Tracking Anything with Decoupled Video Segmentation

Ho Kei Cheng^{1†} Seoung Wug Oh² Brian Price² Alexander Schwing¹ Joon-Young Lee² ¹University of Illinois Urbana-Champaign ²Adobe Research

ICCV 2023 PRESENTER: JIAXUAN XIE

STRUCT GROUP SEMINAR

2023/12/24

Outline

- Background
- Method
- Experiments
- Conclusion

Background

Video object segmentation (VOS)

• Setting: semi-supervised, where a first-frame annotation is provided by the user, and the method segments objects in all other frames as accurately as possible while preferably running in real-time, online, and while having a small memory footprint even when processing long videos.

Background

Video object segmentation (VOS)

• $\mathbf{F} = \mathbf{v} \mathbf{W}(\mathbf{k}, \mathbf{q}).$

Formulation

- image segmentation model $Seg(I_t) = Seg_t$
- temporal propagation model Prop(H, I) (XMem as a propagation backbone)
- represent a segmentation as a set of nonoverlapping per-object binary segments $\mathbf{M}_t = \{m_i, 0 < i \le |\mathbf{M}_t|\},\$
- Bi-Directional Propagation
 - In-clip consensus
 - Merging Propagation of Consensus

Figure 3. Overview of our framework. We first filter image-level segmentations with in-clip consensus (Section 3.2.1) and temporally propagate this result forward. To incorporate a new image segmentation at a later time step (for previously unseen objects, e.g., red box), we merge the propagated results with in-clip consensus as described in Section 3.2.2. Specifics of temporal propagation are in the appendix.

In-clip consensus (Formulation)

- Input a set of n frames $(Seg_t, Seg_{t+1}, ..., Seg_{t+n-1})$
- Output a denoised consensus C_t
- 3 steps: Spatial Alignment Representation Integer Programming

In-clip consensus (Spatial Alignment)

• re-use temporal propagation model

 $\widehat{\operatorname{Seg}}_{t+i} = \operatorname{Prop}\left(\{I_{t+i}, \operatorname{Seg}_{t+i}\}, I_t\right), 0 < i < n.$

In-clip consensus (Representation)

$$\mathbf{P} = \bigcup_{i=0}^{n-1} \widehat{\operatorname{Seg}}_{t+i} = \{p_i, 0 < i \le |\mathbf{P}|\}.$$

$$\mathbf{C}_t = \{ p_i | v_i^* = 1 \} = \{ c_i, 0 < i \le |\mathbf{C}| \}.$$

In-clip consensus (Integer Programming.)

- two criteria:
 - 1. Lone proposals p_i are likely to be noise and should not be selected. Selected proposals should be supported by other (unselected) proposals.
 - 2. Selected proposals should not overlap significantly with each other.
- the process equals to:

$$v^* = \operatorname{argmax}_v \sum_i (\operatorname{Supp}_i + \operatorname{Penal}_i) \text{ s.t. } \sum_{i,j} \operatorname{Overlap}_{ij} = 0.$$

In-clip consensus (Integer Programming.)

.

. ...

• understanding

$$v^* = \operatorname{argmax}_v \sum_i (\operatorname{Supp}_i + \operatorname{Penal}_i) \text{ s.t.} \sum_{i,j} \operatorname{Overlap}_{ij} = 0$$

• support for proposal

$$IoU_{ij} = IoU_{ji} = \frac{|p_i \cap p_j|}{|p_i \cup p_j|}, 0 \le IoU_{ij} \le 1.$$
(5)
$$Supp_i = v_i \sum_j \begin{cases} IoU_{ij}, & \text{if } IoU_{ij} > 0.5 \text{ and } i \neq j \\ 0, & \text{otherwise} \end{cases}.$$
(6)

• do not select if overlap

$$\text{Overlap}_{ij} = \begin{cases} v_i v_j, & \text{if IoU}_{ij} > 0.5 \text{ and } i \neq j \\ 0, & \text{otherwise} \end{cases}.$$

Merging Propagation and Consensus

• propagation and consensus (past and future)

