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3D Reconstruction

Explicit access of constraints and prior knowledge
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3D Generation

Lack of enough external priors to generate a high quality 3D object

High quality huge scale 3D dataset is hard to collect

How to utilize strong generative power of 2D Diffusion Models to 3D?
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DreamFusion: Diffusion Model as a loss

Score Distillation Sampling (SDS)

“DreamFusion: Text-to-3D using 2D Diffusion”, Ben Poole, Ajay Jain, Jonathan T. Barron, Ben Mildenhall,  
ICLR23 outstanding paper
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• Pros:
• Do not need to backpropagate through the diffusion model

• DM simply acts like an efficient, frozen critic predicts image-space edits

• Effectively insert 2D DM’s generative priors to produce 3D objects

• Cons:
• Need to set the Classifier Free Guidance as high as 100 for convergence 

• Produce excessively large gradients and lead to unstable optimization

• High-saturation results
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Classifier Score Distillation (CSD)

“Text-to-3D with Classifier Score Distillation”, Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-
Hai Zhang, Xiaojuan Qi,  arXiv 23.10

Classifier score is the true essential component that drives the optimization

�: classifier free guidance intensity
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Classifier Score Distillation (CSD)

�: parameters of 3D model (NeRF, …), used to generate a rendered 2D image
�: parameters of diffusion model
y: text prompt

Replace “ground truth noise”
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Variational Score Distillation (VSD)
Predict noise adaptively and more accurately
Find a better alignment to rendered images distribution

3D generation
Render to 2D

Main contribution
“ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation”,    
Zhengyi Wang et al., NeurIPS 23.
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Variational Score Distillation (VSD)
A better alignment achieves more accurate noise prediction

• Train a LoRA to predict noise

• Form a bi-level optimization

• Finetune LoRA first, then 

predict noise to optimize 3D 

generation model iteratively



Background

11

Variational Score Distillation (VSD)
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Asynchronous Score Distillation (ASD)
Improve VSD which limited to:
• problematic optimization
• sacrificed comprehension ability to diverse prompts

Assumption:
better alignment with rendered image distribution, will lead to:
• more accurate noise prediction
• more effective loss gradient for optimization
• better 3D generation results
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Asynchronous Score Distillation (ASD)
• Predict noises on different timesteps, use discrepancy as gradient
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Observation
• Finetuned Diffusion model predict more 

accurate noise

• Noise prediction error will decrease as 
timestep increase, both on original 
UNet and finetuned UNet

• The speed of decrease becomes 
slower and slower as timestep increase
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Goal: Find a more accurate noise prediction on rendered images

Replace “ground truth noise” with noise prediction at larger timestep

• More accurate prediction: ��� � ��� � 

• Use ��� � + Δ�  approximate ��� � 
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A heuristic strategy to increase Δ� with larger timestep:
• if �0 < �1, then Δ�0 < Δ�1
•  
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Comparison with VSD: 
• No LoRA need to be trained, a single training objective

• Maintain most generative prior of pretrained diffusion model
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Prompt amortized: optimize a general 3D generator to produce 
3D objects given different prompts
• More strict to prompt comprehensive ability
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Scalability: train a 3D generator on 100k prompts
• VSD will be crashed
• ASD can generator more vivid results compared with CSD



Experiments: Ablation

22

Different setting of Δ�
• No random sampling: not work
• Too big �:                             , degrade to SDS, which is not suitable with 

CFG=7.5
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Conclusion: Potential Extension

OSEDiff (arXiv 24.06): utilize VSD Loss on one step RealSR task
(Comes from the same team)

No noise input: stable, high fidelity
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Conclusion

• Regularize 3D generation by 2D pretrained Diffusion models 
effectively and efficiently 

• Improve comprehension ability with scalable prompts

• Potential applications to more vision tasks



Thanks for listening!


