8 35.1 347 343 323 339 386
Mask2Former R50 decoupled (ours) online 41.0 402 393 384 379 373 33.8 364 41.1
Mask2Former R50 decoupled (ours) semi-online 42.1 41.5 40.8 40.1 39.7 393 36.1 38.3 41.5
Video-K-Net Swin-B end-to-end [34] online 498 452 424 405 39.1 37.9 326 37.5 452
Video-K-Net Swin-B decoupled (ours) online 482 474 465 456 451 445 420 44.1 486
Video-K-Net Swin-B decoupled (ours) semi-online 50.0 493 485 477 473 468 445 464 489
Mask2Former Swin-B decoupled (ours) online 553 546 538 528 523 519 49.0 51.2 524
Mask2Former Swin-B decoupled (ours) semi-online 56.0 554 54.6 539 535 53.1 50.0 52.2 522

Table 1. Comparisons of end-to-end approaches (e.g., state-of-the-art Video-K-Net [34]) with our decoupled approach on the large-scale
video panoptic segmentation dataset VIPSeg [45]. Our method scales with better image models and performs especially well with large k

where long-term associations are considered. All baselines are reproduced using official codebases.
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Experiments

In open-world video segmentation dataset BURST

Validation Test
M CthOd OWTAall OWTACO m OWTAu nc OW TA all OWTACO m OWTA unc
Mask2Former w/ Box tracker [2] 60.9 66.9 24.0 559 61.0 24.6
Mask2Former w/ STCN tracker [2] 64.6 71.0 25.0 57.5 62.9 239
OWTB [39] 55.8 59.8 38.8 56.0 59.9 38.3
Mask2Former w/ ours online 69.5 74.6 42.3 70.1 75.0 44.1
Mask2Former w/ ours semi-online 69.9 75.2 41.5 70.5 75.4 44.1
EntitySeg w/ ours online 68.8 72.7 49.6 69.5 72.9 53.0
EntitySeg w/ ours semi-online 69.5 73.3 50.5 69.8 73.1 53.3

Table 2. Comparison to baselines in the open-world video segmentation dataset BURST [2]. ‘com’ stands for ‘common classes’ and ‘unc’
stands for ‘uncommon classes’. Our method performs better in both — in the common classes with Mask2Former [7] image backbone,
and in the uncommon classes with EntitySeg [49]. The agility to switch image backbones is one of the main advantages of our decoupled
formulation. Baseline performances are transcribed from [2].
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Experiments

Referring video segmentation takes a text description of an object as input and segments the
target object.

Method Ref-DAVIS [25] Ref-YTVOS [55]
URVOS [55] 51.6 47.2
ReferFormer [64] 60.5 62.4
VLT [17] 61.6 63.8
Ours 66.3 66.0

Table 3. 7 &JF comparisons on two referring video segmentation
datasets. Ref-YTVOS stands for Ref-YouTubeVOS [55].



Experiments

Unsupervised video segmentation.

DAVIS-16(single-object) and DAVIS-17(multi-object).

Method Dl16-val DI17-val DI17-td
RTNet [54] 85.2 - -
PMN [31] 85.9 - -
UnOVOST [43] - 67.9 58.0
Propose-Reduce [36] - 70.4

Ours 88.9 73.4 62.1
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Experiments

Different hyperparameters Varying clip size VPQ' VPQ!" VPQ STQ FPS

n=1 41.0 373 364 41.1 103
n=2 404 372 363 390 98
n=3 421 393 383 415 78
n=4 421 39.1 385 423 6.6
n=>5 417 389 383 428 56
Varying merge freq. VPQ' VPQ!® VPQ STQ FPS
Every 3 frames 422 392 384 426 52
Every 5 frames 421 393 383 415 78
Every 7 frames 415 390 357 405 84
Spatial Align? VPQ' VPQ!" VPQ STQ FPS
Yes 421 393 383 415 78
No 36.7 339 328 337 9.2

Table 5. Performances of our method on VIPSeg [45] with dif-
ferent hyperparameters and design choices. By default, we use a
clip size of n = 3 and a merge frequency of every 5 frames with
spatial alignment for a balance between performance and speed.



Experiments

bi-directional propagation

Temporal scheme VPQ' VPQ* VPQ' VPQ STQ

Mask IoU 399 327 2777 27.6 345
Mask IoU+flow 40.2  33.7 288 28,6 370
Query assoc. 404  33.1 28.1  28.0 358
‘ShortTrack’ 406 333 283 282 37.2

‘TrustlImageSeg”  40.3 375 337 332 379
Ours, bi-direction 41.0  39.3 373 364 41.1

Table 6. Performances of different temporal schema on
VIPSeg [45]. Our bi-directional propagation scheme is necessary
for the final high performance.



Experiments

Demo with Segment Anything (automatic points-in-grid prompting);
Demo with Grounded Segment Anything (text prompt: "pigs"): original video follows DEVA result overlaying the video:

g

Source: https://youtu.be/FbK3SL97zf8 Qarirrar NAVIQ 2017 ualidatinn cat "cnanhav!




Conclusion

Using decoupled video segmentation that leverages external data,
generalize better and able to incorporate existing universal
segmentation models (like SAM)

bi-directional propagation that denoises 1image segmentations and
merges 1mage segmentations with temporally propagated
segmentations gracefully
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Thanks for your listening!