 $Prop(\mathbf{H}, I_t) = \mathbf{R}_t = \{r_i, 0 < i \le |\mathbf{R}|\} |\mathbf{C}_t = \{c_j, 0 < j \le |\mathbf{C}|\}$

• do not eliminate

$$\mathbf{M}_{t} = \{ r_{i} \cup c_{j} | a_{ij} = 1 \} \cup \{ r_{i} | \forall_{j} a_{ij} = 0 \} \cup \{ c_{j} | \forall_{i} a_{ij} = 0 \},$$

• maximizing association Iou

 $e_{ij} = \begin{cases} \text{IoU}(r_i, c_j), & \text{if IoU}(r_i, c_j) > 0.5 \\ -1, & \text{otherwise} \end{cases}$ $a_{ij} = 1 \text{ if } e_{ij} > 0 \text{ and } 0 \text{ otherwise}$

• segment deletion

• Comparison with end-to-end

• Pretrained on COCO panoptic dataset, fine-tuned on VIPSeg

Backbone			\mathbf{VPQ}^1	VPQ^2	\mathbf{VPQ}^4	VPQ ⁶	VPQ^8	VPQ^{10}	VPQ^{∞}	VPQ	STQ
Clip-PanoFCN	end-to-end [45]	semi-online	27.3	26.0	24.2	22.9	22.1	21.5	18.1	21.1	28.3
Clip-PanoFCN	decoupled (ours)	online	29.5	28.9	28.1	27.2	26.7	26.1	25.0	26.4	35.7
Clip-PanoFCN	decoupled (ours)	semi-online	31.3	30.8	30.1	29.4	28.8	28.3	27.1	28.4	35.8
Video-K-Net R50	end-to-end [34]	online	35.4	30.8	28.5	27.0	25.9	24.9	21.7	25.2	33.7
Video-K-Net R50	decoupled (ours)	online	35.8	35.2	34.5	33.6	33.1	32.6	30.5	32.3	38.4
Video-K-Net R50	decoupled (ours)	semi-online	37.1	36.5	35.8	35.1	34.7	34.3	32.3	33.9	38.6
Mask2Former R50	decoupled (ours)	online	41.0	40.2	39.3	38.4	37.9	37.3	33.8	36.4	41.1
Mask2Former R50	decoupled (ours)	semi-online	42.1	41.5	40.8	40.1	39.7	39.3	36.1	38.3	41.5
Video-K-NetSwin-BVideo-K-NetSwin-BVideo-K-NetSwin-BMask2FormerSwin-BMask2FormerSwin-B	end-to-end [34]	online	49.8	45.2	42.4	40.5	39.1	37.9	32.6	37.5	45.2
	decoupled (ours)	online	48.2	47.4	46.5	45.6	45.1	44.5	42.0	44.1	48.6
	decoupled (ours)	semi-online	50.0	49.3	48.5	47.7	47.3	46.8	44.5	46.4	48.9
	decoupled (ours)	online	55.3	54.6	53.8	52.8	52.3	51.9	49.0	51.2	52.4
	decoupled (ours)	semi-online	56.0	55.4	54.6	53.9	53.5	53.1	50.0	52.2	52.2

Table 1. Comparisons of end-to-end approaches (e.g., state-of-the-art Video-K-Net [34]) with our decoupled approach on the large-scale video panoptic segmentation dataset VIPSeg [45]. Our method scales with better image models and performs especially well with large k where long-term associations are considered. All baselines are reproduced using official codebases.

