

Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal

CVPR 2024

Presenter: Jinyi Luo 2024.06.30

Yijun Yang

PhD Candidate,

Hong Kong University of Science and Technology (Guangzhou)

- Education:
 - 2018-2022, Bachler, School of Computer Science and Technology, Shandong University
 - 2022-present, PhD candidate, Hong Kong University of Science and Technology (Guangzhou)
- Research interests:
 - Medical Image Analysis
 - Low-level vision
 - Generalizable AI

Hongtao Wu

MPhil Student,

The Hong Kong University of Science and Technology (Guangzhou)

- Research interests:
 - Medical image analysis
 - Low-level vision
 - Video restoration
 - Computer vision

Angelica I. Aviles-Rivero

Senior Research Associate,

DAMTP, University of Cambridge

- Education:
 - MS at the Department of Computer Engineering and Mathematics, Rovira i Virgili University
 - PhD at UPC BarcelonaTech
- Experiences:
 - Visiting Researcher at George Washington University, 2016
- Research interests:
 - Computational Mathematics
 - Machine Learning
 - Computer Vision

Lei Zhu

Assistant Professor, ROAS Thrust,

The Hong Kong University of Science and Technology (Guangzhou)

- Education:
 - PhD degree at Department of Computer Science and Engineering, the Chinese University of Hong Kong
 - Postdoctoral researcher at DAMTP, University of Cambridge
- Research interests:
 - Image restoration
 - Image enhancement
 - Image and video processing
 - Medical AI

Background: Previous Works: ViWS-Net

6

• Learnable weather embeddings as weather messenger tokens for each frame

$$\{m_i^0\}_{i=1}^T \in \mathbb{R}^{T \times M \times C} \qquad \{[f_i^0, m_i^0]\}_{i=1}^T \in \mathbb{R}^{T \times (\frac{HW}{P^2} + M) \times C}$$

• Encoder each patch and messenger token:

$$\{[f_i^l, m_i^l]\}_{i=1}^T = \{DSF^l(SSA^l([f_i^{l-1}, m_i^{l-1}]))\}_{i=1}^T.$$

• Lone-short term temporal modeling:

• Compute the attention scores for patch tokens :

$$\alpha_i = \frac{\exp\left\{\mathbf{w}_1^T(tanh(\mathbf{w}_2\mathbf{v}_i^T) \cdot sigm(\mathbf{w}_3\mathbf{v}_i^T)\right\}}{\sum_{k=1}^T \exp\left\{\mathbf{w}_1^T(tanh(\mathbf{w}_2\mathbf{v}_k^T) \cdot sigm(\mathbf{w}_3\mathbf{v}_k^T)\right\}} \qquad \mathbf{v} = \sum_{i=1}^T \alpha_i \mathbf{v}_i,$$

• Adversarial loss on weather type:

$$\mathcal{L}_{adv} = \min_{\theta_w} \left(\lambda \max_{\theta_\varepsilon} \left(\sum_{q=1}^Q \sum_{i=1}^{N_q} q \log[\mathcal{W}(\mathcal{E}(\mathbf{V}_i^q)]) \right) \right)$$

• Supervised object losses:

$$\mathcal{L}_{S} = \mathcal{L}_{smoothL_{1}} + \gamma_{1}\mathcal{L}_{perceptual}, \text{ with}$$
$$\mathcal{L}_{smoothL_{1}} = \begin{cases} 0.5(\hat{I}_{t} - B_{t})^{2}, & if|\hat{I}_{t} - B_{t}| < 1\\ |\hat{I}_{t} - B_{t}| - 0.5, & otherwise, \end{cases}$$
$$\mathcal{L}_{perceptual} = \mathcal{L}_{mse}(VGG_{3,8,15}(\hat{I}_{t}), VGG_{3,8,15}(B_{t}))$$

VIWS-Net:

- Introduce temporally-active weather messenger tokens that provide early temporal fusion
- Design a weather-suppression adversarial learning approach
- Maintains weather-invariant background information and suppresses weatherspecific information

- Cannot adapt to unseen weather types
- Large model with high computational cost

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$
$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^t p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Apply multi-step Gaussian distributed noise

