DemoFusion: Democratising High-Resolution Image Generation With No \$\$\$

CVPR 2024

Ruoyi Du Dongliang Chang Timothy M. Hospedales Yi-Zhe Song Zhanyu Ma PRIS, Beijing University of Posts and Telecommunications Tsinghua University University of Edinburgh SketchX University of Surrey

> STRUCT Group Seminar Presenter: Lan Xicheng 2024.11.24

Outline

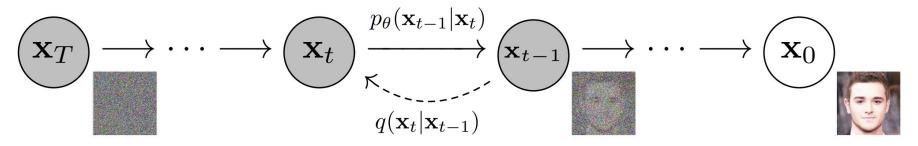
- Authors
- Background
- Methods
- Experiments
- Conclusion

Outline

- Authors
- Background
- Methods
- Experiments
- Conclusion

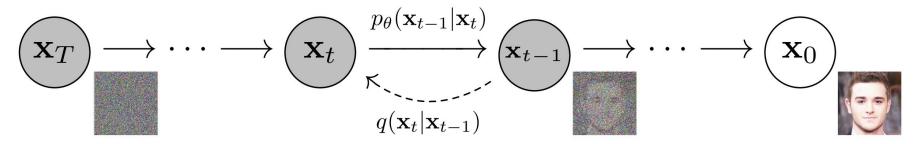
Background

Diffusion Models



Algorithm 1 Training	Algorithm 2 Sampling				
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0				

Diffusion Models



$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$
(1)

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$
(2)

4

Diffusion Models

Training Requirement → Paywalls

Model	Training GPUs	Training Time (Estimated)	Number of Parameters	Base Generation Resolution
SD1.5	A100	256*20d	1B	512 ²
SDXL	A100	256*50d	2.3B	1024 ²
FLUX	A100	1000*120d	12B	1024 ² -2048 ²

Super-resolution Models

Real-ESRGAN

Low-resolution

High-resolution

Super-resolution Models

SD-x2-latent-upscaler

Low-resolution

High-resolution

Super-resolution Models

- Faithfully enhance the resolution according to the original image
- It is difficult to add corresponding details at higher resolutions

(a) Low-resolution

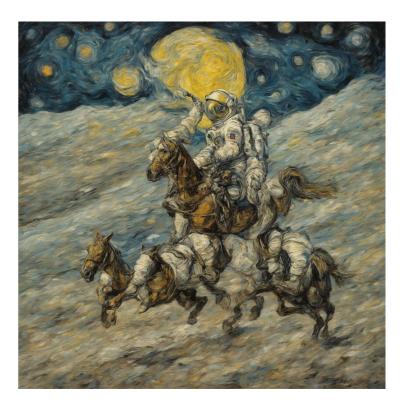
(b) Upscaler

(c) ReLife

Background

Objective: Generate Higher-resolution Images

- Directly prompting SDXL to generate images at a resolution of 2048² failed The base model of SDXL lacks the ability to directly sample from a higher-resolution latent space
- The base SDXL has learned details at higher resolutions



Background

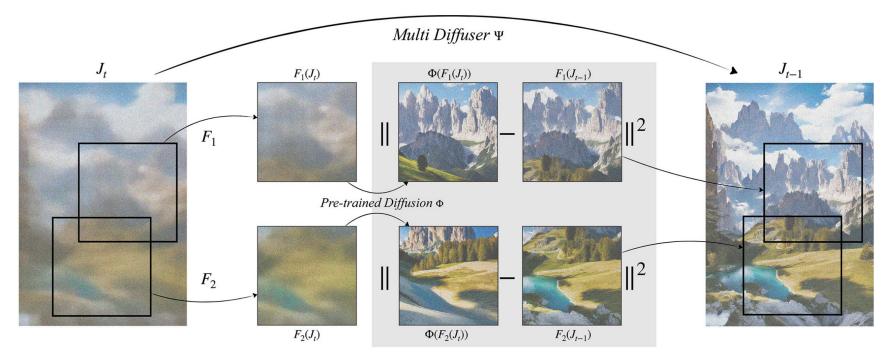
Objective: Generate Higher-resolution Images