• In open-world video segmentation dataset BURST

		Validation			Test			
Method		OWTA _{all}	OWTA _{com}	OWTA _{unc}	OWTA _{all}	OWTA _{com}	OWTA _{unc}	
Mask2Former	w/ Box tracker [2]	60.9	66.9	24.0	55.9	61.0	24.6	
Mask2Former	w/ STCN tracker [2]	64.6	71.0	25.0	57.5	62.9	23.9	
OWTB [39]		55.8	59.8	38.8	56.0	59.9	38.3	
Mask2Former	w/ ours online	69.5	74.6	42.3	70.1	75.0	44.1	
Mask2Former	w/ ours semi-online	69.9	75.2	41.5	70.5	75.4	44.1	
EntitySeg	w/ ours online	68.8	72.7	49.6	69.5	72.9	53.0	
EntitySeg	w/ ours semi-online	69.5	73.3	50.5	69.8	73.1	53.3	

Table 2. Comparison to baselines in the open-world video segmentation dataset BURST [2]. 'com' stands for 'common classes' and 'unc' stands for 'uncommon classes'. Our method performs better in both – in the common classes with Mask2Former [7] image backbone, and in the uncommon classes with EntitySeg [49]. The agility to switch image backbones is one of the main advantages of our decoupled formulation. Baseline performances are transcribed from [2].

• Referring video segmentation takes a text description of an object as input and segments the target object.

Method	Ref-DAVIS [25]	Ref-YTVOS [55]
URVOS [55]	51.6	47.2
ReferFormer [64]	60.5	62.4
VLT [17]	61.6	63.8
Ours	66.3	66.0

Table 3. $\mathcal{J}\&\mathcal{F}$ comparisons on two referring video segmentation datasets. Ref-YTVOS stands for Ref-YouTubeVOS [55].

• Unsupervised video segmentation.

• DAVIS-16(single-object) and DAVIS-17(multi-object).

Method	D16-val	D17-val	D17-td
RTNet [54]	85.2	-	-
PMN [31]	85.9	-	-
UnOVOST [43]	-	67.9	58.0
Propose-Reduce [36]	-	70.4	-
Ours	88.9	73.4	62.1

• Different hyperparameters

Varying clip size	VPQ^1	VPQ^{10}	VPQ	STQ	FPS
n = 1	41.0	37.3	36.4	41.1	10.3
n = 2	40.4	37.2	36.3	39.0	9.8
n = 3	42.1	39.3	38.3	41.5	7.8
n = 4	42.1	39.1	38.5	42.3	6.6
n = 5	41.7	38.9	38.3	42.8	5.6
Varying merge freq.	VPQ^1	\mathbf{VPQ}^{10}	\overline{VPQ}	STQ	FPS
Every 3 frames	42.2	39.2	38.4	42.6	5.2
Every 5 frames	42.1	39.3	38.3	41.5	7.8
Every 7 frames	41.5	39.0	35.7	40.5	8.4
Spatial Align?	VPQ^1	\mathbf{VPQ}^{10}	\overline{VPQ}	STQ	FPS
Yes	42.1	39.3	38.3	41.5	7.8
No	36.7	33.9	32.8	33.7	9.2

Table 5. Performances of our method on VIPSeg [45] with different hyperparameters and design choices. By default, we use a clip size of n = 3 and a merge frequency of every 5 frames with spatial alignment for a balance between performance and speed.

• bi-directional propagation

Temporal scheme	VPQ^1	VPQ^4	VPQ^{10}	\overline{VPQ}	STQ
Mask IoU	39.9	32.7	27.7	27.6	34.5
Mask IoU+flow	40.2	33.7	28.8	28.6	37.0
Query assoc.	40.4	33.1	28.1	28.0	35.8
'ShortTrack'	40.6	33.3	28.3	28.2	37.2
'TrustImageSeg'	40.3	37.5	33.7	33.2	37.9
Ours, bi-direction	41.0	39.3	37.3	36.4	41.1

Table 6. Performances of different temporal schema on VIPSeg [45]. Our bi-directional propagation scheme is necessary for the final high performance.

Demo with Grounded Segment Anything (text prompt: "pigs"):

Source: https://youtu.be/FbK3SL97zf8

Demo with Segment Anything (automatic points-in-grid prompting); original video follows DEVA result overlaying the video:

Source: DAVIS 2017 validation set "soanboy"

Conclusion

- Using decoupled video segmentation that leverages external data, generalize better and able to incorporate existing universal segmentation models (like SAM)
- bi-directional propagation that denoises image segmentations and merges image segmentations with temporally propagated segmentations gracefully

Thanks for your listening!