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Diffusion Models
Training Requirement     Paywalls

Model Training GPUs Training Time
（Estimated）

Number of 
Parameters

Base 
Generation 
Resolution

SD1.5 A100 256*20d 1B 5122

SDXL A100 256*50d 2.3B 10242

FLUX A100 1000*120d 12B 10242-20482
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Super-resolution Models
Real-ESRGAN

Low-resolution High-resolution
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Super-resolution Models
SD-x2-latent-upscaler

Low-resolution High-resolution
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Super-resolution Models
• Faithfully enhance the resolution according to the original image
• It is difficult to add corresponding details at higher resolutions
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Objective: Generate Higher-resolution Images
• Directly prompting SDXL to generate images at 

a resolution of 20482 failed
The base model of SDXL lacks the ability to directly 
sample from a higher-resolution latent space

• The base SDXL has learned details at higher 
resolutions
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Objective: Generate Higher-resolution Images
• Directly prompting SDXL to generate images at 

a resolution of 20482 failed
• The base SDXL has learned details at higher 

resolutions
• Observing the results of SDXL image generation 

experiments, occasional incomplete images may 
appear in some regions

• The presence of partial images in the training set, or 
some training samples being cropped from complete 
higher-resolution images
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MultiDiffusion
• Fusion of multiple denoising processes
• Generate images of arbitrary size and resolution
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MultiDiffusion

Image 
SpaceCondition 
Space

Image 
SpaceCondition 
Space

(Application Depended)

Reference Model MultiDiffusion
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MultiDiffusion
(Application Depended)

Per Pixel Weights
Application 
Depended

Fi consist of direct pixel samples, thus L is a quadratic Least-Squares:

Hadamard product
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MultiDiffusion
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MultiDiffusion

• Used for generating larger-sized images, with 
the central regions of each part being almost 
independently sampled

• For generating a single target object, the 
correlation between paths is weak, making it 
difficult to consider global semantics
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SCALECRAFTER



Outline

18

• Authors

• Background

• Methods

• Experiments

• Conclusion



Methods

19

Framework
.



Methods

20

Framework
. Progressive Upscaling



Methods

21

Framework
.

Skip Residual



Methods

22

Framework
. Dilated Sampling
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Progressive Upscaling
.
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Progressive Upscaling
Generate images with progressively higher resolutions in steps

: Factor Magnified

is an arbitrary interpolation algorithm
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Skip Residual
.
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Skip Residual -as an optimization of SDEdit

Why use edit in such scenarios
• To obtain more image details
• Without changing the original structure of the image

Issues with edit
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Skip Residual -as an optimization of SDEdit

Why use edit in such scenarios
Issues with edit: Intersection Time-step

• Attempting to reverse-engineer the initial noise, but facing challenges, so Gaussian 
noise is directly added

• Too low noise intensity leads to insignificant effects
• Too high noise intensity causes loss of key information
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Skip Residual -as an optimization of SDEdit
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Dilated Sampling
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Dilated Sampling
.

Shifted Sampling

Dilated Sampling
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Dilated Sampling
.

Dilated Sampling

• No overlapping regions between different samples
• Introduce a Gaussian filter:
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Baselines

• SDXL
• MultiDiffusion:  Baseline method based on overlapped local patch denoising
• SDXL+BSRGAN: Directly upscale SDXL results
• SCALECRAFTER: Dilate convolutional kernels at specific layers
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Quantitative Results
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Qualitative Results

SDXL
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Qualitative Results

MultiDiffusion
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Qualitative Results

SDXL+BSRGAN
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Qualitative Results

SCALECRAFTER
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Qualitative Results

DemoFusion
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Qualitative Results

SDXL
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Qualitative Results

MultiDiffusion
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Qualitative Results

SDXL+BSRGAN
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Qualitative Results

SCALECRAFTER
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Qualitative Results

DemoFusion
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Ablations

Progressive Upscaling (PU)  Skip Residual (SR)  Dilated 
Upsampling (DS)
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Ablations

Progressive Upscaling (PU)  Skip Residual (SR)  Dilated 
Upsampling (DS)
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• Introduce a tuning-free framework that achieve higher-resolution image 
generation

• Enable generation with both global semantic coherence and rich local 
details

• Demonstrates the possibility of LDMs generating images at higher 
resolutions and the untapped potential of existing open-source GenAI 
models.

• Sampling takes a long time, heavily depends on the capabilities of the base 
model
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Dilated Sampling
.

Dilated Sampling
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Thank you for Listening!
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