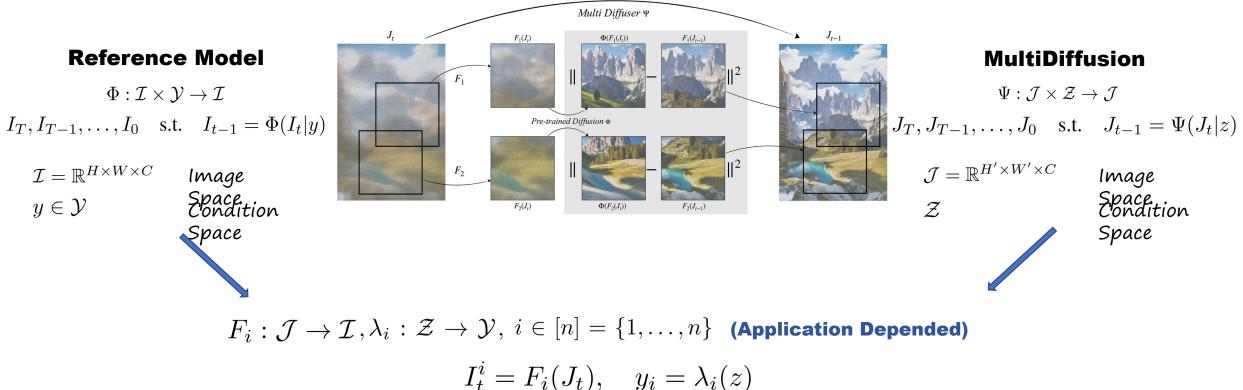
- Directly prompting SDXL to generate images at a resolution of 2048² failed
- The base SDXL has learned details at higher resolutions
 - Observing the results of SDXL image generation experiments, occasional incomplete images may appear in some regions
 - The presence of partial images in the training set, or some training samples being cropped from complete higher-resolution images

MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

Omer Bar-Tal^{*1} **Lior Yariv**^{*1} **Yaron Lipman**¹² **Tali Dekel**¹

- Fusion of multiple denoising processes
- Generate images of arbitrary size and resolution





Background

MultiDiffusion

$$\begin{split} F_i : \mathcal{J} \to \mathcal{I}, \lambda_i : \mathcal{Z} \to \mathcal{Y}, \ i \in [n] = \{1, \dots, n\} \quad \text{(Application Depended)} \\ I_t^i = F_i(J_t), \quad y_i = \lambda_i(z) \\ \Psi(J_t|z) = \underset{J \in \mathcal{J}}{\operatorname{arg\,min}} \quad \mathcal{L}_{\operatorname{FTD}}(J|J_t, z) \\ \end{split}$$

$$\mathcal{L}_{\text{FTD}}(J|J_t, z) = \sum_{i=1}^n \left\| W_i \otimes \left[F_i(J) - \Phi(I_t^i|y_i) \right] \right\|^2$$

Input : Φ > pre-trained Diffusion Model $\{F_i\}_{i=1}^n$ > image space mappings $\{y_i\}_{i=1}^n$ > text-prompts conditioning $\{W_i\}_{i=1}^n$ > per-pixel weights $J_T \sim P_{\mathcal{J}}$ > noise initialization **for** t = T, ..., 1 **do** $\begin{bmatrix} I_{t-1}^i \leftarrow \Phi(F_i(J_t), y_i) \ \forall i \in [n] \ \triangleright \text{ diffusion updates} \\ J_{t-1} \leftarrow \text{MultiDiffuser}(\{I_{t-1}^i\}_{i=1}^n) \ \triangleright \text{Eq. 5} \end{bmatrix}$ **Output:** J_0

