Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think

Submission of ICLR25' – 10,10,10,8,8,8

Sihyun Yu¹, Sangkyung Kwak¹, Huiwon Jang¹, Jongheon Jeong², Jonathan Huang³, Jinwoo Shin^{1*}, Saining Xie^{4*}

¹KAIST, ²Korea University, ³Scaled Foundations, ⁴NYU * Equal Supervision

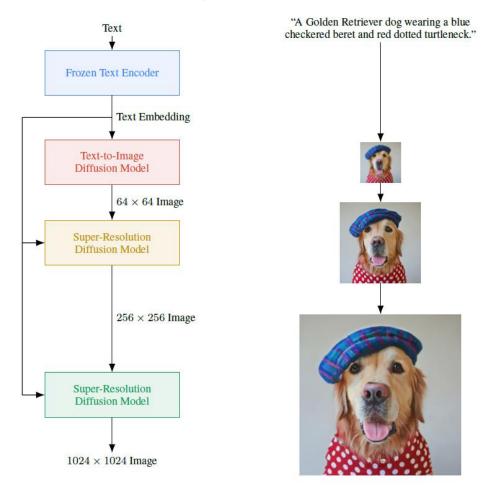
- Authors
- Background
- Method

- Authors
- Background
- Method

- Authors
- Background
- Method

Speeding up building diffusion models / frameworks

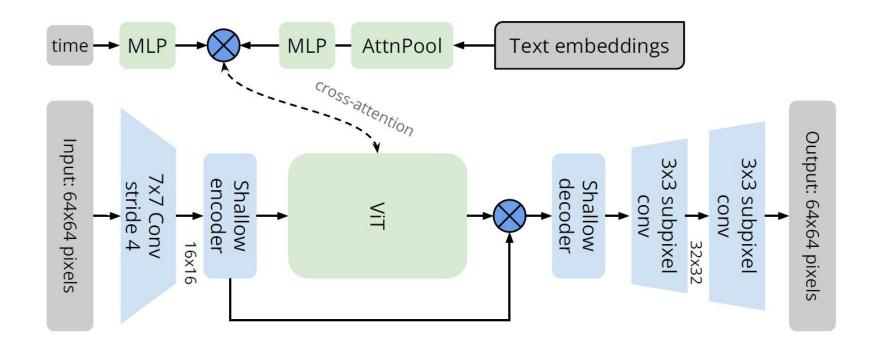
Cascaded models: DALLE2, Imagen.



^[1] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv 2204. [2] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, NIPS22'.

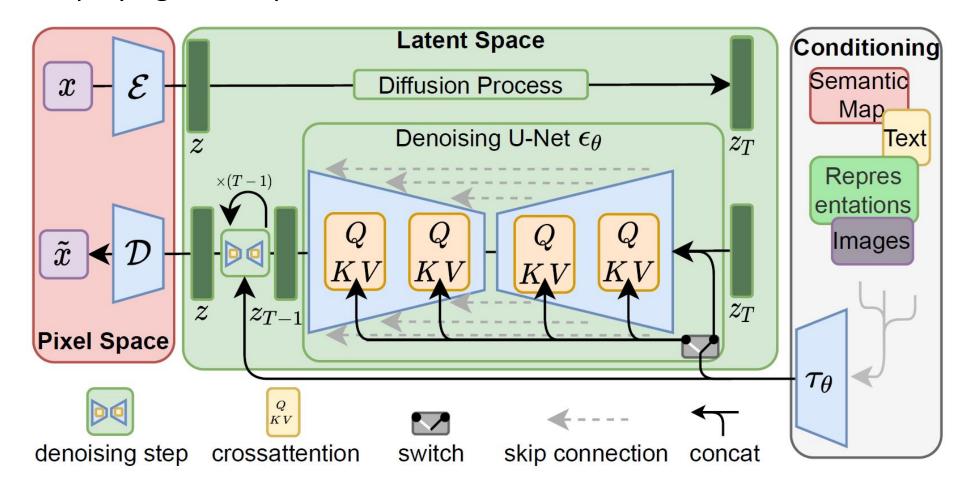
Speeding up building diffusion models / frameworks

Greedy growing: Vermeer.