Train a network to predict parameters of the noise distribution

Use these parameters to sample during the reverse process to achieve generative denoising

Optimization: Applying ELBO:

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_{0})\right] \leq \mathbb{E}_{q}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] = \mathbb{E}_{q}\left[-\log p(\mathbf{x}_{T}) - \sum_{t \geq 1}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}\right] =: L$$

Re-parameterization:

$$\bar{\alpha}_{t} = \prod_{s=1}^{t} (1 - \beta_{s}) \qquad q(\mathbf{x}_{t} | \mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}, (1 - \bar{\alpha}_{t}) \mathbf{I})$$
$$q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t}, \mathbf{x}_{0}), \tilde{\beta}_{t} \mathbf{I})$$

$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t \qquad \quad \tilde{\beta}_t \coloneqq \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t$$

Substitute these Gaussian-form distributions into the ELBO and simplify:

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \big\|^2 \Big]$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Ho et al. Denoising diffusion probabilistic models. Advances in neural information processing systems, 2020

Background: Test-Time Adaption

During test time, when the source label is inaccessible, there appears to be a positive correlation between the entropy of the generated results and the error rate.

Wang et al. Tent: Fully Test-Time Adaptation by Entropy Minimization, International Conference on Learning Representations, 2021

- Task:
 - Restore high quality video clips from multiple weather degradations.
 - Adapt to unseen weather degradations, specifically during test-time
- Overview:
 - First diffusion-based adverse weather removal in videos
 - Leverages temporal redundancy information through a temporal noise model
 - Introduce test-time adaptation by incorporating a proxy task into the diffusion reverse process
- Performance: Achieved SoTA on multiple weather types with much less computation cost

Method: Training with Temporal Noise Model

For training: applying ARMA-formed temporal noise, substituting regular gaussian noise

$$X_{t} = c + \varepsilon_{t} + \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \sum_{j=1}^{q} \tau_{j} \varepsilon_{t-j}$$
Auto Regression Moving Average

Taking both the next and previous frames into consideration Constant c remain consistent with the mean of the variable:

$$\bar{\epsilon}_i = (1 - \varphi - \tau)\varepsilon_i + \varphi \frac{\bar{\epsilon}_{i-1} + \bar{\epsilon}_{i+1}}{2} + \tau \frac{\varepsilon_{i-1} + \varepsilon_{i+1}}{2}$$

Method: Training with Temporal Noise Model

10 end
11
$$\bar{\epsilon} = normalize(\bar{\epsilon}) \Longrightarrow \bar{\epsilon} \sim \mathcal{T}(0, \mathbf{I})$$

Mixed Set

Vla

12 end

2

3

4

5

6

7

8

9

end

end

(a) Training Stage

Seen Weather

13 Return $\{\{\bar{\epsilon}_i | \bar{\epsilon}_i \in \mathbb{R}^{1 \times c \times h \times w}\}_{i=1}^{N_f}\}_{k=1}^K$

Method: Noise Estimation model

Chen et al. Simple Baselines for Image Restoration, The European Conference on Computer Vision, 2022

Method: Test-Time Adaption

Introduce a proxy task: Tubelet Calibration to adapt the noise-estimation network to unseen weathers

Randomly crop tubelets from previously-generated clips, perform temporal noise estimation training on these tubelets and update the estimation network's parameters.

Method: Test-Time Adaption

Algorithm 2: Diffusion Test-Time Adaptation to unknown weather. θ is the weight set of the trained network before adaptation, δ is the learning rate for online adaptation.

