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Background
Speeding up building diffusion models / frameworks
Cascaded models: DALLE2, Imagen.

5[1] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv 2204.
[2] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, NIPS22’.



Background
Speeding up building diffusion models / frameworks
Greedy growing: Vermeer.

6[3] Cristina N. Vasconcelos et al. Greedy Growing Enables High-Resolution Pixel-Based Diffusion Models, TMLR24’.



Background
Speeding up building diffusion models / frameworks
Employing latent spaces: StableDiffusion, FLUX.

7[4] Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models, CVPR22’.
[5] Black Forest Labs. FLUX, 2024.



Background
Speeding up building diffusion models / frameworks
Adding long skip connections: from DiT to U-ViT, HDiT.

8[6] Fan Bao et al. All are Worth Words: A ViT Backbone for Diffusion Models, CVPR23’.
[7] Katherine Crowson et al. Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion Transformers, ICML24’.



Background
Speeding up building diffusion models / frameworks
Reweighting the loss items: min-SNR-�.

where �� is the weight of

9[8] Tiankai Hang et al. Efficient Diffusion Training via Min-SNR Weighting Strategy, ICCV23’.



Background
Speeding up building diffusion models / frameworks
Improved modeling: from DDPM to Rectified Flow.

10[9] Xingchao Liu et al. Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR23’.



Background
Speeding up building diffusion models / frameworks
Reschedule the sampling of �: StableDiffusion3.
The probability density function of sampling � is:

In practice, the sampling of � is achieved by:
- sample                                  ;
- map it through standard logistic function.

11[10] Patrick Esser et al. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis, ICML23’.



Background
Speeding up building diffusion models / frameworks
Combining different strategies to achieve optimal performances.
e.g., latent generation + skip connection + RF + rescheduled timestep.
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Method
REPresentation Alignment (REPA) for accelerating diffusion training.
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Method
REPA speeds up the training and improves the quality significantly.
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Method
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Method
The ablation studies in VE, depth and objective.
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Method
The authors addressed almost all the concerns of the reviewers.
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Discussion
Can REPA be integrated with other speeding up techniques?

JanusFlow has conducted experiments of combining:

- REPA

- Skip connection

- Reschedule the sampling of �

and demonstrated the effectiveness of employing REPA.
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[10] Yiyang Ma et al. JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation, arXiv 2411.