Speeding up building diffusion models / frameworks

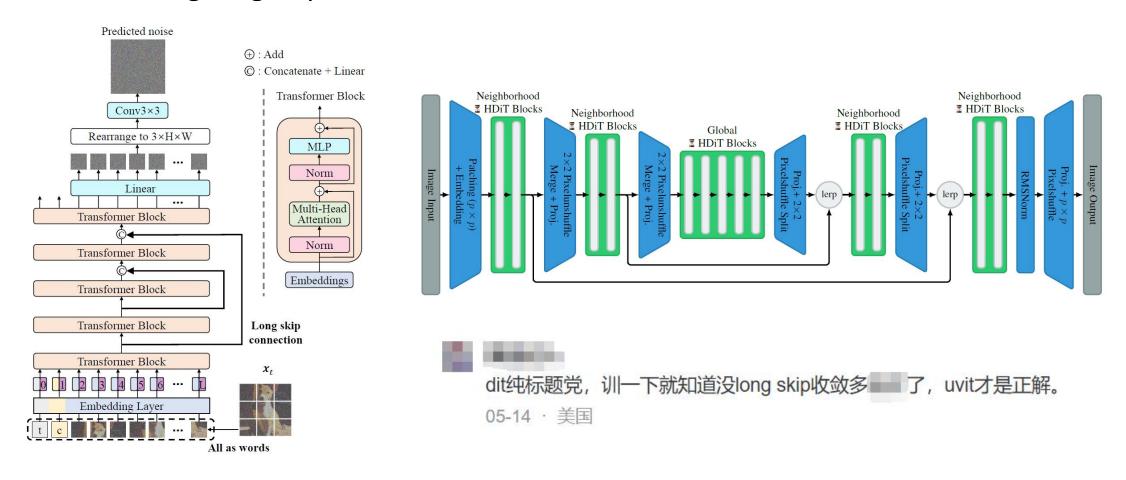
Employing latent spaces: StableDiffusion, FLUX.



^[4] Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models, CVPR22'. [5] Black Forest Labs. FLUX, 2024.

Speeding up building diffusion models / frameworks

Adding long skip connections: from DiT to U-ViT, HDiT.



- [6] Fan Bao et al. All are Worth Words: A ViT Backbone for Diffusion Models, CVPR23'.
- [7] Katherine Crowson et al. Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion Transformers, ICML24.

Speeding up building diffusion models / frameworks

Reweighting the loss items: min-SNR- γ .

$$q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \alpha_{t}\mathbf{x}_{0}, \sigma_{t}^{2}\mathbf{I})$$

$$\mathbf{x}_{t} = \alpha_{t}\mathbf{x}_{0} + \sigma_{t}\boldsymbol{\epsilon}$$

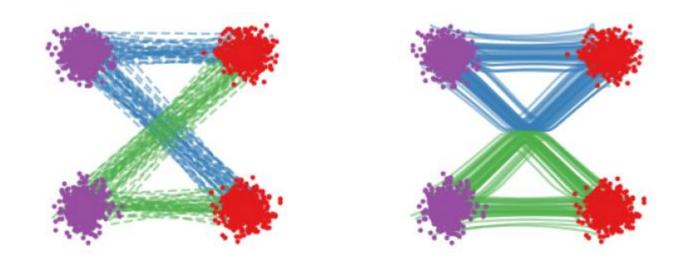
$$SNR(t) = \frac{\alpha_{t}^{2}}{\sigma_{t}^{2}}$$

$$w_{t} = \min\{SNR(t), \gamma\}$$

where w_t is the weight of

$$\mathcal{L}_{\text{simple}}^{t}(\theta) = \mathbb{E}_{\mathbf{x}_{0}, \epsilon} \left[\|\mathbf{x}_{0} - \hat{\mathbf{x}}_{\theta} (\alpha_{t} \mathbf{x}_{0} + \sigma_{t} \epsilon)\|_{2}^{2} \right]$$

Speeding up building diffusion models / frameworks Improved modeling: from DDPM to Rectified Flow.



Speeding up building diffusion models / frameworks

Reschedule the sampling of t: StableDiffusion3.