$$F_{i} \text{ consist of direct pixel samples, thus L is a quadratic Least Squares:}_{W_{i} \in \mathbb{R}^{Squares:}_{\geq 0}} \text{ Per Pixel Weights} \\ \Psi(J_{t}|z) = \sum_{i=1}^{n} \frac{F_{i}^{-1}(W_{i})}{\sum_{j=1}^{n} F_{j}^{-1}(W_{j})} \otimes F_{i}^{-1}(\Phi(I_{t}^{i}|y_{i})) \\ \otimes F_{i}^{-1}(\Phi(I_{t}^{i}|y_{i})) \\ \otimes F_{i}^{-1}(W_{i}) \\ \otimes$$

(a) Generation with per-crop independent diffusion paths.

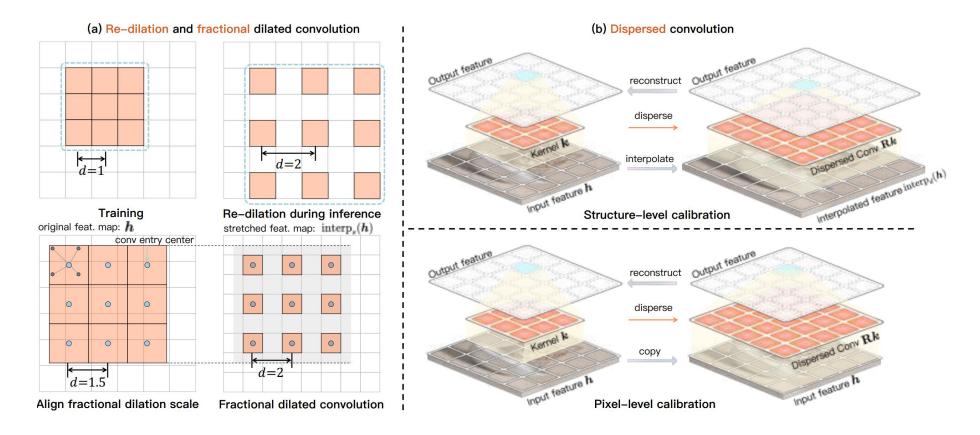
(b) Generation with fused diffusion paths using MultiDiffusion.

Background

MultiDiffusion

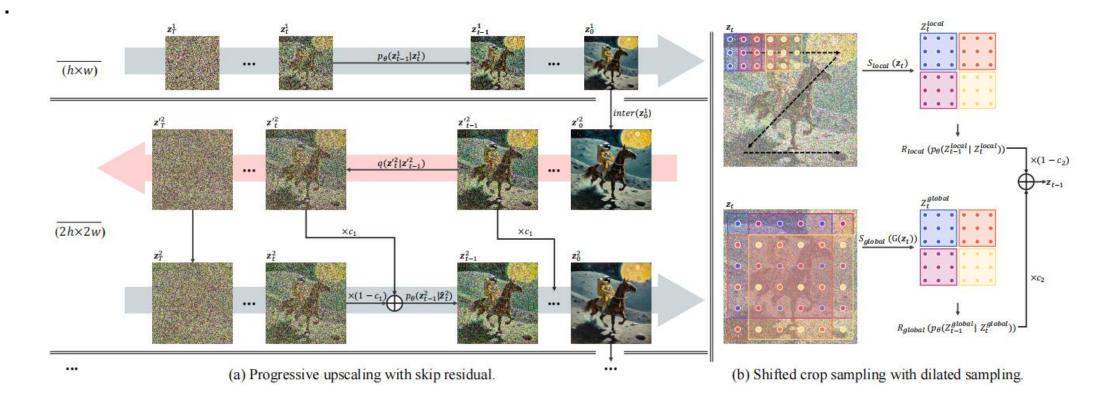
- Used for generating larger-sized images, with the central regions of each part being almost independently sampled
- For generating a single target object, the correlation between paths is weak, making it difficult to consider global semantics