Input: K overlapped clips:
$$\{\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_K\}$$
 in
one video stream
1 for Clip $k = 1, 2, \dots, K$ sequentially do
2 Initialize the network $\epsilon_{\bar{\theta}}$ with θ
3 Initialize $\hat{\mathbf{V}}_k$ by Algorithm 1
4 if $k = 1$ then
5 || for step $t = T, \dots, 2, 1$ sequentially do
6 || $\hat{\mathbf{V}}_k = ddim(\mathbf{V}_k, \hat{\mathbf{V}}_k, \epsilon_{\bar{\theta}}, t)$
7 || end
8 else
9 || $\mathbf{A}, \hat{\mathbf{A}} = TubeletCrop(\mathbf{V}_{k-1}, \hat{\mathbf{V}}_{k-1}, N_a)$
10 || $\hat{\mathbf{D}}$ or step $t = T, \dots, 2, 1$ sequentially do
11 || $\hat{\mathbf{D}}$ for step $t = T, \dots, 2, 1$ sequentially do
12 || $\hat{\mathbf{D}} = \bar{\theta} - \delta \nabla_{\bar{\theta}} \mathcal{L}_S$
13 || $\hat{\mathbf{V}}_k = ddim(\mathbf{V}_k, \hat{\mathbf{V}}_k, \epsilon_{\bar{\theta}}, t)$
14 || end
15 || $\hat{\mathbf{V}}_k = integrate(\hat{\mathbf{V}}_k, \hat{\mathbf{V}}_{k-1})$
16 || end
17 end
18 Return the restored clips{ $\hat{\mathbf{V}}_1, \hat{\mathbf{V}}_2, \dots, \hat{\mathbf{V}}_K$ }

- Conditioned on the degraded frames, conduct temporal noise estimation on the previously-restored frames
- Enhances the consistency of generated frames under dynamic weather degradation
- Another possible explanation: Reduces the entropy of the generated video
- However still a test-time training domain adaption approach
- "Genuine knowledge" ?

Datasets

- Accessible weathers: Rain-Motion, REVIDE, Snow-KITTI
- Unseen weathers: VRDS, RVSD for out-of-distribution rain and snow
- Several real-world videos

Trained on RTX 4090s, 6.01s/ iter vs. 542.76s/ iter on WeatherDiffusion

Experiments: Results on Seen Weather Conditions

23

Experiments: Results on Seen Weather Conditions

Methods Ty		Туре	Source	Datasets									
		Type	Original Weather		Rain H		Н	aze	Sı	Snow		Average	
	PReNet [35]	Image	CVPR'19	27.06	0.9077	26.80	0.8814	17.64	0.8030	28.57	0.9401	24.34	0.8748
Derain	SLDNet [51]	Video	CVPR'20	20.31	0.6272	21.24	0.7129	16.21	0.7561	22.01	0.8550	19.82	0.7747
	S2VD [55]	Video	CVPR'21	24.09	0.7944	28.39	0.9006	19.65	0.8607	26.23	0.9190	24.76	0.8934
	RDD-Net [43]	Video	ECCV'22	31.82	0.9423	30.34	0.9300	18.36	0.8432	30.40	0.9560	26.37	0.9097
	GDN [26]	Image	ICCV'19	19.69	0.8545	29.96	0.9370	19.01	0.8805	31.02	0.9518	26.66	0.9231
Dahara	MSBDN [15]	Image	CVPR'20	22.01	0.8759	26.70	0.9146	22.24	0.9047	27.07	0.9340	25.34	0.9178
Dehaze	VDHNet [36]	Video	TIP'19	16.64	0.8133	29.87	0.9272	16.85	0.8214	29.53	0.9395	25.42	0.8960
	PM-Net [28]	Video	MM'22	23.83	0.8950	25.79	0.8880	23.57	0.9143	18.71	0.7881	22.69	0.8635
Desnow	DesnowNet [29]	Image	TIP'18	28.30	0.9530	25.19	0.8786	16.43	0.7902	27.56	0.9181	23.06	0.8623
	DDMSNET [58]	Image	TIP'21	32.55	0.9613	29.01	0.9188	19.50	0.8615	32.43	0.9694	26.98	0.9166
Desitow	HDCW-Net [10]	Image	ICCV'21	31.77	0.9542	28.10	0.9055	17.36	0.7921	31.05	0.9482	25.50	0.8819
	SMGARN [13]	Image	TCSVT'22	33.24	0.9721	27.78	0.9100	17.85	0.8075	<u>32.34</u>	<u>0.9668</u>	25.99	0.8948
	MPRNet [56]	Image	CVPR'21			28.22	0.9165	20.25	0.8934	30.95	0.9482	26.47	0.9194
	EDVR [44]	Video	CVPR'19			31.10	0.9371	19.67	0.8724	30.27	0.9440	27.01	0.9178
Restoration	RVRT [23]	Video	NIPS'22			30.11	0.9132	21.16	0.8949	26.78	0.8834	26.02	0.8972
	RTA [63]	Video	CVPR'22			30.12	0.9186	20.75	0.8915	29.79	0.9367	26.89	0.9156
	All-in-one [21]	Image	CVPR'20			26.62	0.8948	20.88	0.9010	30.09	0.9431	25.86	0.9130
Multi-Weather	UVRNet [19]	Image	TMM'22			22.31	0.7678	20.82	0.8575	24.71	0.8873	22.61	0.8375
	TransWeather [39]	Image	CVPR'22			26.82	0.9118	22.17	0.9025	28.87	0.9313	25.95	0.9152
	TKL [11]	Image	CVPR'22			26.73	0.8935	22.08	0.9044	31.35	0.9515	26.72	0.9165
	WeatherDiffusion [34]	Image	TPAMI'23			25.86	0.9125	20.10	0.8442	26.40	0.9113	24.12	0.8893
	WGWS-Net [64]	Image	CVPR'23			29,64	0.9310	17.71	0.8113	31.58	0.9528	26.31	0.9265
	ViWS-Net [52]	Video	ICCV'23			<u>31.52</u>	<u>0.9433</u>	<u>24.51</u>	0.9187	31.49	0.9562	<u>29.17</u>	<u>0.9394</u>
	Ours	Video				32.43	0.9573	24.56	<u>0.9148</u>	31.86	0.9640	29.63	0.9453