The probability density function of sampling t is:

$$\pi_{\ln}(t; m, s) = \frac{1}{s\sqrt{2\pi}} \frac{1}{t(1-t)} \exp\left(-\frac{(\log it(t) - m)^2}{2s^2}\right)$$

In practice, the sampling of t is achieved by:

- sample $u \sim \mathcal{N}(u; m, s)$;
- map it through standard logistic function.

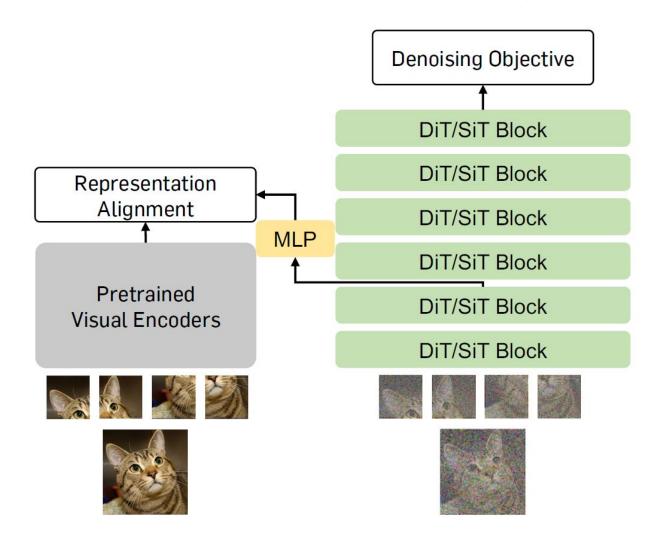
Speeding up building diffusion models / frameworks

Combining different strategies to achieve optimal performances.

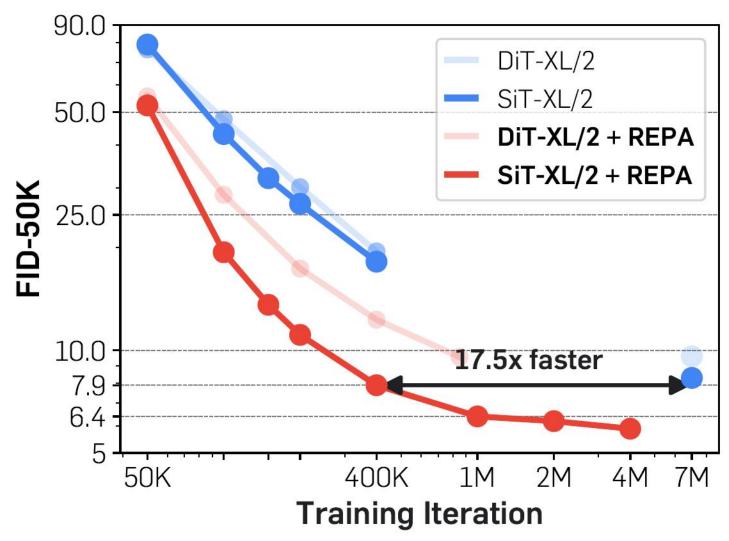
e.g., latent generation + skip connection + RF + rescheduled timestep.

- Authors
- Background
- Method

REPresentation Alignment (REPA) for accelerating diffusion training.



REPA speeds up the training and improves the quality significantly.



REPA speeds up the training and improves the quality significantly.