SCALECRAFTER

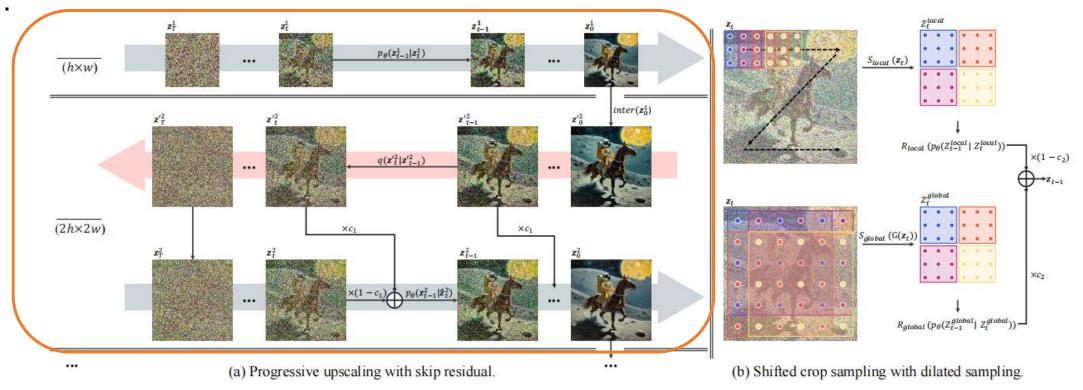


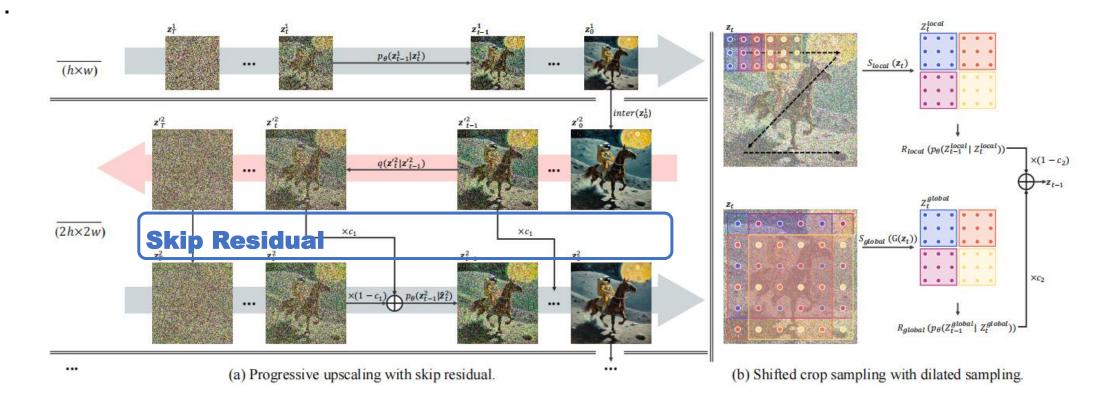
Outline

- Authors
- Background
- Methods
- Experiments
- Conclusion

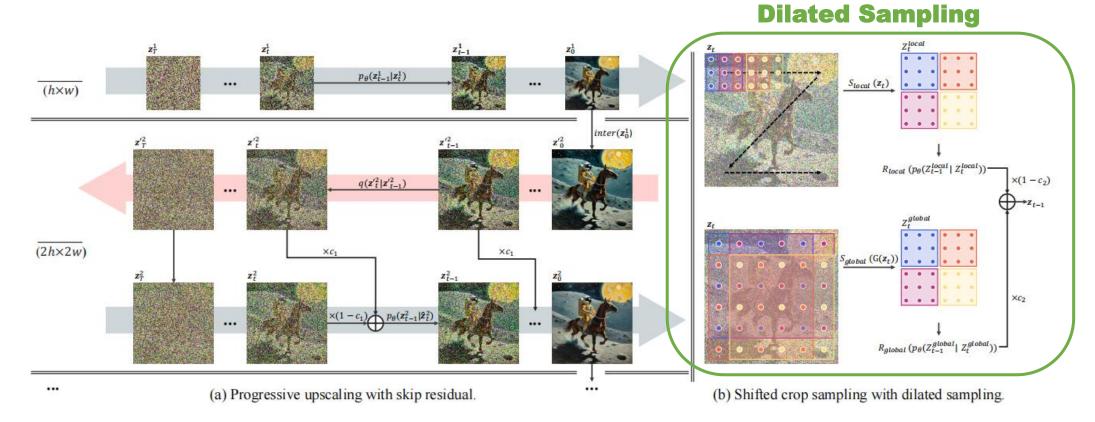


Progressive Upscaling

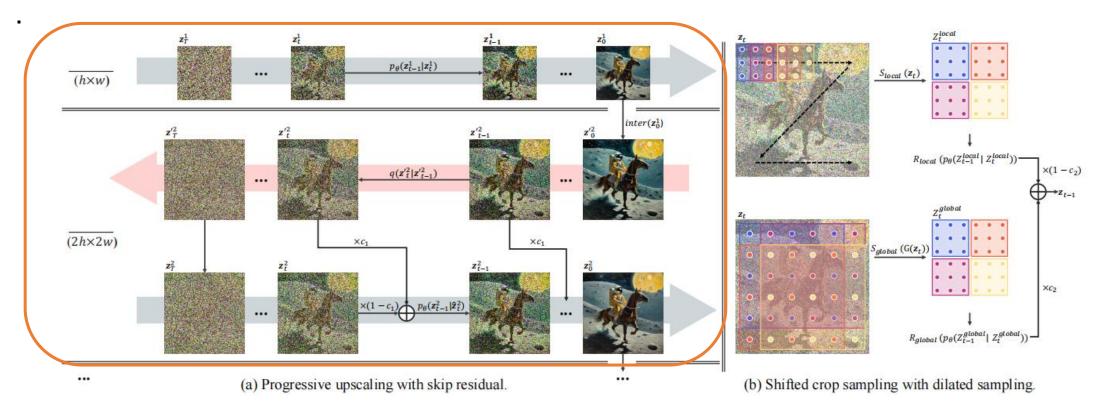




.