Capable of handling weathers with different physical characteristics such as rain and haze

Experiments: Results on Unseen Weather Conditions

	VRD	S [45]	RVSD [4]				
Method	PSNR ↑	SSIM \uparrow	PSNR↑	SSIM ↑			
All-in-one [21]	20.44	0.5944	19.79	0.7509			
TransWeather [39]	21.36	0.7136	20.25	0.7514			
TKL [11]	20.49	0.7003	19.71	0.7370			
WeatherDiffusion [34]	20.73	0.6943	18.08	0.6588			
ViWS-Net [52]	<u>21.57</u>	0.7094	19.83	<u>0.7590</u>			
Diff-TTA (ours)	22.57	0.7281	22.35	0.7719			

Experiments: Results on Real World Weather Conditions

Haze

Snow

Input Frame

TransWeather

TKL

Ours

27

Experiments

Diff-TTA Diff-TTA Mixed train set VRSD (unseen) REVIDE (test) KITTI-snow (test) Real-world (unseen)

Figure 2. Our Diff-TTA enables weather removal models to overcome unseen weather corruptions. We use t-SNE [40] to visualize features from the last feature extractor layer of each dataset. Obviously, unseen data points tend to approximate the seen ones after adaptation, which means Diff-TTA can categorize unknown degradation into known distribution. ('Real-world' contains video clips simultaneously degraded by fog and snow.)

Visualization of the features from the last layer of the feature extractor

Combination Component				Datasets									
Combination	Diffusion Process	Temporal Noise	Diff-TTA	A Rain		Haze		Snow		Average			
M1	-	-	-	29.07	0.9514	22.64	0.8930	28.79	0.9350	26.83	0.9264		
M2	\checkmark	-	-	31.55	0.9466	23.58	0.9041	30.48	0.9520	28.52	0.9342		
M3	\checkmark	\checkmark	-	32.10	0.9530	24.31	0.9124	31.04	0.9621	29.15	0.9425		
Ours	\checkmark	\checkmark	\checkmark	32.43	0.9573	24.56	0.9148	31.86	0.9640	29.63	0.9453		

- Introduced a diffusion-based adverse weather removal framework for videos
- Applied temporal noise model to substitute the regular gaussian noise to explore frame-correlated information
- Conduct temporal-diffusion process on the restored tubelets during test-time to adapt the noise estimation model to unseen weather degradations

- The Diff-TTA method works more as a domain adapter which decreases entropy
- The performance improvement on unseen weather types is limited

Thanks for listening!

Presenter: Jinyi Luo 2024.06.30