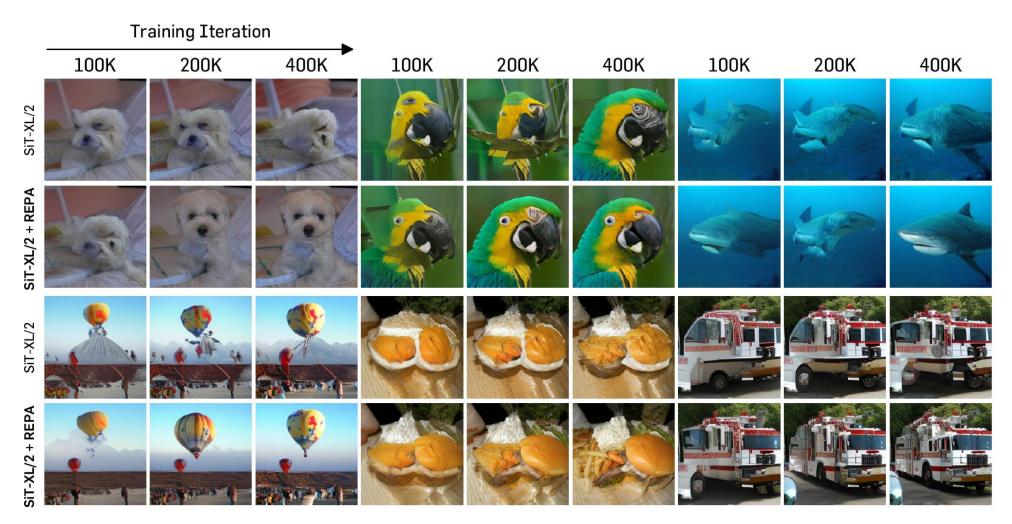
Table 3: **FID comparisons with vanilla DiTs and SiTs** on ImageNet 256×256.
We do not use classifier-free guidance (CFG). ↓ denotes lower values are better.
Iter. indicates the training iteration.

Model	#Params	Iter.	FID↓
DiT-L/2	458M	400K	23.3
+ REPA (ours)	458M	400K	15.6
DiT-XL/2	675M	400K	19.5
+ REPA (ours)	675M	400K	12.3
DiT-XL/2	675M	7M	9.6
+ REPA (ours)	675M	850K	9.6
SiT-B/2	130M	400K	33.0
+ REPA (ours)	130M	400K	24.4
SiT-L/2	458M	400K	18.8
+ REPA (ours)	458M	400K	9.7
+ REPA (ours)	458M	700K	8.4
SiT-XL/2	675M	400K	17.2
+ REPA (ours)	675M	150K	13.6
SiT-XL/2	675M	7M	8.3
+ REPA (ours)	675M	400K	7.9
+ REPA (ours)	675M	1M	6.4
+ REPA (ours)	675M	4M	5.9

Table 4: **System-level comparison** on ImageNet 256×256 with CFG. ↓ and ↑ indicate whether lower or higher values are better, respectively. Results that include additional CFG scheduling are marked with an asterisk (*), where the guidance interval from (Kynkäänniemi et al., 2024) is applied for REPA.

Model	Epochs	FID↓	sFID↓	IS↑	Pre.↑	Rec.↑		
Pixel diffusion								
ADM-U	400	3.94	6.14	186.7	0.82	0.52		
VDM++	560	2.40	-	225.3	-	-		
Simple diffusion	800	2.77	10.70	211.8		a 0		
CDM	2160	4.88	2	158.7	-	<u> </u>		
Latent diffusion, U-Net								
LDM-4	200	3.60	_	247.7	0.87	0.48		
Latent diffusion, Transformer + U-Net hybrid								
U-ViT-H/2	240	2.29	5.68	263.9	0.82	0.57		
DiffiT*	_	1.73	-	276.5	0.80	0.62		
MDTv2-XL/2*	1080	1.58	4.52	314.7	0.79	0.65		
Latent diffusion, Transformer								
MaskDiT	1600	2.28	5.67	276.6	0.80	0.61		
SD-DiT	480	3.23	_	-	_	_		
DiT-XL/2	1400	2.27	4.60	278.2	0.83	0.57		
SiT-XL/2	1400	2.06	4.50	270.3	0.82	0.59		
+ REPA (ours)	200	1.96	4.49	264.0	0.82	0.60		
+ REPA (ours)	800	1.80	4.50	284.0	0.81	0.61		
+ REPA (ours)*	800	1.42	4.70	305.7	0.80	0.65		