Progressive Upscaling



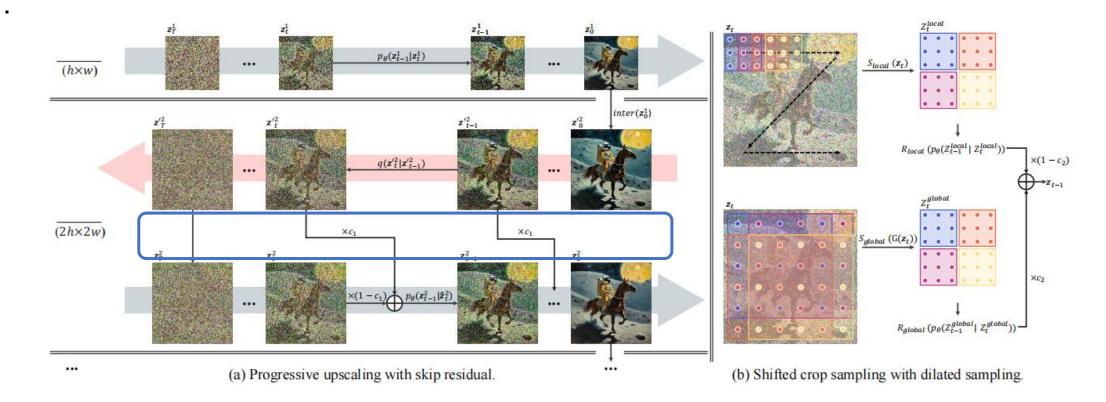
Progressive Upscaling

Generate images with progressively higher resolutions in steps

 $\mathbf{z}_{T}^{1} \xrightarrow{\mathbf{K}: \text{Factor Magnified}} \mathbf{z}_{0}^{s} \\ \mathbb{R}^{c \times h \times w} \xrightarrow{K: \text{Factor Magnified}} \mathbb{R}^{c \times H \times W} \\ \xrightarrow{H = Sh \text{ and } W = Sw} \xrightarrow{\mathbb{R}^{c \times H \times W}} \\ \text{as } q(\mathbf{z}_{T} | \mathbf{z}_{0}) = \prod_{t=1}^{T} q(\mathbf{z}_{t} | \mathbf{z}_{t-1}) \text{ and } p_{\theta}(\mathbf{z}_{0} | \mathbf{z}_{T}) = \prod_{t=T}^{1} p_{\theta}(\mathbf{z}_{t-1} | \mathbf{z}_{t}) \\ p_{\theta}(\mathbf{z}_{0}^{S} | \mathbf{z}_{T}^{1}) = p_{\theta}(\mathbf{z}_{0}^{1} | \mathbf{z}_{T}^{1}) \prod_{s=2}^{S} (q(\mathbf{z}_{T}'^{s} | \mathbf{z}_{0}'^{s}) p_{\theta}(\mathbf{z}_{0}^{s} | \mathbf{z}_{T}'^{s})) \\ \end{cases}$

