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Stare at this point 
for a minute
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Stare at this point 
and blink
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Computational Optical Illusions
• Motion Without Movement (SIGGRAPH 1991)

Create the illusion of constant motion in a desired 
direction by locally applying a filter with continuously 
shifting phase

• Hybrid Images (TOG 2006)
• Camouflage Images (TOG 2010)
• Designing Perceptual Puzzles By Differentiating 

Probabilistic Programs (SIGGRAPH 2022)
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Computational Optical Illusions
• Motion Without Movement (SIGGRAPH 1991)
• Hybrid Images (TOG 2006)

Change appearance depending on the distance they are 
viewed from

• Camouflage Images (TOG 2010)
• Designing Perceptual Puzzles By Differentiating 

Probabilistic Programs (SIGGRAPH 2022)



Background: Optical Illusions 

10

Computational Optical Illusions
• Motion Without Movement (SIGGRAPH 1991)
• Hybrid Images (TOG 2006)
• Camouflage Images (TOG 2010)

Camouflage objects in a scene through retexturing, with 
additional constraints on luminance as to preserve 
salient features of the object

• Designing Perceptual Puzzles By Differentiating 
Probabilistic Programs (SIGGRAPH 2022)
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Computational Optical Illusions
• Motion Without Movement (SIGGRAPH 1991)
• Hybrid Images (TOG 2006)
• Camouflage Images (TOG 2010)
• Designing Perceptual Puzzles By Differentiating 

Probabilistic Programs (SIGGRAPH 2022)
Color-constancy, size constancy, and face
perception illusions by differentiating through a 
Bayesian model of human vision
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Illusions with Diffusion Models
• QR Codes As Created Images

Global structure subtly matches a given template 
image (I2I)

• Extensions
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Illusions with Diffusion Models
• QR Codes As Created Images
• Extensions
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Diffusion Models
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Text-to-Image
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Compositional Generation
• Composable Diffusion Models (ECCV 2022)
• Reduce, Reuse, Recycle (PMLR 2023)
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Compositional Generation
• Composable Diffusion Models (ECCV 2022)
• Reduce, Reuse, Recycle (PMLR 2023)

Energy-Based 
Models (EBMs)

Composing EBMs

Composing 
Diffusion Models

: Image
: Energy Function,
  Learnable
: Diffusion Model

Diffusion Models



Background

25

Compositional Generation
• Composable Diffusion Models (ECCV 2022)
• Reduce, Reuse, Recycle (PMLR 2023)

More theoretical, More in-depth, Not just relying on diffusion
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Illusions with Diffusion Models
Baseline: Score Distillation Sampling (SDS)

Create images align with different prompts from different views
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Illusions with Diffusion Models
Baseline:  Matthew Tancik. Illusion diffusion. 
https://github.com/tancik/Illusion-Diffusion

• Combining noise predictions from different views 
during denoising

• Based on latent diffusion model (LDM)
• Just for rotation illusions
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Text-conditioned Diffusion Models
Classifier-free Guidance (CFG)

Negative prompting: the empty text prompt embedding,     , is replaced by a text prompt 
that discourage the model from generating.

:  Conditioning Prompts        : Embedding Of The Empty String        : Strength Parameter
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Parallel Denoising
Simultaneously Denoise Multiple Views Of An Image
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Parallel Denoising
Simultaneously Denoise Multiple Views Of An Image

: Number Of Prompt Set              : Prompt i

     : View Function i                           : Diffusion Model

Composing 
Diffusion Models

Replace as
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Conditions On Views

• Invertibility
• Linearity
• Statistical Consistency
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Conditions On Views
• Invertibility
• Linearity

• Statistical Consistency

also need to be a linear combination of pure signal and pure noise with the same weighting
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Conditions On Views
• Invertibility
• Linearity
• Statistical Consistency

-Diffusion model

-Transformed noise        must be likewise drawn from

-      is an orthogonal matrix
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Views Considered
Standard Image Manipulations

Rotation, reflection and skewing
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Views Considered
General Permutations

Jigsaw puzzles and inner rotations
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Views Considered
Color Inversion
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Views Considered
Arbitrary Orthogonal Transformations
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Design Decisions
• Pixel Diffusion Model

Latent diffusion models lead to artifacts under rotations or flips, where the location of 
latents change, but the content and orientation of these blocks do not

• Combining Noise Estimates
• Negative Prompting
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Design Decisions
• Pixel Diffusion Model
• Combining Noise Estimates

Alternating through them by timestep

• Negative Prompting
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Design Decisions
• Pixel Diffusion Model
• Combining Noise Estimates
• Negative Prompting

Use one view’s prompt as a negative for the other view, and vice versa
This encourages the model to hide the other view’s prompt for a given view
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Metrics
• CLIP to measure how well views align with the desired prompts
•                 defined as

       and         are the CLIP visual and textual encoders respectively

• Alignment score:                            , measures the worst alignment

• Concealment score:                                      , measures how well CLIP can 
classify a view
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Datasets: Prompt Pairs For 2-view Illusions
• CIFAR: 10 classes from CIFAR-10, for a total of 45 prompt pairs
• Ours:  compile by hand, consists of 50 prompt pairs

Baselines
• Burgert et al. : Score Distillation Sampling
• Tancik:  An earlier version of our method
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Quantitative Results
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Qualitative Results
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Ablations
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• Present a method to produce compelling and diverse optical illusions

• Prove the method works for a broad set of transformations

• Qualitatively show the method can generate a wide array of optical illusions

• Does not consistently produce perfect illusions
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Failures
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