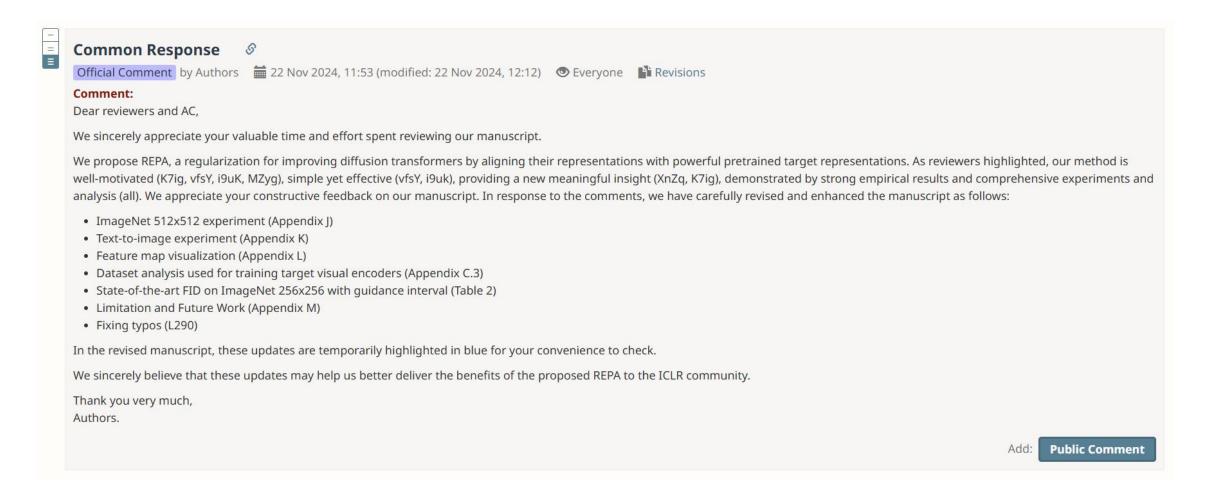
REPA speeds up the training and improves the quality significantly.



The ablation studies in VE, depth and objective.

Iter.	Target Repr.	Depth	Objective	FID↓	sFID↓	IS↑	Pre.↑	Rec.↑	Acc.↑
400K	Vanilla SiT-L	/2 (Ma et	al., 2024a)	18.8	5.29	72.0	0.64	0.64	N/A
400K	MAE-L	8	NT-Xent	12.5	4.89	90.7	0.68	0.63	57.3
400K	DINO-B	8	NT-Xent	11.9	5.00	92.9	0.68	0.63	59.3
400K	MoCov3-L	8	NT-Xent	11.9	5.06	92.2	0.68	0.64	63.0
400K	I-JEPA-H	8	NT-Xent	11.6	5.21	98.0	0.68	0.64	62.1
400K	CLIP-L	8	NT-Xent	11.0	5.25	100.4	0.67	0.66	67.2
400K	SigLIP-L	8	NT-Xent	10.2	5.15	107.0	0.69	0.64	68.8
400K	DINOv2-L	8	NT-Xent	10.0	5.09	106.6	0.68	0.65	68.1
400K	DINOv2-B	8	NT-Xent	9.7	5.13	107.5	0.69	0.64	65.7
400K	DINOv2-L	8	NT-Xent	10.0	5.09	106.6	0.68	0.65	68.1
400K	DINOv2-g	8	NT-Xent	9.8	5.22	108.9	0.69	0.64	65.7
400K	DINOv2-L	6	NT-Xent	10.3	5.23	106.5	0.69	0.65	66.2
400K	DINOv2-L	8	NT-Xent	10.0	5.09	106.6	0.68	0.65	68.1
400K	DINOv2-L	10	NT-Xent	10.5	5.50	105.0	0.68	0.65	68.6
400K	DINOv2-L	12	NT-Xent	11.2	5.14	100.2	0.68	0.64	69.4
400K	DINOv2-L	14	NT-Xent	11.6	5.61	99.5	0.67	0.65	70.0
400K	DINOv2-L	16	NT-Xent	12.1	5.34	96.1	0.67	0.64	71.1
400K	DINOv2-L	8	NT-Xent	10.0	5.09	106.6	0.68	0.65	68.1
400K	DINOv2-L	8	Cos. sim.	9.9	5.34	111.9	0.68	0.65	68.2

The authors addressed almost all the concerns of the reviewers.



Discussion

Can REPA be integrated with other speeding up techniques?

JanusFlow has conducted experiments of combining:

- REPA
- Skip connection
- Reschedule the sampling of t

and demonstrated the effectiveness of employing REPA.