 $\mathbf{z'}_{0}^{s} = inter(\mathbf{z}_{0}^{s-1}) \quad inter(\cdot)$ is an arbitrary interpolation algorithm

Skip Residual



Skip Residual -as an optimization of SDEdit

Why use edit in such scenarios

- To obtain more image details
- Without changing the original structure of the image

Issues with edit

Skip Residual -as an optimization of SDEdit

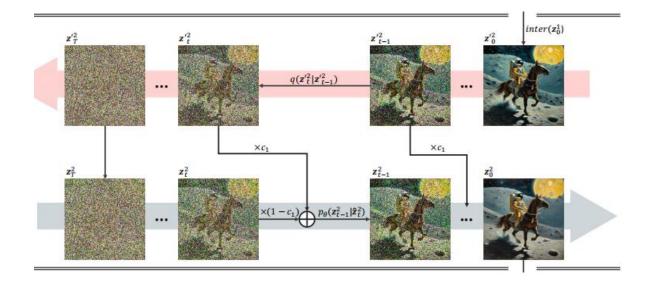
Why use edit in such scenarios

Issues with edit: Intersection Time-step

- Attempting to reverse-engineer the initial noise, but facing challenges, so Gaussian noise is directly added
- Too low noise intensity leads to insignificant effects
- Too high noise intensity causes loss of key information

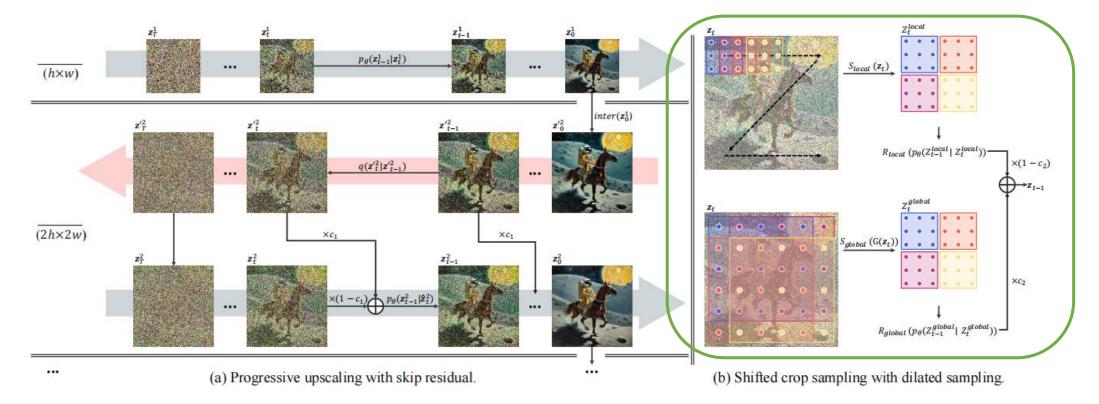
Skip Residual -as an optimization of SDEdit

$$\hat{\mathbf{z}}_t^s = c_1 \times \mathbf{z'}_t^s + (1 - c_1) \times \mathbf{z}_t^s$$
$$c_1 = \left((1 + \cos\left(\frac{T - t}{T} \times \pi\right))/2 \right)^{\alpha_1}$$



.

