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Background: Previous Works: ViWS-Net
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Background: Previous Works: ViWS-Net

• Learnable weather embeddings as weather messenger tokens for each frame

• Encoder each patch and messenger token:

• Lone-short term temporal modeling:
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Background: Previous Works: ViWS-Net

• Adversarial loss on weather type:

• Supervised object losses:

• Compute the attention scores for patch tokens :
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Background: Previous Works: VIWS-Net

VIWS-Net:

• Introduce temporally-active weather messenger tokens that provide early 

temporal fusion

• Design a weather-suppression adversarial learning approach 

• Maintains weather-invariant background information and suppresses weather-

specific information

• Cannot adapt to unseen weather types 

• Large model with high computational cost
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Background: DDPM

Apply multi-step Gaussian distributed noise

Train a network to predict parameters of the noise distribution

Use these parameters to sample during the reverse process to achieve generative denoising
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Background: DDPM

Optimization: Applying ELBO:

Re-parameterization:

Substitute these Gaussian-form distributions into the ELBO and simplify:
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Background: DDPM

Ho et al. Denoising diffusion probabilistic models. Advances in neural information processing systems, 2020
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Background: Test-Time Adaption

During test time, when the source label is inaccessible, there appears to be a positive 

correlation between the entropy of the generated results and the error rate.

Wang et al. Tent: Fully Test-Time Adaptation by Entropy Minimization, International Conference on Learning Representations, 2021
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Task Description and Method Overview

• Task: 

• Restore high quality video clips from multiple weather degradations.

• Adapt to unseen weather degradations, specifically during test-time

• Overview: 

• First diffusion-based adverse weather removal in videos

• Leverages temporal redundancy information through a temporal noise model

• Introduce test-time adaptation by incorporating a proxy task into the 

diffusion reverse process

• Performance: Achieved SoTA on multiple weather types with much less 

computation cost
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Method Overview
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Method: Training with Temporal Noise Model 

For training: applying ARMA-formed temporal noise, substituting regular gaussian noise

Taking both the next and previous frames into consideration

Constant c remain consistent with the mean of the variable:  

Auto Regression Moving Average
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Method: Training with Temporal Noise Model 

Optimize the NAFNet with conditioned 

ELBO loss in diffusion:
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Method: Noise Estimation model

Chen et al. Simple Baselines for Image Restoration, The European Conference on Computer Vision , 2022

Simplified attention 

layers with low 

computational cost
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Method: Test-Time Adaption
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Method: Test-Time Adaption

Introduce a proxy task: Tubelet Calibration to adapt the noise-estimation network to unseen 

weathers

Randomly crop tubelets from previously-generated clips, perform temporal noise estimation 

training on these tubelets and update the estimation network’s parameters.  
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Method: Test-Time Adaption

• Conditioned on the degraded frames, 

conduct temporal noise estimation on the 

previously-restored frames

• Enhances the consistency of generated 

frames under dynamic weather degradation

• Another possible explanation:

Reduces the entropy of the generated video

• However still a test-time training domain 

adaption approach

• “Genuine knowledge” ?
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Experiments

Datasets

• Accessible weathers: Rain-Motion, REVIDE, Snow-KITTI

• Unseen weathers: VRDS, RVSD for out-of-distribution rain and snow

• Several real-world videos

Trained on RTX 4090s, 6.01s/ iter vs. 542.76s/ iter on WeatherDiffusion
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Experiments: Results on Seen Weather Conditions
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Experiments: Results on Seen Weather Conditions

Capable of handling weathers with different physical characteristics such as rain and haze 
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Experiments: Results on Unseen Weather Conditions

New weather conditions, 

but no unseen types of 

degradation

Exhibited better color 

restoration capability.
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Experiments: Results on Unseen Weather Conditions
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Experiments: Results on Real World Weather Conditions
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Experiments

Visualization of the 

features from the last layer 

of  the feature extractor
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Experiments: Ablation
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Conclusion

• Introduced a diffusion-based adverse weather removal framework for videos

• Applied temporal noise model to substitute the regular gaussian noise to  

explore frame-correlated information

• Conduct temporal-diffusion process on the restored tubelets during test-time to 

adapt the noise estimation model to unseen weather degradations

• The Diff-TTA method works more as a domain adapter which decreases 

entropy

• The performance improvement on unseen weather types is limited
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