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Background

• Foundation models

• Large models pretrained on massive data then adapted for 
downstream tasks

• Backbone : sequence models
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Transformer
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Transformer
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• Encoder:

• Multi-Head Self-Attention

• Feed Forward

• Residual Connection & Layer Norm
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Self-Attention
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Multi-Head Self-Attention
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Multi-Head Self-Attention
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Multi-Head Self-Attention
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Multi-Head Self-Attention
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‘Multi-head attention allows the model to jointly attend to
information from different representation subspaces at
different positions. With a single attention head, averaging
inhibits this.’



Transformer
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• Encoder:

• Multi-Head Self-Attention

• Feed Forward

• Residual Connection & Layer Norm



Transformer
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Transformer

20

• Encoder:

• Multi-Head Self-Attention

• Feed Forward

• Residual Connection & Layer Norm



Add & Norm
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Transformer
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• Decoder:

• 2 x Multi-Head Self-Attention

• 1st Masked Multi-Head Self-Attention

• 2nd Q K V

• Softmax



Transformer
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• Masked Multi-Head Self-Attention



Transformer
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• Softmax



Transformer
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• Positional Encoding



Transformer
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• Positional Encoding



Advantages of Transformer
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• Enhanced Parallelization Capabilities

• Capturing Long-Distance Dependencies

• Dynamic Weight Allocation



Disadvantages of Transformer
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• Computational Efficiency Issues
• Quadratic Time Complexity

• High Memory Consumption

• Limited Capability with Long Sequences
• Limited Effective Resolution Window

• Extended Training Times

• Overparameterization



SSMs——S4
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Maarten Grootendorst《A Visual Guide to Mamba and State Space Models》
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• State Space
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• State Space
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• SSM



SSMs——S4

33

• SSM



SSMs——S4

34

• SSM



SSMs——S4

35

• S4



SSMs——S4

36

• S4



SSMs——S4

37

• S4



SSMs——S4

38

• S4



SSMs——S4

39

• S4



SSMs——S4

40

• S4



SSMs——S4

41

• S4



SSMs——S4

42



SSMs——S4

43
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SSMs——S4
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Mamba——S6
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• Selection Mechanism

• Hardware-aware Algorithm

• Simpler SSM Architecture



Disadvantages of Previous Works
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• Transformer——long context

• RNN——forget far context

• S4——fixed A, B, C
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• Selection Mechanism
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• Hardware-aware Algorithm
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• Hardware-aware Algorithm
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• Hardware-aware Algorithm (2)
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• Hardware-aware Algorithm (2)
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• Hardware-aware Algorithm (2)
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Mamba——S6
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Experiments
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Experiments
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Why Rejected by ICLR24
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• Need comparison with H3



Why Rejected by ICLR24
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• Scaling beyond 1.4B, vs Transformer 10B



Why Rejected by ICLR24
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• Beyond Training Length



Conclusions
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• Selection Mechanism

• Hardware-aware Algorithm

• Simpler SSM Architecture
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Thank You！