Dilated Sampling



.

Dilated Sampling

Shifted Sampling

Dilated Sampling

$$Z_t^{global} = [\mathbf{z}_{0,t}, \cdots, \mathbf{z}_{m,t}, \cdots, \mathbf{z}_{M,t}] = S_{global}(\mathbf{z}_t)$$

$$\mathbf{z}_{m,t} \in \mathbb{R}^{c \times h \times w}$$

$$M = s^2$$

$$z_{t}^{t} \qquad z_{t}^{t} \qquad z_{t$$

.

Dilated Sampling

- No overlapping regions between different samples
 Introduce a Gaussian filter:

$$Z_t^{global} = \mathcal{S}_{global}(\mathcal{G}(\mathbf{z}_t))$$

kernel size
$$= 4s - 3$$

Outline

- Authors
- Background
- Methods
- Experiments
- Conclusion

Experiments

Baselines

- SDXL
- MultiDiffusion: Baseline method based on overlapped local patch denoising
- SDXL+BSRGAN: Directly upscale SDXL results
- SCALECRAFTER: Dilate convolutional kernels at specific layers

Quantitative Results

Method	2048×2048						
Methou	FID ↓	IS ↑	$\mathrm{FID}_{crop}\downarrow$	$\mathrm{IS}_{crop}\uparrow$	CLIP ↑	Time	
SDXL Direct Inference [24]	79.66	13.47	73.91	17.38	28.12	1 min	
MultiDiffusion [2]	75.93	14.56	70.93	17.85	28.97	3 min	
SDXL + BSRGAN [39]	66.41	16.22	67.42	21.11	29.61	1 min	
SCALECRAFTER [7]	69.91	15.72	68.36	19.44	29.51	1 min	
DemoFusion (Ours)	65.73	16.41	64.81	21.40	29.68	3 min	

	2048×4096			4096×4096							
FID↓	IS ↑	$\mathrm{FID}_{crop}\downarrow$	$\mathrm{IS}_{crop}\uparrow$	CLIP↑	Time	FID↓	IS ↑	$\mathrm{FID}_{crop}\downarrow$	$\mathrm{IS}_{crop}\uparrow$	CLIP ↑	Time
97.08	14.12	96.41	18.01	27.29	3 min	105.65	14.01	98.59	19.47	25.64	8 min
89.38	14.17	82.78	18.87	28.66	6 min	97.98	13.84	79.45	19.73	28.62	$15 \min$
68.70	16.29	75.03	21.76	29.01	1 min	66.44	16.21	77.20	22.42	29.63	1 min
80.16	15.29	83.08	19.56	28.87	6 min	87.50	15.20	84.36	20.32	29.04	19 min
73.15	16.37	71.35	23.55	29.05	11 min	74.11	16.11	70.34	24.28	29.57	$25 \min$

Qualitative Results

Prompt: Emma Watson as a powerful mysterious sorceress, casting lightning magic, detailed clothing.

SDXL

MultiDiffusion

SDXL+BSRGAN

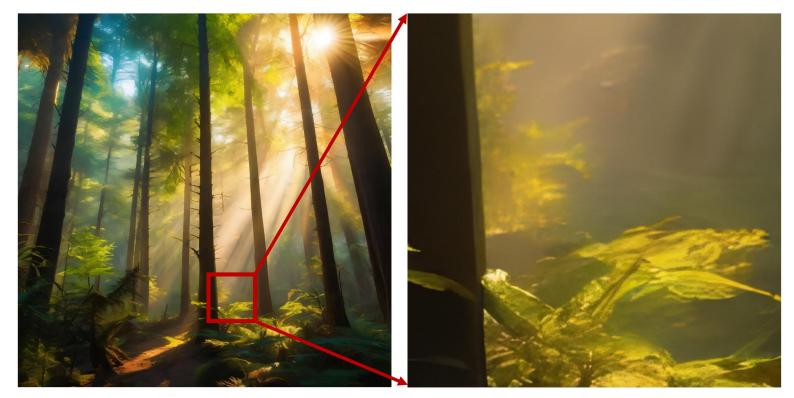
SCALECRAFTER

DemoFusion

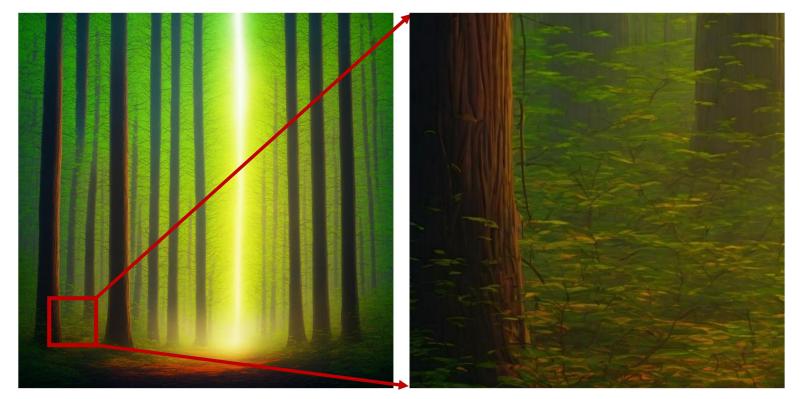
Prompt: *Primitive forest, towering trees, sunlight falling, vivid colors.*

SDXL

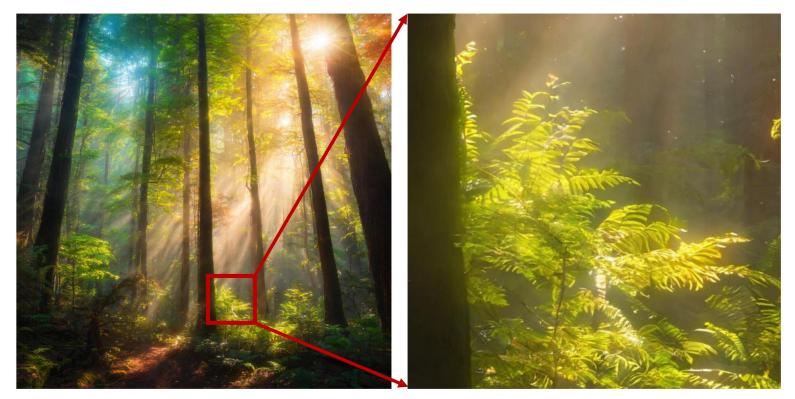
MultiDiffusion



SDXL+BSRGAN



SCALECRAFTER



DemoFusion

Ablations

Progressive Upscaling (PU) Skip Residual (SR) Dilated Upsampling (DS)

Ablations

Progressive Upscaling (PU) Skip Residual (SR) Dilated Upsampling (DS)

Outline

- Authors
- Background
- Methods
- Experiments
- Conclusion

Conclusions

- Introduce a tuning-free framework that achieve higher-resolution image generation
- Enable generation with both global semantic coherence and rich local details
- Demonstrates the possibility of LDMs generating images at higher resolutions and the untapped potential of existing open-source GenAI models.

 Sampling takes a long time, heavily depends on the capabilities of the base model

.

Dilated Sampling

Dilated Sampling

$$Z_t^{global} = [\mathbf{z}_{0,t}, \cdots, \mathbf{z}_{m,t}, \cdots, \mathbf{z}_{M,t}] = S_{global}(\mathbf{z}_t)$$

$$\mathbf{z}_{m,t} \in \mathbb{R}^{c \times h \times w}$$

$$M = s^2$$

- -

-

$$Z_t^{global} = S_{global}(\mathcal{G}(\mathbf{z}_t))$$

$$\sigma_1 \text{ to } c_3 \times (\sigma_1 - \sigma_2) + \sigma_2$$

$$c_3 = ((1 + \cos\left(\frac{T-t}{T} \times \pi\right))/2)^{\alpha_3}$$

Other Results

(a) Stable Diffusion 1.5

(b) Stable Diffusion 2.1

(a) Locally Unreasonable

(b) Small Object Repetition

Thank you for Listening!